Could someone please explain to me the usage of << and >> in Go? I guess it is similar to some other languages.
The super (possibly over) simplified definition is just that << is used for "times 2" and >> is for "divided by 2" - and the number after it is how many times.
So n << x is "n times 2, x times". And y >> z is "y divided by 2, z times".
For example, 1 << 5 is "1 times 2, 5 times" or 32. And 32 >> 5 is "32 divided by 2, 5 times" or 1.
From the spec at http://golang.org/doc/go_spec.html, it seems that at least with integers, it's a binary shift. for example, binary 0b00001000 >> 1 would be 0b00000100, and 0b00001000 << 1 would be 0b00010000.
Go apparently doesn't accept the 0b notation for binary integers. I was just using it for the example. In decimal, 8 >> 1 is 4, and 8 << 1 is 16. Shifting left by one is the same as multiplication by 2, and shifting right by one is the same as dividing by two, discarding any remainder.
The << and >> operators are Go Arithmetic Operators.
<< left shift integer << unsigned integer
>> right shift integer >> unsigned integer
The shift operators shift the left
operand by the shift count specified
by the right operand. They implement
arithmetic shifts if the left operand
is a signed integer and logical shifts
if it is an unsigned integer. The
shift count must be an unsigned
integer. There is no upper limit on
the shift count. Shifts behave as if
the left operand is shifted n times by
1 for a shift count of n. As a result,
x << 1 is the same as x*2 and x >> 1
is the same as x/2 but truncated
towards negative infinity.
They are basically Arithmetic operators and its the same in other languages here is a basic PHP , C , Go Example
GO
package main
import (
"fmt"
)
func main() {
var t , i uint
t , i = 1 , 1
for i = 1 ; i < 10 ; i++ {
fmt.Printf("%d << %d = %d \n", t , i , t<<i)
}
fmt.Println()
t = 512
for i = 1 ; i < 10 ; i++ {
fmt.Printf("%d >> %d = %d \n", t , i , t>>i)
}
}
GO Demo
C
#include <stdio.h>
int main()
{
int t = 1 ;
int i = 1 ;
for(i = 1; i < 10; i++) {
printf("%d << %d = %d \n", t, i, t << i);
}
printf("\n");
t = 512;
for(i = 1; i < 10; i++) {
printf("%d >> %d = %d \n", t, i, t >> i);
}
return 0;
}
C Demo
PHP
$t = $i = 1;
for($i = 1; $i < 10; $i++) {
printf("%d << %d = %d \n", $t, $i, $t << $i);
}
print PHP_EOL;
$t = 512;
for($i = 1; $i < 10; $i++) {
printf("%d >> %d = %d \n", $t, $i, $t >> $i);
}
PHP Demo
They would all output
1 << 1 = 2
1 << 2 = 4
1 << 3 = 8
1 << 4 = 16
1 << 5 = 32
1 << 6 = 64
1 << 7 = 128
1 << 8 = 256
1 << 9 = 512
512 >> 1 = 256
512 >> 2 = 128
512 >> 3 = 64
512 >> 4 = 32
512 >> 5 = 16
512 >> 6 = 8
512 >> 7 = 4
512 >> 8 = 2
512 >> 9 = 1
n << x = n * 2^x Example: 3 << 5 = 3 * 2^5 = 96
y >> z = y / 2^z Example: 512 >> 4 = 512 / 2^4 = 32
<< is left shift. >> is sign-extending right shift when the left operand is a signed integer, and is zero-extending right shift when the left operand is an unsigned integer.
To better understand >> think of
var u uint32 = 0x80000000;
var i int32 = -2;
u >> 1; // Is 0x40000000 similar to >>> in Java
i >> 1; // Is -1 similar to >> in Java
So when applied to an unsigned integer, the bits at the left are filled with zero, whereas when applied to a signed integer, the bits at the left are filled with the leftmost bit (which is 1 when the signed integer is negative as per 2's complement).
Go's << and >> are similar to shifts (that is: division or multiplication by a power of 2) in other languages, but because Go is a safer language than C/C++ it does some extra work when the shift count is a number.
Shift instructions in x86 CPUs consider only 5 bits (6 bits on 64-bit x86 CPUs) of the shift count. In languages like C/C++, the shift operator translates into a single CPU instruction.
The following Go code
x := 10
y := uint(1025) // A big shift count
println(x >> y)
println(x << y)
prints
0
0
while a C/C++ program would print
5
20
In decimal math, when we multiply or divide by 10, we effect the zeros on the end of the number.
In binary, 2 has the same effect. So we are adding a zero to the end, or removing the last digit
<< is the bitwise left shift operator ,which shifts the bits of corresponding integer to the left….the rightmost bit being ‘0’ after the shift .
For example:
In gcc we have 4 bytes integer which means 32 bits .
like binary representation of 3 is
00000000 00000000 00000000 00000011
3<<1 would give
00000000 00000000 00000000 00000110 which is 6.
In general 1<<x would give you 2^x
In gcc
1<<20 would give 2^20 that is 1048576
but in tcc it would give you 0 as result because integer is of 2 bytes in tcc.
in simple terms we can take it like this in golang
So
n << x is "n times 2, x times". And y >> z is "y divided by 2, z times".
n << x = n * 2^x Example: 3<< 5 = 3 * 2^5 = 96
y >> z = y / 2^z Example: 512 >> 4 = 512 / 2^4 = 32
These are Right bitwise and left bitwise operators
Related
You are given a set of integers and your task is the following: split them into 2 subsets with an equal sum in such way that these sums are maximal. You are allowed not to use all given integers, that's fine. If it's just impossible, report error somehow.
My approach is rather straightforward: at each step, we pick a single item, mark it as visited, update current sum and pick another item recursively. Finally, try skipping current element.
It works on simpler test cases, but it fails one:
T = 1
N = 25
Elements: 5 27 24 12 12 2 15 25 32 21 37 29 20 9 24 35 26 8 31 5 25 21 28 3 5
One can run it as follows:
1 25 5 27 24 12 12 2 15 25 32 21 37 29 20 9 24 35 26 8 31 5 25 21 28 3 5
I expect sum to be equal 239, but it the algorithm fails to find such solution.
I've ended up with the following code:
#include <iostream>
#include <unordered_set>
using namespace std;
unordered_set<uint64_t> visited;
const int max_N = 50;
int data[max_N];
int p1[max_N];
int p2[max_N];
int out1[max_N];
int out2[max_N];
int n1 = 0;
int n2 = 0;
int o1 = 0;
int o2 = 0;
int N = 0;
void max_sum(int16_t &sum_out, int16_t sum1 = 0, int16_t sum2 = 0, int idx = 0) {
if (idx < 0 || idx > N) return;
if (sum1 == sum2 && sum1 > sum_out) {
sum_out = sum1;
o1 = n1;
o2 = n2;
for(int i = 0; i < n1; ++i) {
out1[i] = p1[i];
}
for (int i = 0; i < n2; ++i) {
out2[i] = p2[i];
}
}
if (idx == N) return;
uint64_t key = (static_cast<uint64_t>(sum1) << 48) | (static_cast<uint64_t>(sum2) << 32) | idx;
if (visited.find(key) != visited.end()) return;
visited.insert(key);
p1[n1] = data[idx];
++n1;
max_sum(sum_out, sum1 + data[idx], sum2, idx + 1);
--n1;
p2[n2] = data[idx];
++n2;
max_sum(sum_out, sum1, sum2 + data[idx], idx + 1);
--n2;
max_sum(sum_out, sum1, sum2, idx + 1);
}
int main() {
int T = 0;
cin >> T;
for (int t = 1; t <= T; ++t) {
int16_t sum_out;
cin >> N;
for(int i = 0; i < N; ++i) {
cin >> data[i];
}
n1 = 0;
n2 = 0;
o1 = 0;
o2 = 0;
max_sum(sum_out);
int res = 0;
int res2 = 0;
for (int i = 0; i < o1; ++i) res += out1[i];
for (int i = 0; i < o2; ++i) res2 += out2[i];
if (res != res2) cerr << "ERROR: " << "res1 = " << res << "; res2 = " << res2 << '\n';
cout << "#" << t << " " << res << '\n';
visited.clear();
}
}
I have the following questions:
Could someone help me to troubleshoot the failing test? Are there any obvious problems?
How could I get rid of unordered_set for marking already visited sums? I prefer to use plain C.
Is there a better approach? Maybe using dynamic programming?
Another approach is consider all the numbers till [1,(2^N-2)].
Consider the position of each bit to position of each element .Iterate all numbers from [1,(2^N-2)] then check for each number .
If bit is set you can count that number in set1 else you can put that number in set2 , then check if sum of both sets are equals or not . Here you will get all possible sets , if you want just one once you find just break.
1) Could someone help me to troubleshoot the failing test? Are there any obvious problems?
The only issue I could see is that you have not set sum_out to 0.
When I tried running the program it seemed to work correctly for your test case.
2) How could I get rid of unordered_set for marking already visited sums? I prefer to use plain C.
See the answer to question 3
3) Is there a better approach? Maybe using dynamic programming?
You are currently keeping track of whether you have seen each choice of value for first subset, value for second subset, amount through array.
If instead you keep track of the difference between the values then the complexity significantly reduces.
In particular, you can use dynamic programming to store an array A[diff] that for each value of the difference either stores -1 (to indicate that the difference is not reachable), or the greatest value of subset1 when the difference between subset1 and subset2 is exactly equal to diff.
You can then iterate over the entries in the input and update the array based on either assigning each element to subset1/subset2/ or not at all. (Note you need to make a new copy of the array when computing this update.)
In this form there is no use of unordered_set because you can simply use a straight C array. There is also no difference between subset1 and subset2 so you can only keep positive differences.
Example Python Code
from collections import defaultdict
data=map(int,"5 27 24 12 12 2 15 25 32 21 37 29 20 9 24 35 26 8 31 5 25 21 28 3 5".split())
A=defaultdict(int) # Map from difference to best value of subset sum 1
A[0] = 0 # We start with a difference of 0
for a in data:
A2 = defaultdict(int)
def add(s1,s2):
if s1>s2:
s1,s2=s2,s1
d = s2-s1
if d in A2:
A2[d] = max( A2[d], s1 )
else:
A2[d] = s1
for diff,sum1 in A.items():
sum2 = sum1 + diff
add(sum1,sum2)
add(sum1+a,sum2)
add(sum1,sum2+a)
A = A2
print A[0]
This prints 239 as the answer.
For simplicity I haven't bothered with the optimization of using a linear array instead of the dictionary.
A very different approach would be to use a constraint or mixed integer solver. Here is a possible formulation.
Let
x(i,g) = 1 if value v(i) belongs to group g
0 otherwise
The optimization model can look like:
max s
s = sum(i, x(i,g)*v(i)) for all g
sum(g, x(i,g)) <= 1 for all i
For two groups we get:
---- 31 VARIABLE s.L = 239.000
---- 31 VARIABLE x.L
g1 g2
i1 1
i2 1
i3 1
i4 1
i5 1
i6 1
i7 1
i8 1
i9 1
i10 1
i11 1
i12 1
i13 1
i14 1
i15 1
i16 1
i17 1
i18 1
i19 1
i20 1
i21 1
i22 1
i23 1
i25 1
We can easily do more groups. E.g. with 9 groups:
---- 31 VARIABLE s.L = 52.000
---- 31 VARIABLE x.L
g1 g2 g3 g4 g5 g6 g7 g8 g9
i2 1
i3 1
i4 1
i5 1
i6 1
i7 1
i8 1
i9 1
i10 1
i11 1
i12 1
i13 1
i14 1
i15 1
i16 1
i17 1
i19 1
i20 1
i21 1
i22 1
i23 1
i24 1
i25 1
If there is no solution, the solver will select zero elements in each group with a sum s=0.
I am solving this problem:
The count of ones in binary representation of integer number is called the weight of that number. The following algorithm finds the closest integer with the same weight. For example, for 123 (0111 1011)₂, the closest integer number is 125 (0111 1101)₂.
The solution for O(n)
where n is the width of the input number is by swapping the positions of the first pair of consecutive bits that differ.
Could someone give me some hints for solving in it in O(1) runtime and space ?
Thanks
As already commented by ajayv this cannot really be done in O(1) as the answer always depends on the number of bits the input has. However, if we interpret the O(1) to mean that we have as an input some primitive integer data and all the logic and arithmetic operations we perform on that integer are O(1) (no loops over the bits), the problem can be solved in constant time. Of course, if we changed from 32bit integer to 64bit integer the running time would increase as the arithmetic operations would take longer on hardware.
One possible solution is to use following functions. The first gives you a number where only the lowest set bit of x is set
int lowestBitSet(int x){
( x & ~(x-1) )
}
and the second the lowest bit not set
int lowestBitNotSet(int x){
return ~x & (x+1);
}
If you work few examples of these on paper you see how they work.
Now you can find the bits you need to change using these two functions and then use the algorithm you already described.
A c++ implementation (not checking for cases where there are no answer)
unsigned int closestInt(unsigned int x){
unsigned int ns=lowestBitNotSet(x);
unsigned int s=lowestBitSet(x);
if (ns>s){
x|=ns;
x^=ns>>1;
}
else{
x^=s;
x|=s>>1;
}
return x;
}
To solve this problem in O(1) time complexity it can be considered that there are two main cases:
1) When LSB is '0':
In this case, the first '1' must be shifted with one position to the right.
Input : "10001000"
Out ::: "10000100"
2) When LSB is '1':
In this case the first '0' must be set to '1', and first '1' must be set to '0'.
Input : "10000111"
Out ::: "10001110"
The next method in Java represents one solution.
private static void findClosestInteger(String word) { // ex: word = "10001000"
System.out.println(word); // Print initial binary format of the number
int x = Integer.parseInt(word, 2); // Convert String to int
if((x & 1) == 0) { // Evaluates LSB value
// Case when LSB = '0':
// Input: x = 10001000
int firstOne = x & ~(x -1); // get first '1' position (from right to left)
// firstOne = 00001000
x = x & (x - 1); // set first '1' to '0'
// x = 10000000
x = x | (firstOne >> 1); // "shift" first '1' with one position to right
// x = 10000100
} else {
// Case when LSB = '1':
// Input: x = 10000111
int firstZero = ~x & ~(~x - 1); // get first '0' position (from right to left)
// firstZero = 00001000
x = x & (~1); // set first '1', which is the LSB, to '0'
// x = 10000110
x = x | firstZero; // set first '0' to '1'
// x = 10001110
}
for(int i = word.length() - 1; i > -1 ; i--) { // print the closest integer with same weight
System.out.print("" + ( ( (x & 1 << i) != 0) ? 1 : 0) );
}
}
The problem can be viewed as "which differing bits to swap in a bit representation of a number, so that the resultant number is closest to the original?"
So, if we we're to swap bits at indices k1 & k2, with k2 > k1, the difference between the numbers would be 2^k2 - 2^k1. Our goal is to minimize this difference. Assuming that the bit representation is not all 0s or all 1s, a simple observation yields that the difference would be least if we kept |k2 - k1| as minimum. The minimum value can be 1. So, if we're able to find two consecutive different bits, starting from the least significant bit (index = 0), our job is done.
The case where bits starting from Least Significant Bit to the right most set bit are all 1s
k2
|
7 6 5 4 3 2 1 0
---------------
n: 1 1 1 0 1 0 1 1
rightmostSetBit: 0 0 0 0 0 0 0 1
rightmostNotSetBit: 0 0 0 0 0 1 0 0 rightmostNotSetBit > rightmostSetBit so,
difference: 0 0 0 0 0 0 1 0 i.e. rightmostNotSetBit - (rightmostNotSetBit >> 1):
---------------
n + difference: 1 1 1 0 1 1 0 1
The case where bits starting from Least Significant Bit to the right most set bit are all 0s
k2
|
7 6 5 4 3 2 1 0
---------------
n: 1 1 1 0 1 1 0 0
rightmostSetBit: 0 0 0 0 0 1 0 0
rightmostNotSetBit: 0 0 0 0 0 0 0 1 rightmostSetBit > rightmostNotSetBit so,
difference: 0 0 0 0 0 0 1 0 i.e. rightmostSetBit -(rightmostSetBit>> 1)
---------------
n - difference: 1 1 1 0 1 0 1 0
The edge case, of course the situation where we have all 0s or all 1s.
public static long closestToWeight(long n){
if(n <= 0 /* If all 0s */ || (n+1) == Integer.MIN_VALUE /* n is MAX_INT */)
return -1;
long neg = ~n;
long rightmostSetBit = n&~(n-1);
long rightmostNotSetBit = neg&~(neg-1);
if(rightmostNotSetBit > rightmostSetBit){
return (n + (rightmostNotSetBit - (rightmostNotSetBit >> 1)));
}
return (n - (rightmostSetBit - (rightmostSetBit >> 1)));
}
Attempted the problem in Python. Can be viewed as a translation of Ari's solution with the edge case handled:
def closest_int_same_bit_count(x):
# if all bits of x are 0 or 1, there can't be an answer
if x & sys.maxsize in {sys.maxsize, 0}:
raise ValueError("All bits are 0 or 1")
rightmost_set_bit = x & ~(x - 1)
next_un_set_bit = ~x & (x + 1)
if next_un_set_bit > rightmost_set_bit:
# 0 shifted to the right e.g 0111 -> 1011
x ^= next_un_set_bit | next_un_set_bit >> 1
else:
# 1 shifted to the right 1000 -> 0100
x ^= rightmost_set_bit | rightmost_set_bit >> 1
return x
Similarly jigsawmnc's solution is provided below:
def closest_int_same_bit_count(x):
# if all bits of x are 0 or 1, there can't be an answer
if x & sys.maxsize in {sys.maxsize, 0}:
raise ValueError("All bits are 0 or 1")
rightmost_set_bit = x & ~(x - 1)
next_un_set_bit = ~x & (x + 1)
if next_un_set_bit > rightmost_set_bit:
# 0 shifted to the right e.g 0111 -> 1011
x += next_un_set_bit - (next_un_set_bit >> 1)
else:
# 1 shifted to the right 1000 -> 0100
x -= rightmost_set_bit - (rightmost_set_bit >> 1)
return x
Java Solution:
//Swap the two rightmost consecutive bits that are different
for (int i = 0; i < 64; i++) {
if ((((x >> i) & 1) ^ ((x >> (i+1)) & 1)) == 1) {
// then swap them or flip their bits
int mask = (1 << i) | (1 << i + 1);
x = x ^ mask;
System.out.println("x = " + x);
return;
}
}
static void findClosestIntWithSameWeight(uint x)
{
uint xWithfirstBitSettoZero = x & (x - 1);
uint xWithOnlyfirstbitSet = x & ~(x - 1);
uint xWithNextTofirstBitSet = xWithOnlyfirstbitSet >> 1;
uint closestWeightNum = xWithfirstBitSettoZero | xWithNextTofirstBitSet;
Console.WriteLine("Closet Weight for {0} is {1}", x, closestWeightNum);
}
Code in python:
def closest_int_same_bit_count(x):
if (x & 1) != ((x >> 1) & 1):
return x ^ 0x3
diff = x ^ (x >> 1)
rbs = diff & ~(diff - 1)
i = int(math.log(rbs, 2))
return x ^ (1 << i | 1 << i + 1)
A great explanation of this problem can be found on question 4.4 in EPI.
(Elements of Programming Interviews)
Another place would be this link on geeksforgeeks.org if you don't own the book.
(Time complexity may be wrong on this link)
Two things you should keep in mind here is (Hint if you're trying to solve this for yourself):
You can use x & (x - 1) to clear the lowest set-bit (not to get confused with LSB - least significant bit)
You can use x & ~(x - 1) to get/extract the lowest set bit
If you know the O(n) solution you know that we need to find the index of the first bit that differs from LSB.
If you don't know what the LBS is:
0000 0000
^ // it's bit all the way to the right of a binary string.
Take the base two number 1011 1000 (184 in decimal)
The first bit that differs from LSB:
1011 1000
^ // this one
We'll record this as K1 = 0000 1000
Then we need to swap it with the very next bit to the right:
0000 1000
^ // this one
We'll record this as K2 = 0000 0100
Bitwise OR K1 and K2 together and you'll get a mask
mask = K1 | k2 // 0000 1000 | 0000 0100 -> 0000 1100
Bitwise XOR the mask with the original number and you'll have the correct output/swap
number ^ mask // 1011 1000 ^ 0000 1100 -> 1011 0100
Now before we pull everything together we have to consider that fact that the LSB could be 0001, and so could a bunch of bits after that 1000 1111. So we have to deal with the two cases of the first bit that differs from the LSB; it may be a 1 or 0.
First we have a conditional that test the LSB to be 1 or 0: x & 1
IF 1 return x XORed with the return of a helper function
This helper function has a second argument which its value depends on whether the condition is true or not. func(x, 0xFFFFFFFF) // if true // 0xFFFFFFFF 64 bit word with all bits set to 1
Otherwise we'll skip the if statement and return a similar expression but with a different value provided to the second argument.
return x XORed with func(x, 0x00000000) // 64 bit word with all bits set to 0. You could alternatively just pass 0 but I did this for consistency
Our helper function returns a mask that we are going to XOR with the original number to get our output.
It takes two arguments, our original number and a mask, used in this expression:
(x ^ mask) & ~((x ^ mask) - 1)
which gives us a new number with the bit at index K1 always set to 1.
It then shifts that bit 1 to the right (i.e index K2) then ORs it with itself to create our final mask
0000 1000 >> 1 -> 0000 0100 | 0001 0000 -> 0000 1100
This all implemented in C++ looks like:
unsigned long long int closestIntSameBitCount(unsigned long long int n)
{
if (n & 1)
return n ^= getSwapMask(n, 0xFFFFFFFF);
return n ^= getSwapMask(n, 0x00000000);
}
// Helper function
unsigned long long int getSwapMask(unsigned long long int n, unsigned long long int mask)
{
unsigned long long int swapBitMask = (n ^ mask) & ~((n ^ mask) - 1);
return swapBitMask | (swapBitMask >> 1);
}
Keep note of the expression (x ^ mask) & ~((x ^ mask) - 1)
I'll now run through this code with my example 1011 1000:
// start of closestIntSameBitCount
if (0) // 1011 1000 & 1 -> 0000 0000
// start of getSwapMask
getSwapMask(1011 1000, 0x00000000)
swapBitMask = (x ^ mask) & ~1011 0111 // ((x ^ mask) - 1) = 1011 1000 ^ .... 0000 0000 -> 1011 1000 - 1 -> 1011 0111
swapBitMask = (x ^ mask) & 0100 1000 // ~1011 0111 -> 0100 1000
swapBitMask = 1011 1000 & 0100 1000 // (x ^ mask) = 1011 1000 ^ .... 0000 0000 -> 1011 1000
swapBitMask = 0000 1000 // 1011 1000 & 0100 1000 -> 0000 1000
return swapBitMask | 0000 0100 // (swapBitMask >> 1) = 0000 1000 >> 1 -> 0000 0100
return 0000 1100 // 0000 1000 | 0000 0100 -> 0000 11000
// end of getSwapMask
return 1011 0100 // 1011 1000 ^ 0000 11000 -> 1011 0100
// end of closestIntSameBitCount
Here is a full running example if you would like compile and run it your self:
#include <iostream>
#include <stdio.h>
#include <bitset>
unsigned long long int closestIntSameBitCount(unsigned long long int n);
unsigned long long int getSwapMask(unsigned long long int n, unsigned long long int mask);
int main()
{
unsigned long long int number;
printf("Pick a number: ");
std::cin >> number;
std::bitset<64> a(number);
std::bitset<64> b(closestIntSameBitCount(number));
std::cout << a
<< "\n"
<< b
<< std::endl;
}
unsigned long long int closestIntSameBitCount(unsigned long long int n)
{
if (n & 1)
return n ^= getSwapMask(n, 0xFFFFFFFF);
return n ^= getSwapMask(n, 0x00000000);
}
// Helper function
unsigned long long int getSwapMask(unsigned long long int n, unsigned long long int mask)
{
unsigned long long int swapBitMask = (n ^ mask) & ~((n ^ mask) - 1);
return swapBitMask | (swapBitMask >> 1);
}
This was my solution to the problem. I guess #jigsawmnc explains pretty well why we need to have |k2 -k1| to a minimum. So in order to find the closest integer, with the same weight, we would want to find the location where consecutive bits are flipped and then flip them again to get the answer. In order to do that we can shift the number 1 unit. Take the XOR with the same number. This will set bits at all locations where there is a flip. Find the least significant bit for the XOR. This will give you the smallest location to flip. Create a mask for the location and next bit. Take an XOR and that should be the answer. This won't work, if the digits are all 0 or all 1
Here is the code for it.
def variant_closest_int(x: int) -> int:
if x == 0 or ~x == 0:
raise ValueError('All bits are 0 or 1')
x_ = x >> 1
lsb = x ^ x_
mask_ = lsb & ~(lsb - 1)
mask = mask_ | (mask_ << 1)
return x ^ mask
My solution, takes advantage of the parity of the integer. I think the way I got the LSB masks can be simplified
def next_weighted_int(x):
if x % 2 == 0:
lsb_mask = ( ((x - 1) ^ x) >> 1 ) + 1 # Gets a mask for the first 1
x ^= lsb_mask
x |= (lsb_mask >> 1)
return x
lsb_mask = ((x ^ (x + 1)) >> 1 ) + 1 # Gets a mask for the first 0
x |= lsb_mask
x ^= (lsb_mask >> 1)
return x
Just sharing my python solution for this problem:
def same closest_int_same_bit_count(a):
x = a + (a & 1) # change last bit to 0
bit = (x & ~(x-1)) # get last set bit
return a ^ (bit | bit >> 1) # swap set bit with unset bit
func findClosestIntegerWithTheSameWeight2(x int) int {
rightMost0 := ^x & (x + 1)
rightMost1 := x & (-x)
if rightMost0 > 1 {
return (x ^ rightMost0) ^ (rightMost0 >> 1)
} else {
return (x ^ rightMost1) ^ (rightMost1 >> 1)
}
}
This problem is from the 2011 Codesprint (http://csfall11.interviewstreet.com/):
One of the basics of Computer Science is knowing how numbers are represented in 2's complement. Imagine that you write down all numbers between A and B inclusive in 2's complement representation using 32 bits. How many 1's will you write down in all ?
Input:
The first line contains the number of test cases T (<1000). Each of the next T lines contains two integers A and B.
Output:
Output T lines, one corresponding to each test case.
Constraints:
-2^31 <= A <= B <= 2^31 - 1
Sample Input:
3
-2 0
-3 4
-1 4
Sample Output:
63
99
37
Explanation:
For the first case, -2 contains 31 1's followed by a 0, -1 contains 32 1's and 0 contains 0 1's. Thus the total is 63.
For the second case, the answer is 31 + 31 + 32 + 0 + 1 + 1 + 2 + 1 = 99
I realize that you can use the fact that the number of 1s in -X is equal to the number of 0s in the complement of (-X) = X-1 to speed up the search. The solution claims that there is a O(log X) recurrence relation for generating the answer but I do not understand it. The solution code can be viewed here: https://gist.github.com/1285119
I would appreciate it if someone could explain how this relation is derived!
Well, it's not that complicated...
The single-argument solve(int a) function is the key. It is short, so I will cut&paste it here:
long long solve(int a)
{
if(a == 0) return 0 ;
if(a % 2 == 0) return solve(a - 1) + __builtin_popcount(a) ;
return ((long long)a + 1) / 2 + 2 * solve(a / 2) ;
}
It only works for non-negative a, and it counts the number of 1 bits in all integers from 0 to a inclusive.
The function has three cases:
a == 0 -> returns 0. Obviously.
a even -> returns the number of 1 bits in a plus solve(a-1). Also pretty obvious.
The final case is the interesting one. So, how do we count the number of 1 bits from 0 to an odd number a?
Consider all of the integers between 0 and a, and split them into two groups: The evens, and the odds. For example, if a is 5, you have two groups (in binary):
000 (aka. 0)
010 (aka. 2)
100 (aka. 4)
and
001 (aka 1)
011 (aka 3)
101 (aka 5)
Observe that these two groups must have the same size (because a is odd and the range is inclusive). To count how many 1 bits there are in each group, first count all but the last bits, then count the last bits.
All but the last bits looks like this:
00
01
10
...and it looks like this for both groups. The number of 1 bits here is just solve(a/2). (In this example, it is the number of 1 bits from 0 to 2. Also, recall that integer division in C/C++ rounds down.)
The last bit is zero for every number in the first group and one for every number in the second group, so those last bits contribute (a+1)/2 one bits to the total.
So the third case of the recursion is (a+1)/2 + 2*solve(a/2), with appropriate casts to long long to handle the case where a is INT_MAX (and thus a+1 overflows).
This is an O(log N) solution. To generalize it to solve(a,b), you just compute solve(b) - solve(a), plus the appropriate logic for worrying about negative numbers. That is what the two-argument solve(int a, int b) is doing.
Cast the array into a series of integers. Then for each integer do:
int NumberOfSetBits(int i)
{
i = i - ((i >> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
Also this is portable, unlike __builtin_popcount
See here: How to count the number of set bits in a 32-bit integer?
when a is positive, the better explanation was already been posted.
If a is negative, then on a 32-bit system each negative number between a and zero will have 32 1's bits less the number of bits in the range from 0 to the binary representation of positive a.
So, in a better way,
long long solve(int a) {
if (a >= 0){
if (a == 0) return 0;
else if ((a %2) == 0) return solve(a - 1) + noOfSetBits(a);
else return (2 * solve( a / 2)) + ((long long)a + 1) / 2;
}else {
a++;
return ((long long)(-a) + 1) * 32 - solve(-a);
}
}
In the following code, the bitsum of x is defined as the count of 1 bits in the two's complement representation of the numbers between 0 and x (inclusive), where Integer.MIN_VALUE <= x <= Integer.MAX_VALUE.
For example:
bitsum(0) is 0
bitsum(1) is 1
bitsum(2) is 1
bitsum(3) is 4
..etc
10987654321098765432109876543210 i % 10 for 0 <= i <= 31
00000000000000000000000000000000 0
00000000000000000000000000000001 1
00000000000000000000000000000010 2
00000000000000000000000000000011 3
00000000000000000000000000000100 4
00000000000000000000000000000101 ...
00000000000000000000000000000110
00000000000000000000000000000111 (2^i)-1
00000000000000000000000000001000 2^i
00000000000000000000000000001001 (2^i)+1
00000000000000000000000000001010 ...
00000000000000000000000000001011 x, 011 = x & (2^i)-1 = 3
00000000000000000000000000001100
00000000000000000000000000001101
00000000000000000000000000001110
00000000000000000000000000001111
00000000000000000000000000010000
00000000000000000000000000010001
00000000000000000000000000010010 18
...
01111111111111111111111111111111 Integer.MAX_VALUE
The formula of the bitsum is:
bitsum(x) = bitsum((2^i)-1) + 1 + x - 2^i + bitsum(x & (2^i)-1 )
Note that x - 2^i = x & (2^i)-1
Negative numbers are handled slightly differently than positive numbers. In this case the number of zeros is subtracted from the total number of bits:
Integer.MIN_VALUE <= x < -1
Total number of bits: 32 * -x.
The number of zeros in a negative number x is equal to the number of ones in -x - 1.
public class TwosComplement {
//t[i] is the bitsum of (2^i)-1 for i in 0 to 31.
private static long[] t = new long[32];
static {
t[0] = 0;
t[1] = 1;
int p = 2;
for (int i = 2; i < 32; i++) {
t[i] = 2*t[i-1] + p;
p = p << 1;
}
}
//count the bits between x and y inclusive
public static long bitsum(int x, int y) {
if (y > x && x > 0) {
return bitsum(y) - bitsum(x-1);
}
else if (y >= 0 && x == 0) {
return bitsum(y);
}
else if (y == x) {
return Integer.bitCount(y);
}
else if (x < 0 && y == 0) {
return bitsum(x);
} else if (x < 0 && x < y && y < 0 ) {
return bitsum(x) - bitsum(y+1);
} else if (x < 0 && x < y && 0 < y) {
return bitsum(x) + bitsum(y);
}
throw new RuntimeException(x + " " + y);
}
//count the bits between 0 and x
public static long bitsum(int x) {
if (x == 0) return 0;
if (x < 0) {
if (x == -1) {
return 32;
} else {
long y = -(long)x;
return 32 * y - bitsum((int)(y - 1));
}
} else {
int n = x;
int sum = 0; //x & (2^i)-1
int j = 0;
int i = 1; //i = 2^j
int lsb = n & 1; //least significant bit
n = n >>> 1;
while (n != 0) {
sum += lsb * i;
lsb = n & 1;
n = n >>> 1;
i = i << 1;
j++;
}
long tot = t[j] + 1 + sum + bitsum(sum);
return tot;
}
}
}
Is there a one line expression (possibly boolean) to get the nearest 2^n number for a given integer?
Example: 5,6,7 must be 8.
Round up to the next higher power of two: see bit-twiddling hacks.
In C:
unsigned int v; // compute the next highest power of 2 of 32-bit v
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
I think you mean next nearest 2^n number. You can do a log on the mode 2 and then determine next integer value out of it.
For java, it can be done like:
Math.ceil(Math.log(x)/Math.log(2))
Since the title of the question is "Round to the nearest power of two", I thought it would be useful to include a solution to that problem as well.
int nearestPowerOfTwo(int n)
{
int v = n;
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++; // next power of 2
int x = v >> 1; // previous power of 2
return (v - n) > (n - x) ? x : v;
}
It basically finds both the previous and the next power of two and then returns the nearest one.
Your requirements are a little confused, the nearest power of 2 to 5 is 4. If what you want is the next power of 2 up from the number, then the following Mathematica expression does what you want:
2^Ceiling[Log[2, 5]] => 8
From that it should be straightforward to figure out a one-liner in most programming languages.
For next power of two up from a given integer x
2^(int(log(x-1,2))+1)
or alternatively (if you do not have a log function accepting a base argument
2^(int(log(x-1)/log(2))+1)
Note that this does not work for x < 2
This can be done by right shifting on the input number until it becomes 0 and keeping the count of shifts. This will give the position of the most significant 1 bit. Getting 2 to the power of this number will give us the next nearest power of 2.
public int NextPowerOf2(int number) {
int pos = 0;
while (number > 0) {
pos++;
number = number >> 1;
}
return (int) Math.pow(2, pos);
}
For rounding up to the nearest power of 2 in Java, you can use this. Probably faster for longs than the bit-twiddling stuff mentioned in other answers.
static long roundUpToPowerOfTwo(long v) {
long i = Long.highestOneBit(v);
return v > i ? i << 1 : i;
}
Round n to the next power of 2 in one line in Python:
next_power_2 = 2 ** (n - 1).bit_length()
Modified for VBA. NextPowerOf2_1 doesn't seem to work. So I used loop method. Needed a shift right bitwise operator though.
Sub test()
NextPowerOf2_1(31)
NextPowerOf2_2(31)
NextPowerOf2_1(32)
NextPowerOf2_2(32)
End Sub
Sub NextPowerOf2_1(ByVal number As Long) ' Does not work
Debug.Print 2 ^ (Int(Math.Log(number - 1) / Math.Log(2)) + 1)
End Sub
Sub NextPowerOf2_2(ByVal number As Long)
Dim pos As Integer
pos = 0
While (number > 0)
pos = pos + 1
number = shr(number, 1)
Wend
Debug.Print 2 ^ pos
End Sub
Function shr(ByVal Value As Long, ByVal Shift As Byte) As Long
Dim i As Byte
shr = Value
If Shift > 0 Then
shr = Int(shr / (2 ^ Shift))
End If
End Function
Here is a basic version for Go
// Calculates the next highest power of 2.
// For example: n = 15, the next highest power of 2 would be 16
func NearestPowerOf2(n int) int {
v := n
v--
v |= v >> 1
v |= v >> 2
v |= v >> 4
v |= v >> 8
v |= v >> 16
v++
return v
}
I am trying to find an algorithm to count from 0 to 2n-1 but their bit pattern reversed. I care about only n LSB of a word. As you may have guessed I failed.
For n=3:
000 -> 0
100 -> 4
010 -> 2
110 -> 6
001 -> 1
101 -> 5
011 -> 3
111 -> 7
You get the idea.
Answers in pseudo-code is great. Code fragments in any language are welcome, answers without bit operations are preferred.
Please don't just post a fragment without even a short explanation or a pointer to a source.
Edit: I forgot to add, I already have a naive implementation which just bit-reverses a count variable. In a sense, this method is not really counting.
This is, I think easiest with bit operations, even though you said this wasn't preferred
Assuming 32 bit ints, here's a nifty chunk of code that can reverse all of the bits without doing it in 32 steps:
unsigned int i;
i = (i & 0x55555555) << 1 | (i & 0xaaaaaaaa) >> 1;
i = (i & 0x33333333) << 2 | (i & 0xcccccccc) >> 2;
i = (i & 0x0f0f0f0f) << 4 | (i & 0xf0f0f0f0) >> 4;
i = (i & 0x00ff00ff) << 8 | (i & 0xff00ff00) >> 8;
i = (i & 0x0000ffff) << 16 | (i & 0xffff0000) >> 16;
i >>= (32 - n);
Essentially this does an interleaved shuffle of all of the bits. Each time around half of the bits in the value are swapped with the other half.
The last line is necessary to realign the bits so that bin "n" is the most significant bit.
Shorter versions of this are possible if "n" is <= 16, or <= 8
At each step, find the leftmost 0 digit of your value. Set it, and clear all digits to the left of it. If you don't find a 0 digit, then you've overflowed: return 0, or stop, or crash, or whatever you want.
This is what happens on a normal binary increment (by which I mean it's the effect, not how it's implemented in hardware), but we're doing it on the left instead of the right.
Whether you do this in bit ops, strings, or whatever, is up to you. If you do it in bitops, then a clz (or call to an equivalent hibit-style function) on ~value might be the most efficient way: __builtin_clz where available. But that's an implementation detail.
This solution was originally in binary and converted to conventional math as the requester specified.
It would make more sense as binary, at least the multiply by 2 and divide by 2 should be << 1 and >> 1 for speed, the additions and subtractions probably don't matter one way or the other.
If you pass in mask instead of nBits, and use bitshifting instead of multiplying or dividing, and change the tail recursion to a loop, this will probably be the most performant solution you'll find since every other call it will be nothing but a single add, it would only be as slow as Alnitak's solution once every 4, maybe even 8 calls.
int incrementBizarre(int initial, int nBits)
// in the 3 bit example, this should create 100
mask=2^(nBits-1)
// This should only return true if the first (least significant) bit is not set
// if initial is 011 and mask is 100
// 3 4, bit is not set
if(initial < mask)
// If it was not, just set it and bail.
return initial+ mask // 011 (3) + 100 (4) = 111 (7)
else
// it was set, are we at the most significant bit yet?
// mask 100 (4) / 2 = 010 (2), 001/2 = 0 indicating overflow
if(mask / 2) > 0
// No, we were't, so unset it (initial-mask) and increment the next bit
return incrementBizarre(initial - mask, mask/2)
else
// Whoops we were at the most significant bit. Error condition
throw new OverflowedMyBitsException()
Wow, that turned out kinda cool. I didn't figure in the recursion until the last second there.
It feels wrong--like there are some operations that should not work, but they do because of the nature of what you are doing (like it feels like you should get into trouble when you are operating on a bit and some bits to the left are non-zero, but it turns out you can't ever be operating on a bit unless all the bits to the left are zero--which is a very strange condition, but true.
Example of flow to get from 110 to 001 (backwards 3 to backwards 4):
mask 100 (4), initial 110 (6); initial < mask=false; initial-mask = 010 (2), now try on the next bit
mask 010 (2), initial 010 (2); initial < mask=false; initial-mask = 000 (0), now inc the next bit
mask 001 (1), initial 000 (0); initial < mask=true; initial + mask = 001--correct answer
Here's a solution from my answer to a different question that computes the next bit-reversed index without looping. It relies heavily on bit operations, though.
The key idea is that incrementing a number simply flips a sequence of least-significant bits, for example from nnnn0111 to nnnn1000. So in order to compute the next bit-reversed index, you have to flip a sequence of most-significant bits. If your target platform has a CTZ ("count trailing zeros") instruction, this can be done efficiently.
Example in C using GCC's __builtin_ctz:
void iter_reversed(unsigned bits) {
unsigned n = 1 << bits;
for (unsigned i = 0, j = 0; i < n; i++) {
printf("%x\n", j);
// Compute a mask of LSBs.
unsigned mask = i ^ (i + 1);
// Length of the mask.
unsigned len = __builtin_ctz(~mask);
// Align the mask to MSB of n.
mask <<= bits - len;
// XOR with mask.
j ^= mask;
}
}
Without a CTZ instruction, you can also use integer division:
void iter_reversed(unsigned bits) {
unsigned n = 1 << bits;
for (unsigned i = 0, j = 0; i < n; i++) {
printf("%x\n", j);
// Find least significant zero bit.
unsigned bit = ~i & (i + 1);
// Using division to bit-reverse a single bit.
unsigned rev = (n / 2) / bit;
// XOR with mask.
j ^= (n - 1) & ~(rev - 1);
}
}
void reverse(int nMaxVal, int nBits)
{
int thisVal, bit, out;
// Calculate for each value from 0 to nMaxVal.
for (thisVal=0; thisVal<=nMaxVal; ++thisVal)
{
out = 0;
// Shift each bit from thisVal into out, in reverse order.
for (bit=0; bit<nBits; ++bit)
out = (out<<1) + ((thisVal>>bit) & 1)
}
printf("%d -> %d\n", thisVal, out);
}
Maybe increment from 0 to N (the "usual" way") and do ReverseBitOrder() for each iteration. You can find several implementations here (I like the LUT one the best).
Should be really quick.
Here's an answer in Perl. You don't say what comes after the all ones pattern, so I just return zero. I took out the bitwise operations so that it should be easy to translate into another language.
sub reverse_increment {
my($n, $bits) = #_;
my $carry = 2**$bits;
while($carry > 1) {
$carry /= 2;
if($carry > $n) {
return $carry + $n;
} else {
$n -= $carry;
}
}
return 0;
}
Here's a solution which doesn't actually try to do any addition, but exploits the on/off pattern of the seqence (most sig bit alternates every time, next most sig bit alternates every other time, etc), adjust n as desired:
#define FLIP(x, i) do { (x) ^= (1 << (i)); } while(0)
int main() {
int n = 3;
int max = (1 << n);
int x = 0;
for(int i = 1; i <= max; ++i) {
std::cout << x << std::endl;
/* if n == 3, this next part is functionally equivalent to this:
*
* if((i % 1) == 0) FLIP(x, n - 1);
* if((i % 2) == 0) FLIP(x, n - 2);
* if((i % 4) == 0) FLIP(x, n - 3);
*/
for(int j = 0; j < n; ++j) {
if((i % (1 << j)) == 0) FLIP(x, n - (j + 1));
}
}
}
How about adding 1 to the most significant bit, then carrying to the next (less significant) bit, if necessary. You could speed this up by operating on bytes:
Precompute a lookup table for counting in bit-reverse from 0 to 256 (00000000 -> 10000000, 10000000 -> 01000000, ..., 11111111 -> 00000000).
Set all bytes in your multi-byte number to zero.
Increment the most significant byte using the lookup table. If the byte is 0, increment the next byte using the lookup table. If the byte is 0, increment the next byte...
Go to step 3.
With n as your power of 2 and x the variable you want to step:
(defun inv-step (x n) ; the following is a function declaration
"returns a bit-inverse step of x, bounded by 2^n" ; documentation
(do ((i (expt 2 (- n 1)) ; loop, init of i
(/ i 2)) ; stepping of i
(s x)) ; init of s as x
((not (integerp i)) ; breaking condition
s) ; returned value if all bits are 1 (is 0 then)
(if (< s i) ; the loop's body: if s < i
(return-from inv-step (+ s i)) ; -> add i to s and return the result
(decf s i)))) ; else: reduce s by i
I commented it thoroughly as you may not be familiar with this syntax.
edit: here is the tail recursive version. It seems to be a little faster, provided that you have a compiler with tail call optimization.
(defun inv-step (x n)
(let ((i (expt 2 (- n 1))))
(cond ((= n 1)
(if (zerop x) 1 0)) ; this is really (logxor x 1)
((< x i)
(+ x i))
(t
(inv-step (- x i) (- n 1))))))
When you reverse 0 to 2^n-1 but their bit pattern reversed, you pretty much cover the entire 0-2^n-1 sequence
Sum = 2^n * (2^n+1)/2
O(1) operation. No need to do bit reversals
Edit: Of course original poster's question was about to do increment by (reversed) one, which makes things more simple than adding two random values. So nwellnhof's answer contains the algorithm already.
Summing two bit-reversal values
Here is one solution in php:
function RevSum ($a,$b) {
// loop until our adder, $b, is zero
while ($b) {
// get carry (aka overflow) bit for every bit-location by AND-operation
// 0 + 0 --> 00 no overflow, carry is "0"
// 0 + 1 --> 01 no overflow, carry is "0"
// 1 + 0 --> 01 no overflow, carry is "0"
// 1 + 1 --> 10 overflow! carry is "1"
$c = $a & $b;
// do 1-bit addition for every bit location at once by XOR-operation
// 0 + 0 --> 00 result = 0
// 0 + 1 --> 01 result = 1
// 1 + 0 --> 01 result = 1
// 1 + 1 --> 10 result = 0 (ignored that "1", already taken care above)
$a ^= $b;
// now: shift carry bits to the next bit-locations to be added to $a in
// next iteration.
// PHP_INT_MAX here is used to ensure that the most-significant bit of the
// $b will be cleared after shifting. see link in the side note below.
$b = ($c >> 1) & PHP_INT_MAX;
}
return $a;
}
Side note: See this question about shifting negative values.
And as for test; start from zero and increment value by 8-bit reversed one (10000000):
$value = 0;
$add = 0x80; // 10000000 <-- "one" as bit reversed
for ($count = 20; $count--;) { // loop 20 times
printf("%08b\n", $value); // show value as 8-bit binary
$value = RevSum($value, $add); // do addition
}
... will output:
00000000
10000000
01000000
11000000
00100000
10100000
01100000
11100000
00010000
10010000
01010000
11010000
00110000
10110000
01110000
11110000
00001000
10001000
01001000
11001000
Let assume number 1110101 and our task is to find next one.
1) Find zero on highest position and mark position as index.
11101010 (4th position, so index = 4)
2) Set to zero all bits on position higher than index.
00001010
3) Change founded zero from step 1) to '1'
00011010
That's it. This is by far the fastest algorithm since most of cpu's has instructions to achieve this very efficiently. Here is a C++ implementation which increment 64bit number in reversed patern.
#include <intrin.h>
unsigned __int64 reversed_increment(unsigned __int64 number)
{
unsigned long index, result;
_BitScanReverse64(&index, ~number); // returns index of the highest '1' on bit-reverse number (trick to find the highest '0')
result = _bzhi_u64(number, index); // set to '0' all bits at number higher than index position
result |= (unsigned __int64) 1 << index; // changes to '1' bit on index position
return result;
}
Its not hit your requirements to have "no bits" operations, however i fear there is now way how to achieve something similar without them.