Related
I've got a series of images and in some of them the people are only slightly moved, or the camera was shifted slightly, but mostly all is still the same.
I'm wondering algorithmically how I could detect this and find and score images based on their closeness.
A simple euclidian distance might not work - imagine the case in where zebra stripes were shifted just enough to have the "old" white positions filled with black and vice versa. A pathological example, I know, but you get the idea.
As an optional tag along, perhaps there's a nice OpenCV or scipy (preference for Python) function for this or some of the pipeline for doing this.
Thanks!
You can calculate the difference between your images.
The higher the intensity values of the difference image, the more they are different.
So, if you have two exactly the same images and subtract them, there will be a "black" difference image.
You can simply use the overloaded operator-() of Mat-class.
There are many tools online that take images and simulate what that image might look like to someone with color blindness. However, I can't find any descriptions of these algorithms.
Is there a standard algorithm used to simulate color blindness? I'm aware that there are many types of color blindness (see the Wikipedia page on the subject for more details), but I'm primarily interested in algorithms for simulating dichromacy.
I had the same frustration and wrote an article comparing opensource color blindness simulations. In short, there are four main algorithms:
Coblis and the "HCIRN Color Blind Simulation function". You'll find this one in many places, and a Javascript implementation by MaPePeR. The full HCIRN simulation function was not properly evaluated but is reasonable in practice. However the "ColorMatrix" approximation by colorjack is very inaccurate and should be totally avoided (the author himself said that). Unfortunately it's still widespread as it was easy to copy/paste.
"Computerized simulation of color appearance for dichromats" by Brettel, Viénot, and Mollon (1997). A very solid reference. Works for all kinds of dichromacies. I wrote a public domain C implementation in libDaltonLens.
"Digital video colourmaps for checking the legibility of displays by dichromats" by Viénot, Brettel and Mollon (1999). A solid reference too, simplifies the 1997 paper for protanopia and deuteranopia (2 of the 3 kinds of color blindness). Also in libDaltonLens.
"A Physiologically-based Model for Simulation of Color Vision Deficiency" by Machado et al. (2009). Precomputed matrices are available on their website, which makes it easy to implement yourself. You just need to add the conversion from sRGB to linearRGB.
Looks like you're answer is in the wikipedia entry you linked.
For example:
Protanopia (1% of males): Lacking the long-wavelength sensitive
retinal cones, those with this condition are unable to distinguish
between colors in the green–yellow–red section of the spectrum. They
have a neutral point at a greenish wavelength around 492 nm – that is,
they cannot discriminate light of this wavelength from white.
So you need to de-saturate any colors in the green-yellow-red spectrum to white.
Image color saturation
The other 2 types of dichromacy can be handled similarly.
First we have to understand how the eye works:
A regular/healthy eye has 3 types of cones and 1 type of rods that have activation functions over the visible spectrum of light.
Their activations then pass through some function to produce the signal that goes to your brain. Roughly speaking, the function takes 4 channels as input and produces 3 channels as output (namely lightness, yellow-blue and red-green).
A colorblind person would have one of those two things be different (afaik usually/always 1.), so for example the person would be missing one type of cone or the cone's activation would be different.
The best thing to do would be:
Convert all pixels from RGB space to a combination of frequencies (with intensities). To do this, first take calculate the activations of each of the three cones (of a healthy person) then find a "natural" solution for a set of frequencies (+ intensities) that would result in the same activation. Of course, one solution is just the original three RGB frequencies with their intensities, but it is unlikely that the original image actually had that. A natural solution would be for example a normal distribution around some frequency (or even just one frequency).
Then, (again for each pixel) calculate the activations of a colorblind person's cones to your combination of frequencies.
Finally, find an RGB value such that a healthy person would have the same activations as the ones the colorblind person has.
Note that, if the way these activations are combined is also different for the relevant type of colorblindness, you might want to carry that out as well in the above steps. (So instead of matching activations, you are matching the result of the function over the activations).
I got school task again. This time, my teacher gave me task to create algorithm to count how many ducks on picture.
The picture is similar to this one:
I think I should use pattern recognition for searching how many ducks on it. But I don't know which pattern match for each duck.
I think that you can solve this problem by segmenting the ducks' beaks and counting the number of connected components in the binary image.
To segment the ducks' beaks, first convert the image to HSV color space and then perform a binarization using the hue component. Note that the ducks' beaks hue are different from other parts of the image.
Here's one way:
Hough transform for circles:
Initialize an accumulator array indexed by (x,y,radius)
For each pixel:
calculate an edge (e.g. Sobel operator will provide both magnitude and direction), if magnitude exceeds some threshold then:
increment every accumulator for which this edge could possibly lend evidence (only the (x,y) in the direction of the edge, only radii between min_duck_radius and max_duck_radius)
Now smooth and threshold the accumulator array, and the coordinates of highest accumulators show you where the heads are. The threshold may leap out at you if you histogram the values in the accumulators (there may be a clear difference between "lots of evidence" and "noise").
So that's very terse, but it can get you started.
It might be just because I'm working with SIFT right now, but to me it looks like it could be good for your problem.
It is an algorithm that matches the same object on two different pictures, where the objects can have different orientations, scales and be viewed from different perspectives on the two pictures. It can also work when an object is partially hidden (as your ducks are) by another object.
I'd suggest finding a good clear picture of a rubber ducky ( :D ) and then use some SIFT implementation (VLFeat - C library with SIFT but no visualization, SIFT++ - based on VLFeat, but in C++ , Rob Hess in C with OpenCV...).
You should bear in mind that matching with SIFT (and anything else) is not perfect - so you might not get the exact number of rubber duckies in the picture.
I'm looking to create a base table of images and then compare any new images against that to determine if the new image is an exact (or close) duplicate of the base.
For example: if you want to reduce storage of the same image 100's of times, you could store one copy of it and provide reference links to it. When a new image is entered you want to compare to an existing image to make sure it's not a duplicate ... ideas?
One idea of mine was to reduce to a small thumbnail and then randomly pick 100 pixel locations and compare.
Below are three approaches to solving this problem (and there are many others).
The first is a standard approach in computer vision, keypoint matching. This may require some background knowledge to implement, and can be slow.
The second method uses only elementary image processing, and is potentially faster than the first approach, and is straightforward to implement. However, what it gains in understandability, it lacks in robustness -- matching fails on scaled, rotated, or discolored images.
The third method is both fast and robust, but is potentially the hardest to implement.
Keypoint Matching
Better than picking 100 random points is picking 100 important points. Certain parts of an image have more information than others (particularly at edges and corners), and these are the ones you'll want to use for smart image matching. Google "keypoint extraction" and "keypoint matching" and you'll find quite a few academic papers on the subject. These days, SIFT keypoints are arguably the most popular, since they can match images under different scales, rotations, and lighting. Some SIFT implementations can be found here.
One downside to keypoint matching is the running time of a naive implementation: O(n^2m), where n is the number of keypoints in each image, and m is the number of images in the database. Some clever algorithms might find the closest match faster, like quadtrees or binary space partitioning.
Alternative solution: Histogram method
Another less robust but potentially faster solution is to build feature histograms for each image, and choose the image with the histogram closest to the input image's histogram. I implemented this as an undergrad, and we used 3 color histograms (red, green, and blue), and two texture histograms, direction and scale. I'll give the details below, but I should note that this only worked well for matching images VERY similar to the database images. Re-scaled, rotated, or discolored images can fail with this method, but small changes like cropping won't break the algorithm
Computing the color histograms is straightforward -- just pick the range for your histogram buckets, and for each range, tally the number of pixels with a color in that range. For example, consider the "green" histogram, and suppose we choose 4 buckets for our histogram: 0-63, 64-127, 128-191, and 192-255. Then for each pixel, we look at the green value, and add a tally to the appropriate bucket. When we're done tallying, we divide each bucket total by the number of pixels in the entire image to get a normalized histogram for the green channel.
For the texture direction histogram, we started by performing edge detection on the image. Each edge point has a normal vector pointing in the direction perpendicular to the edge. We quantized the normal vector's angle into one of 6 buckets between 0 and PI (since edges have 180-degree symmetry, we converted angles between -PI and 0 to be between 0 and PI). After tallying up the number of edge points in each direction, we have an un-normalized histogram representing texture direction, which we normalized by dividing each bucket by the total number of edge points in the image.
To compute the texture scale histogram, for each edge point, we measured the distance to the next-closest edge point with the same direction. For example, if edge point A has a direction of 45 degrees, the algorithm walks in that direction until it finds another edge point with a direction of 45 degrees (or within a reasonable deviation). After computing this distance for each edge point, we dump those values into a histogram and normalize it by dividing by the total number of edge points.
Now you have 5 histograms for each image. To compare two images, you take the absolute value of the difference between each histogram bucket, and then sum these values. For example, to compare images A and B, we would compute
|A.green_histogram.bucket_1 - B.green_histogram.bucket_1|
for each bucket in the green histogram, and repeat for the other histograms, and then sum up all the results. The smaller the result, the better the match. Repeat for all images in the database, and the match with the smallest result wins. You'd probably want to have a threshold, above which the algorithm concludes that no match was found.
Third Choice - Keypoints + Decision Trees
A third approach that is probably much faster than the other two is using semantic texton forests (PDF). This involves extracting simple keypoints and using a collection decision trees to classify the image. This is faster than simple SIFT keypoint matching, because it avoids the costly matching process, and keypoints are much simpler than SIFT, so keypoint extraction is much faster. However, it preserves the SIFT method's invariance to rotation, scale, and lighting, an important feature that the histogram method lacked.
Update:
My mistake -- the Semantic Texton Forests paper isn't specifically about image matching, but rather region labeling. The original paper that does matching is this one: Keypoint Recognition using Randomized Trees. Also, the papers below continue to develop the ideas and represent the state of the art (c. 2010):
Fast Keypoint Recognition using Random Ferns - faster and more scalable than Lepetit 06
BRIEF: Binary Robust Independent Elementary Features - less robust but very fast -- I think the goal here is real-time matching on smart phones and other handhelds
The best method I know of is to use a Perceptual Hash. There appears to be a good open source implementation of such a hash available at:
http://phash.org/
The main idea is that each image is reduced down to a small hash code or 'fingerprint' by identifying salient features in the original image file and hashing a compact representation of those features (rather than hashing the image data directly). This means that the false positives rate is much reduced over a simplistic approach such as reducing images down to a tiny thumbprint sized image and comparing thumbprints.
phash offers several types of hash and can be used for images, audio or video.
This post was the starting point of my solution, lots of good ideas here so I though I would share my results. The main insight is that I've found a way to get around the slowness of keypoint-based image matching by exploiting the speed of phash.
For the general solution, it's best to employ several strategies. Each algorithm is best suited for certain types of image transformations and you can take advantage of that.
At the top, the fastest algorithms; at the bottom the slowest (though more accurate). You might skip the slow ones if a good match is found at the faster level.
file-hash based (md5,sha1,etc) for exact duplicates
perceptual hashing (phash) for rescaled images
feature-based (SIFT) for modified images
I am having very good results with phash. The accuracy is good for rescaled images. It is not good for (perceptually) modified images (cropped, rotated, mirrored, etc). To deal with the hashing speed we must employ a disk cache/database to maintain the hashes for the haystack.
The really nice thing about phash is that once you build your hash database (which for me is about 1000 images/sec), the searches can be very, very fast, in particular when you can hold the entire hash database in memory. This is fairly practical since a hash is only 8 bytes.
For example, if you have 1 million images it would require an array of 1 million 64-bit hash values (8 MB). On some CPUs this fits in the L2/L3 cache! In practical usage I have seen a corei7 compare at over 1 Giga-hamm/sec, it is only a question of memory bandwidth to the CPU. A 1 Billion-image database is practical on a 64-bit CPU (8GB RAM needed) and searches will not exceed 1 second!
For modified/cropped images it would seem a transform-invariant feature/keypoint detector like SIFT is the way to go. SIFT will produce good keypoints that will detect crop/rotate/mirror etc. However the descriptor compare is very slow compared to hamming distance used by phash. This is a major limitation. There are a lot of compares to do, since there are maximum IxJxK descriptor compares to lookup one image (I=num haystack images, J=target keypoints per haystack image, K=target keypoints per needle image).
To get around the speed issue, I tried using phash around each found keypoint, using the feature size/radius to determine the sub-rectangle. The trick to making this work well, is to grow/shrink the radius to generate different sub-rect levels (on the needle image). Typically the first level (unscaled) will match however often it takes a few more. I'm not 100% sure why this works, but I can imagine it enables features that are too small for phash to work (phash scales images down to 32x32).
Another issue is that SIFT will not distribute the keypoints optimally. If there is a section of the image with a lot of edges the keypoints will cluster there and you won't get any in another area. I am using the GridAdaptedFeatureDetector in OpenCV to improve the distribution. Not sure what grid size is best, I am using a small grid (1x3 or 3x1 depending on image orientation).
You probably want to scale all the haystack images (and needle) to a smaller size prior to feature detection (I use 210px along maximum dimension). This will reduce noise in the image (always a problem for computer vision algorithms), also will focus detector on more prominent features.
For images of people, you might try face detection and use it to determine the image size to scale to and the grid size (for example largest face scaled to be 100px). The feature detector accounts for multiple scale levels (using pyramids) but there is a limitation to how many levels it will use (this is tunable of course).
The keypoint detector is probably working best when it returns less than the number of features you wanted. For example, if you ask for 400 and get 300 back, that's good. If you get 400 back every time, probably some good features had to be left out.
The needle image can have less keypoints than the haystack images and still get good results. Adding more doesn't necessarily get you huge gains, for example with J=400 and K=40 my hit rate is about 92%. With J=400 and K=400 the hit rate only goes up to 96%.
We can take advantage of the extreme speed of the hamming function to solve scaling, rotation, mirroring etc. A multiple-pass technique can be used. On each iteration, transform the sub-rectangles, re-hash, and run the search function again.
My company has about 24million images come in from manufacturers every month. I was looking for a fast solution to ensure that the images we upload to our catalog are new images.
I want to say that I have searched the internet far and wide to attempt to find an ideal solution. I even developed my own edge detection algorithm.
I have evaluated speed and accuracy of multiple models.
My images, which have white backgrounds, work extremely well with phashing. Like redcalx said, I recommend phash or ahash. DO NOT use MD5 Hashing or anyother cryptographic hashes. Unless, you want only EXACT image matches. Any resizing or manipulation that occurs between images will yield a different hash.
For phash/ahash, Check this out: imagehash
I wanted to extend *redcalx'*s post by posting my code and my accuracy.
What I do:
from PIL import Image
from PIL import ImageFilter
import imagehash
img1=Image.open(r"C:\yourlocation")
img2=Image.open(r"C:\yourlocation")
if img1.width<img2.width:
img2=img2.resize((img1.width,img1.height))
else:
img1=img1.resize((img2.width,img2.height))
img1=img1.filter(ImageFilter.BoxBlur(radius=3))
img2=img2.filter(ImageFilter.BoxBlur(radius=3))
phashvalue=imagehash.phash(img1)-imagehash.phash(img2)
ahashvalue=imagehash.average_hash(img1)-imagehash.average_hash(img2)
totalaccuracy=phashvalue+ahashvalue
Here are some of my results:
item1 item2 totalsimilarity
desk1 desk1 3
desk1 phone1 22
chair1 desk1 17
phone1 chair1 34
Hope this helps!
As cartman pointed out, you can use any kind of hash value for finding exact duplicates.
One starting point for finding close images could be here. This is a tool used by CG companies to check if revamped images are still showing essentially the same scene.
I have an idea, which can work and it most likely to be very fast.
You can sub-sample an image to say 80x60 resolution or comparable,
and convert it to grey scale (after subsampling it will be faster).
Process both images you want to compare.
Then run normalised sum of squared differences between two images (the query image and each from the db),
or even better Normalised Cross Correlation, which gives response closer to 1, if
both images are similar.
Then if images are similar you can proceed to more sophisticated techniques
to verify that it is the same images.
Obviously this algorithm is linear in terms of number of images in your database
so even though it is going to be very fast up to 10000 images per second on the modern hardware.
If you need invariance to rotation, then a dominant gradient can be computed
for this small image, and then the whole coordinate system can be rotated to canonical
orientation, this though, will be slower. And no, there is no invariance to scale here.
If you want something more general or using big databases (million of images), then
you need to look into image retrieval theory (loads of papers appeared in the last 5 years).
There are some pointers in other answers. But It might be overkill, and the suggest histogram approach will do the job. Though I would think combination of many different
fast approaches will be even better.
I believe that dropping the size of the image down to an almost icon size, say 48x48, then converting to greyscale, then taking the difference between pixels, or Delta, should work well. Because we're comparing the change in pixel color, rather than the actual pixel color, it won't matter if the image is slightly lighter or darker. Large changes will matter since pixels getting too light/dark will be lost. You can apply this across one row, or as many as you like to increase the accuracy. At most you'd have 47x47=2,209 subtractions to make in order to form a comparable Key.
Picking 100 random points could mean that similar (or occasionally even dissimilar) images would be marked as the same, which I assume is not what you want. MD5 hashes wouldn't work if the images were different formats (png, jpeg, etc), had different sizes, or had different metadata. Reducing all images to a smaller size is a good bet, doing a pixel-for- pixel comparison shouldn't take too long as long as you're using a good image library / fast language, and the size is small enough.
You could try making them tiny, then if they are the same perform another comparison on a larger size - could be a good combination of speed and accuracy...
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you have a large number of images, look into a Bloom filter, which uses multiple hashes for a probablistic but efficient result. If the number of images is not huge, then a cryptographic hash like md5 should be sufficient.
I think it's worth adding to this a phash solution I built that we've been using for a while now: Image::PHash. It is a Perl module, but the main parts are in C. It is several times faster than phash.org and has a few extra features for DCT-based phashes.
We had dozens of millions of images already indexed on a MySQL database, so I wanted something fast and also a way to use MySQL indices (which don't work with hamming distance), which led me to use "reduced" hashes for direct matches, the module doc discusses this.
It's quite simple to use:
use Image::PHash;
my $iph1 = Image::PHash->new('file1.jpg');
my $p1 = $iph1->pHash();
my $iph2 = Image::PHash->new('file2.jpg');
my $p2 = $iph2->pHash();
my $diff = Image::PHash::diff($p1, $p2);
I made a very simple solution in PHP for comparing images several years ago. It calculates a simple hash for each image, and then finds the difference. It works very nice for cropped or cropped with translation versions of the same image.
First I resize the image to a small size, like 24x24 or 36x36. Then I take each column of pixels and find average R,G,B values for this column.
After each column has its own three numbers, I do two passes: first on odd columns and second on even ones. The first pass sums all the processed cols and then divides by their number ( [1] + [2] + [5] + [N-1] / (N/2) ). The second pass works in another manner: ( [3] - [4] + [6] - [8] ... / (N/2) ).
So now I have two numbers. As I found out experimenting, the first one is a major one: if it's far from the values of another image, they are not similar from the human point of view at all.
So, the first one represents the average brightness of the image (again, you can pay most attention to green channel, then the red one, etc, but the default R->G->B order works just fine). The second number can be compared if the first two are very close, and it in fact represents the overall contrast of the image: if we have some black/white pattern or any contrast scene (lighted buildings in the city at night, for example) and if we are lucky, we will get huge numbers here if out positive members of sum are mostly bright, and negative ones are mostly dark, or vice versa. As I want my values to be always positive, I divide by 2 and shift by 127 here.
I wrote the code in PHP in 2017, and seems I lost the code. But I still have the screenshots:
The same image:
Black & White version:
Cropped version:
Another image, ranslated version:
Same color gamut as 4th, but another scene:
I tuned the difference thresholds so that the results are really nice. But as you can see, this simple algorithm cannot do anything good with simple scene translations.
On a side note I can notice that a modification can be written to make cropped copies from each of two images at 75-80 percent, 4 at the corners or 8 at the corners and middles of the edges, and then by comparing the cropped variants with another whole image just the same way; and if one of them gets a significantly better similarity score, then use its value instead of the default one).
Given two different image files (in whatever format I choose), I need to write a program to predict the chance if one being the illegal copy of another. The author of the copy may do stuff like rotating, making negative, or adding trivial details (as well as changing the dimension of the image).
Do you know any algorithm to do this kind of job?
These are simply ideas I've had thinking about the problem, never tried it but I like thinking about problems like this!
Before you begin
Consider normalising the pictures, if one is a higher resolution than the other, consider the option that one of them is a compressed version of the other, therefore scaling the resolution down might provide more accurate results.
Consider scanning various prospective areas of the image that could represent zoomed portions of the image and various positions and rotations. It starts getting tricky if one of the images are a skewed version of another, these are the sort of limitations you should identify and compromise on.
Matlab is an excellent tool for testing and evaluating images.
Testing the algorithms
You should test (at the minimum) a large human analysed set of test data where matches are known beforehand. If for example in your test data you have 1,000 images where 5% of them match, you now have a reasonably reliable benchmark. An algorithm that finds 10% positives is not as good as one that finds 4% of positives in our test data. However, one algorithm may find all the matches, but also have a large 20% false positive rate, so there are several ways to rate your algorithms.
The test data should attempt to be designed to cover as many types of dynamics as possible that you would expect to find in the real world.
It is important to note that each algorithm to be useful must perform better than random guessing, otherwise it is useless to us!
You can then apply your software into the real world in a controlled way and start to analyse the results it produces. This is the sort of software project which can go on for infinitum, there are always tweaks and improvements you can make, it is important to bear that in mind when designing it as it is easy to fall into the trap of the never ending project.
Colour Buckets
With two pictures, scan each pixel and count the colours. For example you might have the 'buckets':
white
red
blue
green
black
(Obviously you would have a higher resolution of counters). Every time you find a 'red' pixel, you increment the red counter. Each bucket can be representative of spectrum of colours, the higher resolution the more accurate but you should experiment with an acceptable difference rate.
Once you have your totals, compare it to the totals for a second image. You might find that each image has a fairly unique footprint, enough to identify matches.
Edge detection
How about using Edge Detection.
(source: wikimedia.org)
With two similar pictures edge detection should provide you with a usable and fairly reliable unique footprint.
Take both pictures, and apply edge detection. Maybe measure the average thickness of the edges and then calculate the probability the image could be scaled, and rescale if necessary. Below is an example of an applied Gabor Filter (a type of edge detection) in various rotations.
Compare the pictures pixel for pixel, count the matches and the non matches. If they are within a certain threshold of error, you have a match. Otherwise, you could try reducing the resolution up to a certain point and see if the probability of a match improves.
Regions of Interest
Some images may have distinctive segments/regions of interest. These regions probably contrast highly with the rest of the image, and are a good item to search for in your other images to find matches. Take this image for example:
(source: meetthegimp.org)
The construction worker in blue is a region of interest and can be used as a search object. There are probably several ways you could extract properties/data from this region of interest and use them to search your data set.
If you have more than 2 regions of interest, you can measure the distances between them. Take this simplified example:
(source: per2000.eu)
We have 3 clear regions of interest. The distance between region 1 and 2 may be 200 pixels, between 1 and 3 400 pixels, and 2 and 3 200 pixels.
Search other images for similar regions of interest, normalise the distance values and see if you have potential matches. This technique could work well for rotated and scaled images. The more regions of interest you have, the probability of a match increases as each distance measurement matches.
It is important to think about the context of your data set. If for example your data set is modern art, then regions of interest would work quite well, as regions of interest were probably designed to be a fundamental part of the final image. If however you are dealing with images of construction sites, regions of interest may be interpreted by the illegal copier as ugly and may be cropped/edited out liberally. Keep in mind common features of your dataset, and attempt to exploit that knowledge.
Morphing
Morphing two images is the process of turning one image into the other through a set of steps:
Note, this is different to fading one image into another!
There are many software packages that can morph images. It's traditionaly used as a transitional effect, two images don't morph into something halfway usually, one extreme morphs into the other extreme as the final result.
Why could this be useful? Dependant on the morphing algorithm you use, there may be a relationship between similarity of images, and some parameters of the morphing algorithm.
In a grossly over simplified example, one algorithm might execute faster when there are less changes to be made. We then know there is a higher probability that these two images share properties with each other.
This technique could work well for rotated, distorted, skewed, zoomed, all types of copied images. Again this is just an idea I have had, it's not based on any researched academia as far as I am aware (I haven't look hard though), so it may be a lot of work for you with limited/no results.
Zipping
Ow's answer in this question is excellent, I remember reading about these sort of techniques studying AI. It is quite effective at comparing corpus lexicons.
One interesting optimisation when comparing corpuses is that you can remove words considered to be too common, for example 'The', 'A', 'And' etc. These words dilute our result, we want to work out how different the two corpus are so these can be removed before processing. Perhaps there are similar common signals in images that could be stripped before compression? It might be worth looking into.
Compression ratio is a very quick and reasonably effective way of determining how similar two sets of data are. Reading up about how compression works will give you a good idea why this could be so effective. For a fast to release algorithm this would probably be a good starting point.
Transparency
Again I am unsure how transparency data is stored for certain image types, gif png etc, but this will be extractable and would serve as an effective simplified cut out to compare with your data sets transparency.
Inverting Signals
An image is just a signal. If you play a noise from a speaker, and you play the opposite noise in another speaker in perfect sync at the exact same volume, they cancel each other out.
(source: themotorreport.com.au)
Invert on of the images, and add it onto your other image. Scale it/loop positions repetitively until you find a resulting image where enough of the pixels are white (or black? I'll refer to it as a neutral canvas) to provide you with a positive match, or partial match.
However, consider two images that are equal, except one of them has a brighten effect applied to it:
(source: mcburrz.com)
Inverting one of them, then adding it to the other will not result in a neutral canvas which is what we are aiming for. However, when comparing the pixels from both original images, we can definatly see a clear relationship between the two.
I haven't studied colour for some years now, and am unsure if the colour spectrum is on a linear scale, but if you determined the average factor of colour difference between both pictures, you can use this value to normalise the data before processing with this technique.
Tree Data structures
At first these don't seem to fit for the problem, but I think they could work.
You could think about extracting certain properties of an image (for example colour bins) and generate a huffman tree or similar data structure. You might be able to compare two trees for similarity. This wouldn't work well for photographic data for example with a large spectrum of colour, but cartoons or other reduced colour set images this might work.
This probably wouldn't work, but it's an idea. The trie datastructure is great at storing lexicons, for example a dictionarty. It's a prefix tree. Perhaps it's possible to build an image equivalent of a lexicon, (again I can only think of colours) to construct a trie. If you reduced say a 300x300 image into 5x5 squares, then decompose each 5x5 square into a sequence of colours you could construct a trie from the resulting data. If a 2x2 square contains:
FFFFFF|000000|FDFD44|FFFFFF
We have a fairly unique trie code that extends 24 levels, increasing/decreasing the levels (IE reducing/increasing the size of our sub square) may yield more accurate results.
Comparing trie trees should be reasonably easy, and could possible provide effective results.
More ideas
I stumbled accross an interesting paper breif about classification of satellite imagery, it outlines:
Texture measures considered are: cooccurrence matrices, gray-level differences, texture-tone analysis, features derived from the Fourier spectrum, and Gabor filters. Some Fourier features and some Gabor filters were found to be good choices, in particular when a single frequency band was used for classification.
It may be worth investigating those measurements in more detail, although some of them may not be relevant to your data set.
Other things to consider
There are probably a lot of papers on this sort of thing, so reading some of them should help although they can be very technical. It is an extremely difficult area in computing, with many fruitless hours of work spent by many people attempting to do similar things. Keeping it simple and building upon those ideas would be the best way to go. It should be a reasonably difficult challenge to create an algorithm with a better than random match rate, and to start improving on that really does start to get quite hard to achieve.
Each method would probably need to be tested and tweaked thoroughly, if you have any information about the type of picture you will be checking as well, this would be useful. For example advertisements, many of them would have text in them, so doing text recognition would be an easy and probably very reliable way of finding matches especially when combined with other solutions. As mentioned earlier, attempt to exploit common properties of your data set.
Combining alternative measurements and techniques each that can have a weighted vote (dependant on their effectiveness) would be one way you could create a system that generates more accurate results.
If employing multiple algorithms, as mentioned at the begining of this answer, one may find all the positives but have a false positive rate of 20%, it would be of interest to study the properties/strengths/weaknesses of other algorithms as another algorithm may be effective in eliminating false positives returned from another.
Be careful to not fall into attempting to complete the never ending project, good luck!
Read the paper: Porikli, Fatih, Oncel Tuzel, and Peter Meer. “Covariance Tracking Using Model Update Based
on Means on Riemannian Manifolds”. (2006) IEEE Computer Vision and Pattern Recognition.
I was successfully able to detect overlapping regions in images captured from adjacent webcams using the technique presented in this paper. My covariance matrix was composed of Sobel, canny and SUSAN aspect/edge detection outputs, as well as the original greyscale pixels.
An idea:
use keypoint detectors to find scale- and transform- invariant descriptors of some points in the image (e.g. SIFT, SURF, GLOH, or LESH).
try to align keypoints with similar descriptors from both images (like in panorama stitching), allow for some image transforms if necessary (e.g. scale & rotate, or elastic stretching).
if many keypoints align well (exists such a transform, that keypoint alignment error is low; or transformation "energy" is low, etc.), you likely have similar images.
Step 2 is not trivial. In particular, you may need to use a smart algorithm to find the most similar keypoint on the other image. Point descriptors are usually very high-dimensional (like a hundred parameters), and there are many points to look through. kd-trees may be useful here, hash lookups don't work well.
Variants:
Detect edges or other features instead of points.
It is indeed much less simple than it seems :-) Nick's suggestion is a good one.
To get started, keep in mind that any worthwhile comparison method will essentially work by converting the images into a different form -- a form which makes it easier to pick similar features out. Usually, this stuff doesn't make for very light reading ...
One of the simplest examples I can think of is simply using the color space of each image. If two images have highly similar color distributions, then you can be reasonably sure that they show the same thing. At least, you can have enough certainty to flag it, or do more testing. Comparing images in color space will also resist things such as rotation, scaling, and some cropping. It won't, of course, resist heavy modification of the image or heavy recoloring (and even a simple hue shift will be somewhat tricky).
http://en.wikipedia.org/wiki/RGB_color_space
http://upvector.com/index.php?section=tutorials&subsection=tutorials/colorspace
Another example involves something called the Hough Transform. This transform essentially decomposes an image into a set of lines. You can then take some of the 'strongest' lines in each image and see if they line up. You can do some extra work to try and compensate for rotation and scaling too -- and in this case, since comparing a few lines is MUCH less computational work than doing the same to entire images -- it won't be so bad.
http://homepages.inf.ed.ac.uk/amos/hough.html
http://rkb.home.cern.ch/rkb/AN16pp/node122.html
http://en.wikipedia.org/wiki/Hough_transform
In the form described by you, the problem is tough. Do you consider copy, paste of part of the image into another larger image as a copy ? etc.
What we loosely refer to as duplicates can be difficult for algorithms to discern.
Your duplicates can be either:
Exact Duplicates
Near-exact Duplicates. (minor edits of image etc)
perceptual Duplicates (same content, but different view, camera etc)
No1 & 2 are easier to solve. No 3. is very subjective and still a research topic.
I can offer a solution for No1 & 2.
Both solutions use the excellent image hash- hashing library: https://github.com/JohannesBuchner/imagehash
Exact duplicates
Exact duplicates can be found using a perceptual hashing measure.
The phash library is quite good at this. I routinely use it to clean
training data.
Usage (from github site) is as simple as:
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
for img_fn in sorted(image_fns):
hash = imagehash.average_hash(Image.open(image_fn))
if hash in img_hashes:
print( '{} duplicate of {}'.format(image_fn, img_hashes[hash]) )
else:
img_hashes[hash] = image_fn
Near-Exact Duplicates
In this case you will have to set a threshold and compare the hash values for their distance from each
other. This has to be done by trial-and-error for your image content.
from PIL import Image
import imagehash
# image_fns : List of training image files
img_hashes = {}
epsilon = 50
for img_fn1, img_fn2 in zip(image_fns, image_fns[::-1]):
if image_fn1 == image_fn2:
continue
hash1 = imagehash.average_hash(Image.open(image_fn1))
hash2 = imagehash.average_hash(Image.open(image_fn2))
if hash1 - hash2 < epsilon:
print( '{} is near duplicate of {}'.format(image_fn1, image_fn2) )
If you take a step-back, this is easier to solve if you watermark the master images.
You will need to use a watermarking scheme to embed a code into the image. To take a step back, as opposed to some of the low-level approaches (edge detection etc) suggested by some folks, a watermarking method is superior because:
It is resistant to Signal processing attacks
► Signal enhancement – sharpening, contrast, etc.
► Filtering – median, low pass, high pass, etc.
► Additive noise – Gaussian, uniform, etc.
► Lossy compression – JPEG, MPEG, etc.
It is resistant to Geometric attacks
► Affine transforms
► Data reduction – cropping, clipping, etc.
► Random local distortions
► Warping
Do some research on watermarking algorithms and you will be on the right path to solving your problem. (
Note: You can benchmark you method using the STIRMARK dataset. It is an accepted standard for this type of application.
This is just a suggestion, it might not work and I'm prepared to be called on this.
This will generate false positives, but hopefully not false negatives.
Resize both of the images so that they are the same size (I assume that the ratios of widths to lengths are the same in both images).
Compress a bitmap of both images with a lossless compression algorithm (e.g. gzip).
Find pairs of files that have similar file sizes. For instance, you could just sort every pair of files you have by how similar the file sizes are and retrieve the top X.
As I said, this will definitely generate false positives, but hopefully not false negatives. You can implement this in five minutes, whereas the Porikil et. al. would probably require extensive work.
I believe if you're willing to apply the approach to every possible orientation and to negative versions, a good start to image recognition (with good reliability) is to use eigenfaces: http://en.wikipedia.org/wiki/Eigenface
Another idea would be to transform both images into vectors of their components. A good way to do this is to create a vector that operates in x*y dimensions (x being the width of your image and y being the height), with the value for each dimension applying to the (x,y) pixel value. Then run a variant of K-Nearest Neighbours with two categories: match and no match. If it's sufficiently close to the original image it will fit in the match category, if not then it won't.
K Nearest Neighbours(KNN) can be found here, there are other good explanations of it on the web too: http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
The benefits of KNN is that the more variants you're comparing to the original image, the more accurate the algorithm becomes. The downside is you need a catalogue of images to train the system first.
If you're willing to consider a different approach altogether to detecting illegal copies of your images, you could consider watermarking. (from 1.4)
...inserts copyright information into the digital object without the loss of quality. Whenever the copyright of a digital object is in question, this information is extracted to identify the rightful owner. It is also possible to encode the identity of the original buyer along with the identity of the copyright holder, which allows tracing of any unauthorized copies.
While it's also a complex field, there are techniques that allow the watermark information to persist through gross image alteration: (from 1.9)
... any signal transform of reasonable strength cannot remove the watermark. Hence a pirate willing to remove the watermark will not succeed unless they debase the document too much to be of commercial interest.
of course, the faq calls implementing this approach: "...very challenging" but if you succeed with it, you get a high confidence of whether the image is a copy or not, rather than a percentage likelihood.
If you're running Linux I would suggest two tools:
align_image_stack from package hugin-tools - is a commandline program that can automatically correct rotation, scaling, and other distortions (it's mostly intended for compositing HDR photography, but works for video frames and other documents too). More information: http://hugin.sourceforge.net/docs/manual/Align_image_stack.html
compare from package imagemagick - a program that can find and count the amount of different pixels in two images. Here's a neat tutorial: http://www.imagemagick.org/Usage/compare/ uising the -fuzz N% you can increase the error tolerance. The higher the N the higher the error tolerance to still count two pixels as the same.
align_image_stack should correct any offset so the compare command will actually have a chance of detecting same pixels.