map a rbms to a dfs - hadoop

I'm trying to take xwiki (rbms) and map it to a cloud base (dfs) without using MySQL. Any ideas?

Officially, only RDBMSs known to Hibernate are supported, so there's no support for nosql databases yet. There is a GSoC project proposed for developing support for AppEngine, and one of the research projects that XWiki is participating in, Compatible One, also needs cloud storage for XWiki. So, official support for clouds is going to come pretty soon.

You may want to look up sqoop -- a tool to move data from a relational database to hbase and back again

Related

Project with Laravel and NOSQL

I want to start a project on Laravel and want to go for NOSQL. I need extensive search with this project and was considering Mongodb but I am not sure about search.
Few related questions:
Is there enough support for using NOSQL, incase I get stuck somewhere?
NOSQL is flexible enough for searching parameters?
If I need to import data from previous project to NoSQL will it be a challenge?
What about realtime time, does NOSQL supports realtime?
Thanks in advance.

Cassandra and advanced queries: Spark, ElasticSearch, Sorl

Ok, so, I'm developing an app and I'm using Cassandra as the database.
Everything going good so far, but now I need to do a query using the LIKE clause.
I know Cassandra doesn't support that, and that's why after looking for a workaround I was thinking in maintaining this single table that I need to query using the LIKE clause in another database, other than Cassandra - was even considering a relational database, even though there wouldn't exist any relations.
Then I started looking to see if this is really the right approach, and came into stuff like Spark, Sorl and ElasticSearch.
Just to make it clear: I have little to no knowledge about those frameworks. Really. I only have heard about them and that's all.
So, I'm not here to ask you guys 'hey, how to do that using this framework?'. I just want to know, before I dig into any of those: Would any of those satisfy my needs? - Since I have no idea exactly how they work, and what exactly they are for.
If it is the case, them I'll study the framework properly - I just don't want to spend the time to figure out it has nothing to do with my problem.
Thanks!
Both elasticsearch and solr fits your needs. They use lucene library to perform reverse indexing and much more -- Datastax enterprise (commercial distribution of Cassandra) offer this solution integrating solr natively. One more solution (little different but working) is to integrate infinispan which offers both integration with Cassandra repository and reverse indexing ...
HTH,
Carlo

Hbase vs Cassandra: Which is better for a timeseries data storage?

I use my API logs to extract information like:
In this period of time how many are the users of my API ?
Or in this period of time, what type of services are called the most ?
Almost all the information I extract depend on the timestamp. Actually I use MongoDB and I added the time-stamp as an index(for 80GB, indexes size is 12GB).
A migration to cassandra or Hbase was recommended for me. And I want to know which is better for my use case:
Analysis for timeseries data.
Both good write and read performance are required.
Possibility of using hadoop to do my data analysis.
Thanks for sharing your point of view or your experience.
Advantages of Cassandra:
Cassandra generally shows better performance (though both are excellent).
Cassandra is substantially easier to setup and manage from an operational stand point (though there are tools that will help either way).
Advantages of HBase:
Native to the hadoop ecosystem
HBase will require you installing hadoop anyway, and you get a nice two-for-one. To use Cassandra you will probably need to go to use DataStax Enterprise, a commercial, non-open source product, OR investigate using Spark for your analytics work which has an open-source connector with Cassandra.
Chocolate or Vanilla ice cream - which is better?
I would suggest that you would be the best decision maker. Set up development environments for each option, and this will tell you much more about operational and tuning issues than, I think, anyone else might be able to give you. :)

Using elasticsearch as central data repository

We are currently using elasticsearch to index and perform searches on about 10M documents. It works fine and we are happy with its performance. My colleague who initiated the use of elasticsearch is convinced that it can be used as the central data repository and other data systems (e.g. SQL Server, Hadoop/Hive) can have data pushed to them. I didn't have any arguments against it because my knowledge of both is too limited. However, I am concerned.
I do know that data in elasticsearch is stored in a manner that is efficient for text searching. Hadoop stores data just as a file system would but in a manner that is efficient to scale/replicate blocks over over multiple data nodes. Therefore, in my mind it seems more beneficial to use Hadoop (as it is more agnostic w.r.t its view on data) as a central data repository. Then push data from Hadoop to SQL, elasticsearch, etc...
I've read a few articles on Hadoop and elasticsearch use cases and it seems conventional to use Hadoop as the central data repository. However, I can't find anything that would suggest that elasticsearch wouldn't be a decent alternative.
Please Help!
As is the case with all database deployments, it really depends on your specific application.
Elasticsearch is a great open source search engine built on top of Apache Lucene. Its features and upgrades allow it to basically function just like a schema-less JSON datastore that can be accessed using both search-specific methods and regular database CRUD-like commands.
Nevertheless all the advantages Elasticsearch that brings, there are still some main disadvantages:
Security - Elasticsearch does not provide any authentication or access control functionality. It's supported since they have introduced shield.
Transactions - There is no support for transactions or processing on data manipulation. Well now data manipulation is handled with logstash.
Durability - ES is distributed and fairly stable but backups and durability are not as high priority as in other data stores.
Maturity of tools - ES is still relatively new and has not had time to develop mature client libraries and 3rd party tools which can make development much harder. We can consider that it's quite mature now
with a variety of connectors and tools around it like kibana. But it's still not suited for large computations - Commands for searching data are not suited to "large" scans of data and advanced computation on the db side.
Data Availability - ES makes data available in "near real-time" which may require additional considerations in your application (ie: comments page where a user adds new comment, refreshing the page might not actually show the new post because the index is still updating).
If you can deal with these issues then there's certainly no reason why you can't use Elasticsearch as your primary data store. It can actually lower complexity and improve performance by not having to duplicate your data but again this depends on your specific use case.
As always, weigh the benefits, do some experimentation and see what works best for you.
DISCLAIMER: This answer was written a while ago for the Elasticsearch 1.x series. These critics still somehow stand with the 2.x series. But Elastic is working on them, as the 2.x series comes with more mature tools, APIs and plugins per example, security wise, like Shield or even transport clients like Logstash or Beats, etc.
I'd highly discourage most users from using elasticsearch as your primary datastore. It will work great until your cluster melts down due to a network partition. Even settings such as minimum_master_nodes that the ES pros always set won't save you. See this excellent analysis by Aphyr with his Call Me Maybe series:
http://aphyr.com/posts/317-call-me-maybe-elasticsearch
eliasah, is right, it depends on your use case, but if your data (and job) is important to you, stay away.
Keep your golden record of your data stored in something really focused on persisting and sync your data out to search from there. It adds extra complexity and resources, but will result in a better nights rest :)
There are plenty of ways to go about this and if elasticsearch does everything you need, you can look into Kafka for persisting all the events going into a cluster which would allow replaying if things go wrong. I like this approach as it provides an async ingestion pipeline into elasticsearch that also does the persistence.

What cassandra client to use for haoop integration?

I am trying to build a data services layer using cassandra as the backend store. I am new to Cassandra and not sure what client to use for cassandra - thrift or cql 3? We have a lot of mapreduce jobs using Amazon elastic mapreduce (EMR) that will be reading/ writing the data from cassandra at high volume. The total data volume will be > 100 TB with billions of rows in Cassandra. The mapreduce jobs may be read or write heavy with high qps (>1000 qps). The requirements are as follows:
Simplicity of client code. It seems thrift has in-built integration with Hadoop for bulk data loading using sstableloader (http://www.datastax.com/dev/blog/bulk-loading).
Ability to define new columns at run time. We may need to add more columns depending on application requirements. It seems cql3 does not allow definition of columns dynamically at runtime.
Performance of bulk read/ write. Not sure which client is better. However, I found this post that claims thrift client has better performance for high data volume: http://jira.pentaho.com/browse/PDI-7610?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
I could not find any authoritative source of information that answers this question. Appreciate if you could help with this since I am sure this is a common problem for most folks and would benefit the overall community.
Many thanks in advance.
-Prateek
Hadoop and Cassandra are both written in Java so definitely pick a java based driver. As far as simplicity of code goes I'd go for Astyanax, their wiki page is really good and documentation is solid all round. And yes atyanax does allow you to define columns at runtime as you please but be aware that thrift based APIs are being superseded by cql apis.
If however you want to go down the pure cql3 route, datastax's driver is what I'd advise you to use. It allows for asynchronous connections and is continuously updated (view the logs). The code is also very clean although documentation isn't quite there yet, but there are tests in the source that you can look at.
But to be honest, there are so many questions about the APIs that you should read though them and form an opinion for yourself:
Cassandra Client Java API's
About Java Cassandra Client, which one is better? How about CQL?
Advantages of using cql over thrift
Also for performance here some benchmarks (they are however outdated!) showing that cql is catching up (and somewhat overtaking when it comes to prepared statements) thrift:
compare string vs. binary prepared statement parameters
CQL benchmarking

Resources