We are using __TIME__ to embed the time of compilation in a binary. Unfortunately, a time without a UTC Offset is meaningless. I don't see an obvious way to get the timezone that the compiler is running in. I suppose I could grab this from the configure script. But is there a better way?
If I do it from a configure script, I'm going to need to put that into a .h or .c file somehow, and do something intelligent if the file is not there.
you can use compiler Flags to pass that externally. Most compiler provide '-D' flag to define #define macros externally. Let's suppose you put the UTC information in an environment variable. Pass that environment variable as -D flag
set $myUTC="-7"
gcc -c mysource.cpp -DUTC=$myUTC
In your mysource.cpp use the macro UTC:
printf("Compiled at %d Offset %d", __TIME__, UTC);
Related
GCC has
__TIMESTAMP__
This macro expands to a string constant that describes the date and time of the last modification of the current source file
But if that file does not get modified, the timestamp string doesn't change.
Is there a way to get a string indicating the time at compilation?
Use a -D flag from the command line:
gcc -DCOMPILE_TIME="\"$(date)\"" -c file.c
But if you use any popular build system, file.c won't get rebuilt unless it changes anyway, so it's not that different from __TIMESTAMP__.
GCC provides the macros __DATE__ and __TIME__ that give string constants with the build date and time. However they seem to be giving the time in UTC. Is there some macro to get the build time in local time zone?
Some gcc compilers have such behavior - macros __TIME__ outputs an UTC time, not local. I've seen such effect with arm-linux-gnueabihf-gcc from Xilinx petalinux generated sdk.
You can verify your compiler using command line suggested by Vladislav Ivanishin (see comments).
UPD: By request from comment below I've added link to the Vladislav Ivanishin's comment:
GCC get build date and time in local timezone
And the command line to verify gcc is: echo __TIME__ | gcc -E -xc - | tail -1
I am trying to compile c++ files using make. But, it is not using -std=c++11 flag by default. Whenever I need to compile a program which uses c++11 specific features, I have to explicitly compile it using g++.
So, I want to ask how can I have make automatically use the option -std=c++11 for all my c++ files on my system.
If I need to change some global makefile for g++ , what is the location of the makefile on Linux Mint 18 and what needs to be changed or added?
Or do I need to create a Makefile for myself?
EDIT 1: I am invoking make like make myfile
And there are only .cpp files and their binaries in the directory. I don't have any Makefile in the directory.
EDIT 2: Here, myfile is the name of the c++ file which I want to compile.
When I run make with the -d option, I get the following output (I can not paste all of the output as it is quite long and is exceeding the body size limit so, I am including the screenshots of the output).
Image 1
And this image(2) has some lines from the end.
Image 2
I intentionally made a change in the file "MagicalWord.cpp" so that make finds something to make!
There is no "global makefile" and there is no way to change the default flags for all invocations of make (unless you edit the source code to GNU make and compile it yourself, which is a bad idea in this situation).
In your makefile(s), add the line:
CXXFLAGS += -std=c++11
Assuming you're using the built-in rules for compiling things, or that you're using the standard variables with your own rules, that will do what you need.
If that doesn't work we'll need to see your makefile or at least the rules you use to build your C++ source files (things like the -d output aren't useful here--that would be interesting if files weren't being built, that you thought should be or similar).
Setting a system-wide language for all your C++ projects isn't necessarily a good idea. Instead, define a Makefile that specifies any compiler options you'd like:
CXXFLAGS := -std=c++11 $(CXXFLAGS)
The CXXFLAGS are then passed to your compiler when compiling a C++ program (assuming you're using the default GNU Make rules).
If the Makefile lives in your current working directory, you can now run make target in order to compile a target.cpp file into a target executable.
If the Makefile is in another directory, you must specify the path to it:
make -f path/to/your/Makefile target
If you want to add extra parameters just for one run, you can set an environment variable or a make variable on the command line:
# environment:
CXXFLAGS='-std=c++11' make target
# make variable:
make target CXXFLAGS='-std=c++11'
Any of these will cause the execution of g++ -std=c++11 target.cpp -o target or equivalent.
In theory you can edit your shell profile to export CXXFLAGS='-std=c++11' which will make that environment variable available to all programs you run. In practice, setting compiler options through environment variables tends to cause more problems than it solves.
Of all these solutions, just writing a normal Makefile is by far the easiest approach. That way, all of the build configuration is in one place and completely automated.
I have some (Microblaze) assembly I need to build (via the GCC cross-assembler and linker) and execute many times with the (same) constants, currently fixed via
.SET
commands, changed each time.
Is there a way to automate the setting of in-assembly constants in this way and so avoid the dull task of resetting the code for each build?
You can use the power of C pre-processor in your assembler files. This could be done simply changing file extension from .s to .S (capital S) on Unix-like platform or to .sx on Windows. Then using gcc instead of gas over these files will let C pre-processor first run through the source and then gas will be called automatically.
In this case you can use all regular pre-processor #define, #ifdef, etc. And of cause you can pass these defines from the command line with gcc's -D parameter.
I am (was) using the __FILE__ and __LINE__ macros for printing diagnostic messages out of my code. This works quite well when you use GCC with make, the file is as short as you specified it on the command line. I recently switched to using CodeLite which uses fully qualified file names (at least under windows) when building. Suddenly my diagnostic output is almost not readable.
It there a way to get only the file component of the filename in the preprocessor? I can live with a non portable GCC specific solution. (I will fallback to plain __FILE__ other cases.)
Sure I can pass the contents of __FILE__ through a function and extract only the file component, but string operations was not what I had in mind for diagnostic messages that should not change runtime behavior...
NOTE: I use the filename the way GNU uses it. A Path is collection of filenames and a filename is either a relative or absolute identifier of a file. A filename can be made up of a directory component and file component.
If you are using GNU Make then you can simply pass -D BASE_FILE_NAME=\"$*.c\" in on the preprocessing stage of compilation (if you're doing them separately, or at compilation if in a single stage, which is the norm).
This depends upon the way you have your file names determined. Mine come from a list of plain file names and are prefixed with directories using functions in the makefile at a later stage.
IE, this works well for me, but your mileage may vary! :-)
A simplified version of my make "code" :
CLASSES = main.c init.c
PREPROCESSED = $(patsubst %.c,$(PPCDIR)/%.pp.c,$(CLASSES))
$(PREPROCESSED): $(PPCDIR)/%.pp.c: %.c $(ALLH)
$(GCC) $(GCCOPTS) -D BASE_FILE_NAME=\"$*\" -E $< > $#
The simply use BASE_FILE_NAME in your code as you like :-)
There is no known preprocessor macro that provides the functionality. Passing __FILE__ through a function seams like the only sensible option.
In reply to FredCooke above, you can exchange this line:
-D BASE_FILE_NAME=\"$*.c\"
With:
-D BASE_FILE_NAME=\"$(<F)\"
This will give you proper file name expansion, for .cpp as well.
As has already been mentioned in other answers, the only portable way to do this is by passing in a define from the compiler, there are however compiler spesific extensions:
Clang: __FILE_NAME__
GCC: __BASE_FILE__