Should I minimize the number of interfaces in a controller? - asp.net-mvc-3

In the below snip I have my controller which takes three interfaces. These are wired up via Ninject. Ok all great, definately a step in the right direction. My questions are this?
1.) Would it be better to wrap the 3 interfaces up in to one interface and a implement that way, thus reducing the amount of params passed to the ctor of the controller?
2.) Leave it alone, it is working?
I am always looking for ways to abstract the hell out of everything..
Thoughts?
public class RegistrationController : Controller
{
private readonly ICategoriesService _categoriesService;
private readonly IAuthenticationService _authenticationService;
private readonly IRegistrationService _registrationService;
// Ctor
public RegistrationController(ICategoriesService categoriesService,
IAuthenticationService authenticationService,
IRegistrationService registrationService)
{
_categoriesService = categoriesService;
_authenticationService = authenticationService;
_registrationService = registrationService;
}
}

Having a huge interface (or a huge class, which is what you'll need in order to implement a huge interface) because it is "convenient" is widely considered an antipattern. Based on the names of your current interfaces, they seem to be nicely and logically structured around what kind of operations they provide, and I suggest that you keep them that way (this also gives higher flexibility, since there may be other places where you only need some of the interfaces).
By the way: If you have proper unit tests and integration tests, "leave it alone, it's working" is a phrase that is never needed. ;-)

Related

When to use Encapsulate Collection?

In the smell Data Class as Martin Fowler described in Refactoring, he suggests if I have a collection field in my class I should encapsulate it.
The pattern Encapsulate Collection(208) says we should add following methods:
get_unmodified_collection
add_item
remove_item
and remove these:
get_collection
set_collection
To make sure any changes on this collection need go through the class.
Should I refactor every class which has a collection field with this pattern? Or it depends on some other reasons like frequency of usage?
I use C++ in my project now.
Any suggestion would be helpful. Thanks.
These are well formulated questions and my answer is:
Should I refactor every class which has a collection field with this
pattern?
No, you should not refactor every class which has a collection field. Every fundamentalism is a way to hell. Use common sense and do not make your design too good, just good enough.
Or it depends on some other reasons like frequency of usage?
The second question comes from a common mistake. The reason why we refactor or use design pattern is not primarily the frequency of use. We do it to make the code more clear, more maintainable, more expandable, more understandable, sometimes (but not always!) more effective. Everything which adds to these goals is good. Everything which does not, is bad.
You might have expected a yes/no answer, but such one is not possible here. As said, use your common sense and measure your solution from the above mentioned viewpoints.
I generally like the idea of encapsulating collections. Also encapsulating plain Strings into named business classes. I do it almost always when the classes are meaningful in the business domain.
I would always prefer
public class People {
private final Collection<Man> people;
... // useful methods
}
over the plain Collection<Man> when Man is a business class (a domain object). Or I would sometimes do it in this way:
public class People implements Collection<Man> {
private final Collection<Man> people;
... // delegate methods, such as
#Override
public int size() {
return people.size();
}
#Override
public Man get(int index) {
// Here might also be some manipulation with the returned data etc.
return people.get(index);
}
#Override
public boolean add(Man man) {
// Decoration - added some validation
if (/* man does not match some criteria */) {
return false;
}
return people.add(man);
}
... // useful methods
}
Or similarly I prefer
public class StreetAddress {
private final String value;
public String getTextValue() { return value; }
...
// later I may add more business logic, such as parsing the street address
// to street name and house number etc.
}
over just using plain String streetAddress - thus I keep the door opened to any future change of the underlying logic and to adding any useful methods.
However, I try not to overkill my design when it is not needed so I am as well as happy with plain collections and plain Strings when it is more suited.
I think it depends on the language you are developing with. Since there are already interfaces that do just that C# and Java for example. In C# we have ICollection, IEnumerable, IList. In Java Collection, List, etc.
If your language doesn't have an interface to refer to a collection regarless of their inner implementation and you require to have your own abstraction of that class, then it's probably a good idea to do so. And yes, you should not let the collection to be modified directly since that completely defeats the purpose.
It would really help if you tell us which language are you developing with. Granted, it is kind of a language-agnostic question, but people knowledgeable in that language might recommend you the best practices in it and if there's already a way to achieve what you need.
The motivation behind Encapsulate Collection is to reduce the coupling of the collection's owning class to its clients.
Every refactoring tries to improve maintainability of the code, so future changes are easier. In this case changing the collection class from vector to list for example, changes all the clients' uses of the class. If you encapsulate this with this refactoring you can change the collection without changes to clients. This follows on of SOLID principles, the dependency inversion principle: Depend upon Abstractions. Do not depend upon concretions.
You have to decide for your own code base, whether this is relevant for you, meaning that your code base is still being changed and has to be maintained (then yes, do it for every class) or not (then no, leave the code be).

Mocking objects instantiated inside a class to be tested

So I am learning TDD using the many resources here on SO, but I just cant seem to figure out what I do with private/protected objects instantiated inside a given method/constructor. Lets say I have a connection string. That connection string is used to construct a Sqlcommand or Sqlhelper. Well I want to mock that Sqlhelper so that when I test other methods I don't have to rely on the results coming from my database. But I cant access the Sqlhelper.
How do I work around this?
Its generally best (except for a very few rare occasions) to test only the public interface of the class as a whole. Try not to use one of the workaround methods (such as private objects) unless you really have to. Accessing private members of classes in tests tends to look good at first as theres less code to write to test an object, however when things start to change (and they will) anything accessing the internals of a class makes it more difficult to change its implementation, this can be crippling to a project if most of the tests are written in this way.
In this particular case you are interacting with an external dependency outside of your control (i.e. SqlHelper), I'd recommend wrapping the SqlHelper object in your own object that implements an ISqlHelper interface (or a more reasonably named interface for your scenario).
e.g.
public interface ISqlHelperWrapper
{
void ExecuteQuery();
}
Then inject this in through the constructor of you're object under test:
public class SqlConsumer
{
private ISqlHelperWrapper _sqlHelper;
public SqlConsumer(ISqlHelperWrapper helper)
{
this._sqlHelper = helper;
}
public void QuerySomething()
{
this._sqlHelper.ExecuteQuery();
}
}
Not only is this a better design (you've isolated the sql implementation specific stuff from the SqlConsumer, and given it fewer reasons to change). But you can now mock the ISqlHelper instance using a mocking framework as well as switch the implementation on construction.
Given your connectionstring scenario above, you could initialise the sqlhelperwrapper (There are better names for this) with the connectionstring and your SqlConsumer object doesn't need to know about it.

Where do you add new methods?

When you add a new method to a class where do you put it? At the end of the class...the top? Do you organize methods into specific groupings? Sorted alphabetically?
Just looking for general practices in keeping class methods organized.
Update When grouped where do you add the new method in the group? Just tack on the end or do you use some sort of sub-grouping, sorting?
Update 2 Mmmm...guess the question isn't as clear as I thought. I'm not really looking for class organization. I'm specifically interested in adding a new method to an existing class. For example:
public class Attendant
{
public void GetDrinks(){}
public void WelcomeGuests(){}
public void PickUpTrask(){}
public void StrapIn(){}
}
Now we're going to add a new method PrepareForCrash(). Where does it go? At the top of the list, bottom, alphabetically or near the StrapIn() method since it's related.
Near "StrapIn" because it's related. That way if you refactor later, all related code is nearby.
Most code editors allow you to browse method names alphabetically in another pane, so organizing your code functionally makes sense within the actual code itself. Group functional methods together, makes life easier when navigating through the class.
For goodness sake, not alphabetically!
I tend to group my functions in the order I expect them to be called during the life of the object, so that a top to bottom read of the header file tends to explain the operation of the class.
I think it's a personal choice.
However I like to organise my classes as such.
public class classname
{
<member variables>
<constructors>
<destructor>
<public methods>
<protected methods>
<private methods>
}
The reason for this is as such.
Member variables at the top
To see what member variables exist and if they are initialised.
Constructors
To see if the member variables are setup/initialised as well as what are all the construction options for the class.
Destructor
To see the how the class is cleaned up and verify it with the constructors and member variables.
Public methods
To see what are the available contracts callers of the object can use.
Protected methods
To see what inherited classes would be using.
Private methods
As it's information about the internals of the class if you needed to know about the internals you can just scroll straight to the end quickly. But to know the interface for the class it's all at the start.
UPDATE - Based on OP's update
Logically a good way would be to organise the methods by categories of what they do.
This way you get the readabilty of categorising your methods as well as the alphabetical search from you IDE (provided this is in your IDE).
However in a practical sense I think placing the methods at the end of that section is the best way. It would be quite hard to continually police where each method goes, as it's subjective, for every method if the code is shared by more than yourself.
If you were to make this a standard it'd be quite hard to provide the boundaries for where to put each method.
What I like about C# and VB.net is the ability to use #region tags, so generally my classes look like this
class MyClass
{
#region Constructors
public MyClass()
{
}
public MyClass(int x)
{
_x = x;
}
#endregion
#region Members
private int _x;
#endregion
#region methods
public void DoSomething()
{
}
#endregion
#region Properties
public int Y {get; private set;}
#endregion
}
So basically You put similar things together so you can collapse everything to definition and get to your stuff really faster.
Generally, it depends on the existing grouping; if there's an existing grouping that the new method fits into, I'll put it there. For example, if there's a grouping of operators, I'll put the new method with the operators if it's an operator.
Of course, if there is no good grouping, adding a method may suggest a new grouping; I treat that as an opportunity for refactoring, and try to regroup the existing operators where reasonable.
I organize all methods into regions like public methods, private methods or sometimes by features like Saving methods, etc..
IMHO:
If you organize your methods alphabetically, put a new one depends on its name. Otherwise put it at the bottom of related group. This helps to know, what method is newer. The bigger problem is how to organize methods in groups, e.g. depend on what properties, but this is more individual for everyone and depends on a specific class.

TDD-friendly Singleton-like class

I have repository class that is used by at least 2 other classes. This repository class needs to be initialized - which is high in cost (querying database). Now, I create separate instances of repository wherever I need it. The thing is, that everytime I create repository it has to be initialized. How to design such repository to be TDD-friendly? The first thing in my mind was Singleton but it's not the solution.
I hope by TDD-friendly you mean 'testable' code. For a Singleton ObjectX, I think the most common way is to split the responsibility (SRP) of 'controlling creation' to another class so ObjectX does all the things it is supposed to do.
Then you have another class ObjectXFactory or Host or whatever you wanna call it that is responsible for providing a single instance for all clients (and providing thread sync if needed and so on)
Object X can be TDDed independently. You can create a new instance in your test case and test functionality.
ObjectXFactory on the other hand is also easy to test.. you just need to see if multiple GetInstance() calls return the same object. OR better delegate this responsibility to an IOC framework like Spring, which lets you declaratively mark an object definition to obtain singleton behavior (Saving you the effort of writing tests as well)
You just need to educate and conform to a Team convention that ObjectX constructor is not to be called - always use ObjectXFactory.CreateInstance(). (If you find that you have a awareness/discipline problem, mark ObjectX's ctor as internal and visible to only to the test assembly via the sneaky InternalsVisibleToAttribute)
HTH
One answer for the TDD part is learn mocking.
Check out this excellent article by Stephen Walther:
http://stephenwalther.com/blog/archive/2008/03/23/tdd-introduction-to-rhino-mocks.aspx
Do you use any type of IOC container? Unity is my container of choice, and it contains a ContainerControledLifetimeManager which makes your class a singleton, but not managed by yourself.
Consider caching instances for performance improvement before you consider singletons. But for TDD friendly designs consider strategy injection so that 'slow' bits can be removed for testing and replaced with stubs and mocks. Try not to do db calls in tests if you can.
You can't do that -- at least not in a true TDD sense.
Relying on DI/IoC strategies such as Unity means your tests are dependent on an external component and are not tested in isolation.
The tests then become integration tests, not unit tests.
==Ignore the answer below here==
I guess you wanted to know how to make Repository testable.
Introducing an interface for it would allow you to mock or stub it, which will in turn make sure that you can test your objects independent of any concrete implementation of Repository.
I'll illustrate this using Rhino Mocks 3.5 for .NET 3.5:
Let's make an interface out of Repository, let's call that IRepository
public interface IRepository
{
}
Now, since you need to use IRepository for two different objects, then let's just use generics so you can instantiate your repository with that:
public interface IRepository<T>
of course that would mean that you would have some sort of find method:
{
public IEnumerable<T> Find(Criteria criteria)
}
where your criteria object is some object that allows you to set what to look for, e.g., your where clause.
Now, you have your object:
public class SomeObject
{
IRepository<SomeObject> repository;
public SomeObject(){}
public IRepository<SomeObject> repository { get; set; }
IEnumerable<SomeObject> FindAll()
{
//let's assume new Criteria() will return all results
return respository.Find(new Criteria());
}
}
You want to to test SomeObject such that FindAll() will return an expected set of results -- this is where Rhino Mocks would come in:
[TestFixture]
public class SomeObjectTests
{
[Test]
public void TestSomeObjectFindAll()
{
IRepository<SomeObject> stubRepository = MockRepsitory.GenerateStub<IRepsitory<SomeObject>>();
stubRepository.Expect(r => r.Find(new Criteria())
.Return(new List<SomeObject>{
new SomeObject(),
new SomeObject(),
new SomeObject());
var testObject = new SomeObject { Repository = stubRepository };
IList<SomeObject> findAllResult = testObject.FindAll();
//returned list contains 3 elements, as expected above
Assert.AreEqual(3, findAllResult.Count)
}
}
Note that the code above is not TDD best practice in all respects, but it's a place to start.
Key concept here is introducing interfaces to allow for loose coupling of objects, especially when the object tends to do things like access databases, file systems, etc.
There is a more comprehensive example and better examples on Ben Hall's article on Rhino Mocks.

UI interface and TDD babysteps

OK, having tried my first TDD attempt, it's time to reflect a little
and get some guidance, because it wasn't that successful for me.
The solution was partly being made with an existing framework, perhaps
making TDD less ideal. The part that seemed to give me the biggest
problem, was the interaction between the view and controller. I'll
give a few simple examples and hope that someone will tell me what I
can do better wrong.
Each view's interface inherits from a base interface, with these
members (there are more):
public interface IView
{
void ShowField(string fieldId)
void HideField(string fieldId)
void SetFieldVisibility(string fieldId, bool visible)
void DisableField(string fieldId)
void ShowValidationError(string fieldId)
...
}
The interface for a concrete view, would then add members for each
field like this
public interface IMyView : IView
{
string Name { get; set; }
string NameFieldID { get; }
...
}
What do you think of this? Is inheriting from a common interface a
good or bad idea?
One on the things that gave me trouble was, that first I used
ShowField and HideField and the found out I would rather use
SetFieldVisiblity. I didn't change the outcome of the method, but I
had to update my test, which I seem should be necessary. Is having
multiple methods doing the same thing, a bad thing? On one hand both
methods are handy for different cases, but they do clutter the
interface, making the interface more complex than it strictly have to be.
Would a design without a common interface be better? That would remove
the fieldID, I don't why, but I think the fieldID-thing smells, I
might be wrong.
I would only make the Show and Hide methods, when needed, that is if
they would be called by the controller. This would be a less generic
solution and require more code in the view, but the controller code
would be a bit more simple.
So a view interface might look like this:
public interface IMyView
{
void ShowName()
void HideName()
string Name { get; set; }
int Age { get; set; }
}
What do you want to test? Whether Show* will make an widget in the UI visible? What for?
My suggestion: Don't try to figure out if a framework is working correctly. It's a waste of time. The people who developed the framework should have done that, so you're duplicating their work.
Usually, you want to know if your code does the right thing. So if you want to know if you are calling the correct methods, create mockups:
public class SomeFrameworkMockup extends SomeFramework {
public boolean wasCalled;
public void methodToTest() {
wasCalled = true;
}
}
Build the UI using the mockups.
The second thing to test is whether your algorithms work. To do that, isolate them in simple helper objects where you can all every method easily and test them with various inputs.
Avoid the external framework during tests. It only confuses you. When you've built a working product, test that using your mouse. If you find any problems, get to the root of them and only then, start writing tests against the framework to make sure this bug doesn't appear again. But 90% of the time, these bugs will be in your code, too.
At the moment I don't really see the added value of the common interface.
I think a better solution would be to have some properties on the controller class: IsControlXYZVisible. You can then databind the visible property of the control to this property.
And your unit test will test the value of IsControlXYZVisible, which will be easier to acomplish.
I also don't understand why you say you had a bad experience with TDD. I think your application architecture needs more work.
Your question is a little bit obscure for me but the title itself calls for a link :
The Humble Dialog box
And when you ask if it(s bad to have two functions doing the same thing, I say "Yes it's bad".
If one is calling the other, what's the point of having two functions ?
If not, you have a code duplication, that is a bug waiting to sprout whenyou update one and not the other.
In fact there is a valid case where you have two nearly identical functions : one that check its arguments and one that does not but usually only one is public and the other private ...

Resources