I'm doing this to emulate global variables:
update_queue(NewItem) :-
global_queue(Q),
retractall(global_queue(Q)),
append(Q, [NewItem], NewQ),
assert(global_queue(NewQ)).
Is there another way? (Besides passing the variables as arguments, that is). Not necessarily more efficient, I'm just curious.
In SWI-Prolog, there is also nb_setval/2 and b_setval/2 (and corresponding "_getval/2"). Use time/1 to see if that is more efficient. Also a comment on the queue representation: If you represent the initial queue as a pair of variables Q-Q, you can append an element in constant time with:
insert_q0_q(E, Q-[E|Rest], Q-Rest).
that is, you append an element E to the queue by further instantiating the tail (i.e., the second element of the pair), and the new tail is again a free variable. I leave removing an element from the front (also in constant time) as an exercise; hint: when the first element of the pair is a variable, the queue in this representation is empty. Generally, global variables complicate debugging considerably, since you then cannot test the predicates in isolation. As an alternative to passing the queue as arguments (which you already mentioned), consider using DCG notation to thread it through implicitly. This often makes the code more readable, especially if only a small subset of predicates needs to access the "global" arguments.
Related
Based on my earlier question, I understand the benefit of using stack allocation. Suppose I have an array of arrays. For example, A is a list of matrices and each element A[i] is a 1x3 matrix. The length of A and the dimension of A[i] are known at run time (given by the user). Each A[i] is a matrix of Float64 and this is also known at run time. However, through out the program, I will be modifying the values of A[i] element by element. What data structure can also allow me to use stack allocation? I tried StaticArrays but it doesn't allow me to modify a static array.
StaticArrays defines MArray (MVector, MMatrix) types that are fixed-size and mutable. If you use these there's a higher chance of the compiler determining that they can be stack-allocated, but it's not guaranteed. Moreover, since the pattern you're using is that you're passing the mutable state vector into a function which presumably modifies it, it's not going to be valid or helpful to stack allocate that anyway. If you're going to allocate state once and modify it throughout the program, it doesn't really matter if it is heap or stack allocated—stack allocation is only a big win for objects that are allocated, used locally and then don't escape the local scope, so they can be “freed” simply by popping the stack.
From the code snippet you showed in the linked question, the state vector is allocated in the outer function, test_for_loop, which shouldn't be a big deal since it's done once at the beginning of execution. Using a variably sized state vector to index into an array with a splat (...) might be an issue, however, and that's done in test_function. Using something with fixed size like MVector might be better for that. It might, however, be better still, to use a state tuple and return a new rather than mutated state tuple at the end. The compiler is very good at turning that kind of thing into very efficient code because of immutability.
Note that by convention test_function should be called test_function! since it modifies its M argument and even more so if it modifies the state vector.
I would also note that this isn't a great question/answer pair since it's not standalone at all and really just a continuation of your other question. StackOverflow isn't very good for this kind of iterative question/discussion interaction, I'm afraid.
I have started learning Haskell and I have read that every function in haskell takes only one argument and I can't understand what magic happens under the hood of Haskell that makes it possible and I am wondering if it is efficient.
Example
>:t (+)
(+) :: Num a => a -> a -> a
Signature above means that (+) function takes one Num then returns another function which takes one Num and returns a Num
Example 1 is relatively easy but I have started wondering what happens when functions are a little more complex.
My Questions
For sake of the example I have written a zipWith function and executed it in two ways, once passing one argument at the time and once passing all arguments.
zipwithCustom f (x:xs) (y:ys) = f x y : zipwithCustom f xs ys
zipwithCustom _ _ _ = []
zipWithAdd = zipwithCustom (+)
zipWithAddTo123 = zipWithAdd [1,2,3]
test1 = zipWithAddTo123 [1,1,1]
test2 = zipwithCustom (+) [1,2,3] [1,1,1]
>test1
[2,3,4]
>test2
[2,3,4]
Is passing one argument at the time (scenario_1) as efficient as passing all arguments at once (scenario_2)?
Are those scenarios any different in terms of what Haskell is actually doing to compute test1 and test2 (except the fact that scenario_1 probably takes more memory as it needs to save zipWithAdd and zipWithAdd123)
Is this correct and why? In scenario_1 I iterate over [1,2,3] and then over [1,1,1]
Is this correct and why? In scenario_1 and scenario_2 I iterate over both lists at the same time
I realise that I have asked a lot of questions in one post but I believe those are connected and will help me (and other people who are new to Haskell) to better understand what actually is happening in Haskell that makes both scenarios possible.
You ask about "Haskell", but Haskell the language specification doesn't care about these details. It is up to implementations to choose how evaluation happens -- the only thing the spec says is what the result of the evaluation should be, and carefully avoids giving an algorithm that must be used for computing that result. So in this answer I will talk about GHC, which, practically speaking, is the only extant implementation.
For (3) and (4) the answer is simple: the iteration pattern is exactly the same whether you apply zipWithCustom to arguments one at a time or all at once. (And that iteration pattern is to iterate over both lists at once.)
Unfortunately, the answer for (1) and (2) is complicated.
The starting point is the following simple algorithm:
When you apply a function to an argument, a closure is created (allocated and initialized). A closure is a data structure in memory, containing a pointer to the function and a pointer to the argument. When the function body is executed, any time its argument is mentioned, the value of that argument is looked up in the closure.
That's it.
However, this algorithm kind of sucks. It means that if you have a 7-argument function, you allocate 7 data structures, and when you use an argument, you may have to follow a 7-long chain of pointers to find it. Gross. So GHC does something slightly smarter. It uses the syntax of your program in a special way: if you apply a function to multiple arguments, it generates just one closure for that application, with as many fields as there are arguments.
(Well... that might be not quite true. Actually, it tracks the arity of every function -- defined again in a syntactic way as the number of arguments used to the left of the = sign when that function was defined. If you apply a function to more arguments than its arity, you might get multiple closures or something, I'm not sure.)
So that's pretty nice, and from that you might think that your test1 would then allocate one extra closure compared to test2. And you'd be right... when the optimizer isn't on.
But GHC also does lots of optimization stuff, and one of those is to notice "small" definitions and inline them. Almost certainly with optimizations turned on, your zipWithAdd and zipWithAddTo123 would both be inlined anywhere they were used, and we'd be back to the situation where just one closure gets allocated.
Hopefully this explanation gets you to where you can answer questions (1) and (2) yourself, but just in case it doesn't, here's explicit answers to those:
Is passing one argument at the time as efficient as passing all arguments at once?
Maybe. It's possible that passing arguments one at a time will be converted via inlining to passing all arguments at once, and then of course they will be identical. In the absence of this optimization, passing one argument at a time has a (very slight) performance penalty compared to passing all arguments at once.
Are those scenarios any different in terms of what Haskell is actually doing to compute test1 and test2?
test1 and test2 will almost certainly be compiled to the same code -- possibly even to the point that only one of them is compiled and the other is an alias for it.
If you want to read more about the ideas in the implementation, the Spineless Tagless G-machine paper is much more approachable than its title suggests, and only a little bit out of date.
I understand why renaming variables to avoid capture is important but, in the following example, I don't understand why it doesn't occur.
(λf.λx.f(fx))(λf.λx.fx)
apparently reduces to
λx.(λf.λx.fx)((λf.λx.fx)x)
but shouldn't x be renamed in either (λf.λx.f(fx)) or (λf.λx.f(fx))? Don't they refer to different xs?
Capture avoidance is to avoid capturing free variables. "Capturing" bound variables doesn't hurt that much: In
λx.(λf.λx.fx)((λf.λx.fx)x)
the two uses of x are indeed different variables, but this is already encoded in the term: In general, a new abstraction in a subterm will "overwrite" the binding of further outmost abstractions. This is simply due to the way the evaluation of lambda terms works: If there is a new abstraction over the same variable, then the old abstraction further out will ultimately lose its effect in the subterm with the new abstraction, and the variables bound by the inner abstraction will effectively be different variables than the ones only bound by the outer abstraction.
You can try this out: If you apply λx.(λf.λx.fx)((λf.λx.fx)x) to some term N, then according to the definition of beta reduction, this term will reduce to (λf.λx.fx)((λf.λx.fx)x)[N/x], i.e. the term obtained by substituting every free (!) occurence of x in (λf.λx.fx)((λf.λx.fx)x) by N (substitution only operates on free variables by definition). The only free occurrence of x in that term is the very last one; the other two xes in the two subterms (λf.λx.fx) are bound by their respective λx's. So the only x that will be substituted by N is the last one, hence (λx.(λf.λx.fx)((λf.λx.fx)x))N will reduce to (λf.λx.fx)((λf.λx.fx)N) - the x's bound in the subterms (λf.λx.fx) remain unchanged.
So the x's bound by the inner abstraction and the x at the end of the term are indeed different variables belonging to different abstractions. Therefore it is unproblematic not to rename them during the application.
That being said, it can sometimes be useful to do such renamings for easier readability. The resulting term will be alpha-congruent to the one obtained by directly substituting without renaming.
I've been trying to learn what recursion in programming is, and I need someone to confirm whether I have thruly understood what it is.
The way I'm trying to think about it is through collision-detection between objects.
Let's say we have a function. The function is called when it's certain that a collision has occured, and it's called with a list of objects to determine which object collided, and with what object it collided with. It does this by first confirming whether the first object in the list collided with any of the other objects. If true, the function returns the objects in the list that collided. If false, the function calls itself with a shortened list that excludes the first object, and then repeats the proccess to determine whether it was the next object in the list that collided.
This is a finite recursive function because if the desired conditions aren't met, it calls itself with a shorter and shorter list to until it deductively meets the desired conditions. This is in contrast to a potentially infinite recursive function, where, for example, the list it calls itself with is not shortened, but the order of the list is randomized.
So... is this correct? Or is this just another example of iteration?
Thanks!
Edit: I was fortunate enough to get three VERY good answers by #rici, #Evan and #Jack. They all gave me valuable insight on this, in both technical and practical terms from different perspectives. Thank you!
Any iteration can be expressed recursively. (And, with auxiliary data structures, vice versa, but not so easily.)
I would say that you are thinking iteratively. That's not a bad thing; I don't say it to criticise. Simply, your explanation is of the form "Do this and then do that and continue until you reach the end".
Recursion is a slightly different way of thinking. I have some problem, and it's not obvious how to solve it. But I observe that if I knew the answer to a simpler problem, I could easily solve the problem at hand. And, moreover, there are some very simple problems which I can solve directly.
The recursive solution is based on using a simpler (smaller, fewer, whatever) problem to solve the problem at hand. How do I find out which pairs of objects in a set of objects collide?
If the set has fewer than 2 elements, there are no pairs. That's the simplest problem, and it has an obvious solution: the empty set.
Otherwise, I select some object. All colliding pairs either include this object, or they don't. So that gives me two subproblems.
The set of collisions which don't involve the selected object is obviously the same problem which I started with, but with a smaller set. So I've replaced this part of the problem with a smaller problem. That's one recursion.
But I also need the set of objects which the selected object collides with (which might be an empty set). That's a simpler problem, because now one element of each pair is known. I can solve that problem recursively as well:
I need the set of pairs which include the object X and a set S of objects.
If the set is empty, there are no pairs. Simple.
Otherwise, I choose some element from the set. Then I find all the collisions between X and the rest of the set (a simpler but otherwise identical problem).
If there is a collision between X and the selected element, I add that to the set I just found.
Then I return the set.
Technically speaking, you have the right mindset of how recursion works.
Practically speaking, you would not want to use recursion for an instance such as the one you described above. Reasons being is that every recursive call adds to the stack (which is finite in size), and recursive calls are expensive on the processor, with enough objects you are going to run into some serious bottle-necking on a large application. With enough recursive calls, you would result with a stack overflow, which is exactly what you would get in "infinite recursion". You never want something to infinitely recurse; it goes against the fundamental principal of recursion.
Recursion works on two defining characteristics:
A base case can be defined: It is possible to eventually reach 0 or 1 depending on your necessity
A general case can be defined: The general case is continually called, reducing the problem set until your base case is reached.
Once you have defined both cases, you can define a recursive solution.
The point of recursion is to take a very large and difficult-to-solve problem and continually break it down until it's easy to work with.
Once our base case is reached, the methods "recurse-out". This means they bounce backwards, back into the function that called it, bringing all the data from the functions below it!
It is at this point that our operations actually occur.
Once the original function is reached, we have our final result.
For example, let's say you want the summation of the first 3 integers. The first recursive call is passed the number 3.
public factorial(num) {
//Base case
if (num == 1) {
return 1;
}
//General case
return num + factorial(num-1);
}
Walking through the function calls:
factorial(3); //Initial function call
//Becomes..
factorial(1) + factorial(2) + factorial(3) = returned value
This gives us a result of 6!
Your scenario seems to me like iterative programming, but your function is simply calling itself as a way of continuing its comparisons. That is simply re-tasking your function to be able to call itself with a smaller list.
In my experience, a recursive function has more potential to branch out into multiple 'threads' (so to speak), and is used to process information the same way the hierarchy in a company works for delegation; The boss hands a contract down to the managers, who divide up the work and hand it to their respective staff, the staff get it done, and had it back to the managers, who report back to the boss.
The best example of a recursive function is one that iterates through all files on a file system. ( I will do this in pseudo code because it works in all languages).
function find_all_files (directory_name)
{
- Check the given directory name for sub-directories within it
- for each sub-directory
find_all_files(directory_name + subdirectory_name)
- Check the given directory for files
- Do your processing of the filename; it is located at directory_name + filename
}
You use the function by calling it with a directory path as the parameter. The first thing it does is, for each subdirectory, it generates a value of the actual path to the subdirectory and uses it as a value to call find_all_files() with. As long as there are sub-directories in the given directory, it will keep calling itself.
Now, when the function reaches a directory that contains only files, it is allowed to proceed to the part where it process the files. Once done that, it exits, and returns to the previous instance of itself that is iterating through directories.
It continues to process directories and files until it has completed all iterations and returns to the main program flow where you called the original instance of find_all_files in the first place.
One additional note: Sometimes global variables can be handy with recursive functions. If your function is merely searching for the first occurrence of something, you can set an "exit" variable as a flag to "stop what you are doing now!". You simply add checks for the flag's status during any iterations you have going on inside the function (as in the example, the iteration through all the sub-directories). Then, when the flag is set, your function just exits. Since the flag is global, all generations of the function will exit and return to the main flow.
I read that nonatomic and atomic both are thread unsafe. but nonatomic is faster because it allows faster access means asynchronously and atomic is slower it allows slower access synchronously.
An atomic property in Objective C guarantees that you will never see partial writes.
That is, if two threads concurrently write values A and B to the same variable X, then a concurrent read on that same variable will either yield the initial value of X, or A or B. With nonatomic that guarantee is no longer given. You may get any value, including values that you never explicitly wrote to that variable.
The reason for this is that with nonatomic, the reading thread may read the variable while another thread is in the middle of writing it. So part of what you read comes from the old value while another part comes from the new value.
The comment about them both being thread-unsafe refers to the fact that no additional guarantees are given beyond that. Apple's docs give the following example here:
Consider an XYZPerson object in which both a person’s first and last
names are changed using atomic accessors from one thread. If another
thread accesses both names at the same time, the atomic getter methods
will return complete strings (without crashing), but there’s no
guarantee that those values will be the right names relative to each
other. If the first name is accessed before the change, but the last
name is accessed after the change, you’ll end up with an inconsistent,
mismatched pair of names.
A purist might argue that this definition of thread-safety is overly strict. Technically speaking, atomic already takes care of data races and ordering, which is all you need from a language designer's point of view.
From an application-logic point of view on the other hand the aforementioned first-name-last-name example clearly constitutes a bug. Additional synchronization is required to get rid of the undesired behavior. In this application-specific view the class XYZPerson is not thread-safe. But here we are talking about a different level of thread-safety than the one that the language designer has.