Breadth-first Search in F# (BFS) - algorithm

I want to implement search using BFS. The Algorithm say that i must use a queue to get FIFO effect.
I read Chris Okasaki's Purely Functional Data Structures book and found how to make a queue (i wrote using F#) :
type 'a queue = 'a list * 'a list
let emtpy = [],[]
let isEmpty = function
| [],_ -> true
| _ -> false
let checkf = function
| [],r -> List.rev r,[]
| q -> q
let snoc (f,r) x = checkf (f,x :: r)
let head = function
| ([],_) -> failwith "EMPTY"
| (x::f,r) -> x
let tail = function
| ([],_) -> failwith "EMPTY"
| (x::f,r) -> checkf (f,r)
anyone know how to implement this to BFS?
and i have this code to make a tree from a list:
let data = [4;3;8;7;10;1;9;6;5;0;2]
type Tree<'a> =
| Node of Tree<'a> * 'a * Tree<'a>
| Leaf
let rec insert tree element =
match element,tree with
| x,Leaf -> Node(Leaf,x,Leaf)
| x,Node(l,y,r) when x <= y -> Node((insert l x),y,r)
| x,Node(l,y,r) when x > y -> Node(l,y,(insert r x))
| _ -> Leaf
let makeTree = List.fold insert Leaf data
(want to combine these two codes)

the BFS algorithm is this:
Initialise the search by placing the starting vertex in the queue.
While the queue is not empty.
Remove the front vertex from the queue.
If this is a solution then we're finished -- report success.
Otherwise, compute the immediate children of this vertex and enqueue them.
Otherwise we have exhausted the queue and found no solution -- report failure.
My F# syntax is a bit wobbly, but here's how I'd sketch out the solution:
bfs start = bfsLoop ([start], [])
bfsLoop q0 =
if isEmpty q0
then failWith "No solution"
else v = head q0
if isSolution v
then v
else q1 = tail q0
vs = childrenOf v
q = foldl snoc vs q1
bfsLoop q
Hope this helps.

Might still be useful 11 years later?
BFS in F# is not hard: Instead of a while loop you can use recursion to keep it mutable-free.
I enqueue each node with its trace so we can calculate the solution path.
let data = [4;3;8;7;10;1;9;6;5;0;2]
type Tree<'a> =
| Node of Tree<'a> * 'a * Tree<'a>
| Leaf
let rec insert tree element =
match element,tree with
| x,Leaf -> Node(Leaf,x,Leaf)
| x,Node(l,y,r) when x <= y -> Node((insert l x),y,r)
| x,Node(l,y,r) when x > y -> Node(l,y,(insert r x))
| _ -> Leaf
let tree = List.fold insert Leaf data
// BFS
let rec find goal queue =
match queue with
| [] -> None
| (Leaf, _)::tail -> find goal tail
| (Node (l,y,r), trace)::tail ->
if y = goal then Some (List.rev (y::trace)) else
find goal (tail # [ l, y::trace; r, y::trace ])
// for example, to find the 5 in your tree
find 5 [tree, []]
|> printfn "%A"
// it will return: Some [4; 8; 7; 6; 5]
// because your tree looks like this:
// 4
// / \
// 3 8
// / / \
// 1 7 10
// / \ / /
// 0 2 6 9
// /
// 5

Related

Leftist heap two version create implementation

Recently, I am reading the book Purely-functional-data-structures
when I came to “Exercise 3.2 Define insert directly rather than via a call to merge” for Leftist_tree。I implement a my version insert.
let rec insert x t =
try
match t with
| E -> T (1, x, E, E)
| T (_, y, left, right ) ->
match (Elem.compare x y) with
| n when n < 0 -> makeT x left (insert y right)
| 0 -> raise Same_elem
| _ -> makeT y left (insert x right)
with
Same_elem -> t
And for verifying if it works, I test it and the merge function offered by the book.
let rec merge m n = match (m, n) with
| (h, E) -> h
| (E, h) -> h
| (T (_, x, a1, b1) as h1, (T (_, y, a2, b2) as h2)) ->
if (Elem.compare x y) < 0
then makeT x a1 (merge b1 h2)
else makeT y a2 (merge b2 h1)
Then I found an interesting thing.
I used a list ["a";"b";"d";"g";"z";"e";"c"] as input to create this tree. And the two results are different.
For merge method I got a tree like this:
and insert method I implemented give me a tree like this :
I think there's some details between the two methods even though I follow the implementation of 'merge' to design the 'insert' version. But then I tried a list inverse ["c";"e";"z";"g";"d";"b";"a"] which gave me two leftist-tree-by-insert tree. That really confused me so much that I don't know if my insert method is wrong or right. So now I have two questions:
if my insert method is wrong?
are leftist-tree-by-merge and leftist-tree-by-insert the same structure? I mean this result give me an illusion like they are equal in one sense.
the whole code
module type Comparable = sig
type t
val compare : t -> t -> int
end
module LeftistHeap(Elem:Comparable) = struct
exception Empty
exception Same_elem
type heap = E | T of int * Elem.t * heap * heap
let rank = function
| E -> 0
| T (r ,_ ,_ ,_ ) -> r
let makeT x a b =
if rank a >= rank b
then T(rank b + 1, x, a, b)
else T(rank a + 1, x, b, a)
let rec merge m n = match (m, n) with
| (h, E) -> h
| (E, h) -> h
| (T (_, x, a1, b1) as h1, (T (_, y, a2, b2) as h2)) ->
if (Elem.compare x y) < 0
then makeT x a1 (merge b1 h2)
else makeT y a2 (merge b2 h1)
let insert_merge x h = merge (T (1, x, E, E)) h
let rec insert x t =
try
match t with
| E -> T (1, x, E, E)
| T (_, y, left, right ) ->
match (Elem.compare x y) with
| n when n < 0 -> makeT x left (insert y right)
| 0 -> raise Same_elem
| _ -> makeT y left (insert x right)
with
Same_elem -> t
let rec creat_l_heap f = function
| [] -> E
| h::t -> (f h (creat_l_heap f t))
let create_merge l = creat_l_heap insert_merge l
let create_insert l = creat_l_heap insert l
end;;
module IntLeftTree = LeftistHeap(String);;
open IntLeftTree;;
let l = ["a";"b";"d";"g";"z";"e";"c"];;
let lh = create_merge `enter code here`l;;
let li = create_insert l;;
let h = ["c";"e";"z";"g";"d";"b";"a"];;
let hh = create_merge h;;
let hi = create_insert h;;
16. Oct. 2015 update
by observing the two implementation more precisely, it is easy to find that the difference consisted in merge a base tree T (1, x, E, E) or insert an element x I used graph which can express more clearly.
So i found that my insert version will always use more complexity to finish his work and doesn't utilize the leftist tree's advantage or it always works in the worse situation, even though this tree structure is exactly “leftist”.
and if I changed a little part , the two code will obtain the same result.
let rec insert x t =
try
match t with
| E -> T (1, x, E, E)
| T (_, y, left, right ) ->
match (Elem.compare x y) with
| n when n < 0 -> makeT x E t
| 0 -> raise Same_elem
| _ -> makeT y left (insert x right)
with
Same_elem -> t
So for my first question: I think the answer is not exact. it can truly construct a leftist tree but always work in the bad situation.
and the second question is a little meaningless (I'm not sure). But it is still interesting for this condition. for instance, even though the merge version works more efficiently but for construct a tree from a list without the need for insert order like I mentioned (["a";"b";"d";"g";"z";"e";"c"], ["c";"e";"z";"g";"d";"b";"a"] , if the order isn't important, for me I think they are the same set.) The merge function can't choose the better solution. (I think the the tree's structure of ["a";"b";"d";"g";"z";"e";"c"] is better than ["c";"e";"z";"g";"d";"b";"a"]'s )
so now my question is :
is the tree structure that each sub-right spine is Empty is a good structure?
if yes, can we always construct it in any input order?
A tree with each sub-right spine empty is just a list. As such a simple list is a better structure for a list. The runtime properties will be the same as a list, meaning inserting for example will take O(n) time instead of the desired O(log n) time.
For a tree you usually want a balanced tree, one where all children of a node are ideally the same size. In your code each node has a rank and the goal would be to have the same rank for the left and right side of each node. If you don't have exactly 2^n - 1 entries in the tree this isn't possible and you have to allow some imbalance in the tree. Usually a difference in rank of 1 or 2 is allowed. Insertion should insert the element on the side with smaller rank and removal has to rebalance any node that exceeds the allowed rank difference. This keeps the tree reasonably balanced, ensuring the desired runtime properties are preserved.
Check your text book what difference in rank is allowed in your case.

Make a century in OCaml

Here is quite a typical make a century problem.
We have a natural number list [1;2;3;4;5;6;7;8;9].
We have a list of possible operators [Some '+'; Some '*';None].
Now we create a list of operators from above possibilities and insert each operator into between each consecutive numbers in the number list and compute the value.
(Note a None b = a * 10 + b)
For example, if the operator list is [Some '+'; Some '*'; None; Some '+'; Some '+'; Some '+'; Some '+'; Some '+'], then the value is 1 + 2 * 34 + 5 + 6 + 7 + 8 + 9 = 104.
Please find all possible operator lists, so the value = 10.
The only way I can think of is brute-force.
I generate all possible operator lists.
Compute all possible values.
Then filter so I get all operator lists which produce 100.
exception Cannot_compute
let rec candidates n ops =
if n = 0 then [[]]
else
List.fold_left (fun acc op -> List.rev_append acc (List.map (fun x -> op::x) (candidates (n-1) ops))) [] ops
let glue l opl =
let rec aggr acc_l acc_opl = function
| hd::[], [] -> (List.rev (hd::acc_l), List.rev acc_opl)
| hd1::hd2::tl, None::optl -> aggr acc_l acc_opl (((hd1*10+hd2)::tl), optl)
| hd::tl, (Some c)::optl -> aggr (hd::acc_l) ((Some c)::acc_opl) (tl, optl)
| _ -> raise Cannot_glue
in
aggr [] [] (l, opl)
let compute l opl =
let new_l, new_opl = glue l opl in
let rec comp = function
| hd::[], [] -> hd
| hd::tl, (Some '+')::optl -> hd + (comp (tl, optl))
| hd1::hd2::tl, (Some '-')::optl -> hd1 + (comp ((-hd2)::tl, optl))
| hd1::hd2::tl, (Some '*')::optl -> comp (((hd1*hd2)::tl), optl)
| hd1::hd2::tl, (Some '/')::optl -> comp (((hd1/hd2)::tl), optl)
| _, _ -> raise Cannot_compute
in
comp (new_l, new_opl)
let make_century l ops =
List.filter (fun x -> fst x = 100) (
List.fold_left (fun acc x -> ((compute l x), x)::acc) [] (candidates ((List.length l)-1) ops))
let rec print_solution l opl =
match l, opl with
| hd::[], [] -> Printf.printf "%d\n" hd
| hd::tl, (Some op)::optl -> Printf.printf "%d %c " hd op; print_solution tl optl
| hd1::hd2::tl, None::optl -> print_solution ((hd1*10+hd2)::tl) optl
| _, _ -> ()
I believe my code is ugly. So I have the following questions
computer l opl is to compute using the number list and operator list. Basically it is a typical math evaluation. Is there any nicer implementation?
I have read Chapter 6 in Pearls of Functional Algorithm Design. It used some techniques to improve the performance. I found it really really obscurity and hard to understand. Anyone who read it can help?
Edit
I refined my code. Basically, I will scan the operator list first to glue all numbers where their operator is None.
Then in compute, if I meet a '-' I will simply negate the 2nd number.
A classic dynamic programming solution (which finds the = 104
solution instantly) that does not risk any problem with operators
associativity or precedence. It only returns a boolean saying whether
it's possible to come with the number; modifying it to return the
sequences of operations to get the solution is an easy but interesting
exercise, I was not motivated to go that far.
let operators = [ (+); ( * ); ]
module ISet = Set.Make(struct type t = int let compare = compare end)
let iter2 res1 res2 f =
res1 |> ISet.iter ## fun n1 ->
res2 |> ISet.iter ## fun n2 ->
f n1 n2
let can_make input target =
let has_zero = Array.fold_left (fun acc n -> acc || (n=0)) false input in
let results = Array.make_matrix (Array.length input) (Array.length input) ISet.empty in
for imax = 0 to Array.length input - 1 do
for imin = imax downto 0 do
let add n =
(* OPTIMIZATION: if the operators are known to be monotonous, we need not store
numbers above the target;
(Handling multiplication by 0 requires to be a bit more
careful, and I'm not in the mood to think hard about this
(I think one need to store the existence of a solution,
even if it is above the target), so I'll just disable the
optimization in that case)
*)
if n <= target && not has_zero then
results.(imin).(imax) <- ISet.add n results.(imin).(imax) in
let concat_numbers =
(* concatenates all number from i to j:
i=0, j=2 -> (input.(0)*10 + input.(1))*10 + input.(2)
*)
let rec concat acc k =
let acc = acc + input.(k) in
if k = imax then acc
else concat (10 * acc) (k + 1)
in concat 0 imin
in add concat_numbers;
for k = imin to imax - 1 do
let res1 = results.(imin).(k) in
let res2 = results.(k+1).(imax) in
operators |> List.iter (fun op ->
iter2 res1 res2 (fun n1 n2 -> add (op n1 n2););
);
done;
done;
done;
let result = results.(0).(Array.length input - 1) in
ISet.mem target result
Here is my solution, which evaluates according to the usual rules of precedence. It finds 303 solutions to find [1;2;3;4;5;6;7;8;9] 100 in under 1/10 second on my MacBook Pro.
Here are two interesting ones:
# 123 - 45 - 67 + 89;;
- : int = 100
# 1 * 2 * 3 - 4 * 5 + 6 * 7 + 8 * 9;;
- : int = 100
This is a brute force solution. The only slightly clever thing is that I treat concatenation of digits as simply another (high precedence) operation.
The eval function is the standard stack-based infix expression evaluation that you will find described many places. Here is an SO article about it: How to evaluate an infix expression in just one scan using stacks? The essence is to postpone evaulating by pushing operators and operands onto stacks. When you find that the next operator has lower precedence you can go back and evaluate what you pushed.
type op = Plus | Minus | Times | Divide | Concat
let prec = function
| Plus | Minus -> 0
| Times | Divide -> 1
| Concat -> 2
let succ = function
| Plus -> Minus
| Minus -> Times
| Times -> Divide
| Divide -> Concat
| Concat -> Plus
let apply op stack =
match op, stack with
| _, [] | _, [_] -> [] (* Invalid input *)
| Plus, a :: b :: tl -> (b + a) :: tl
| Minus, a :: b :: tl -> (b - a) :: tl
| Times, a :: b :: tl -> (b * a) :: tl
| Divide, a :: b :: tl -> (b / a) :: tl
| Concat, a :: b :: tl -> (b * 10 + a) :: tl
let rec eval opstack numstack ops nums =
match opstack, numstack, ops, nums with
| [], sn :: _, [], _ -> sn
| sop :: soptl, _, [], _ ->
eval soptl (apply sop numstack) ops nums
| [], _, op :: optl, n :: ntl ->
eval [op] (n :: numstack) optl ntl
| sop :: soptl, _, op :: _, _ when prec sop >= prec op ->
eval soptl (apply sop numstack) ops nums
| _, _, op :: optl, n :: ntl ->
eval (op :: opstack) (n :: numstack) optl ntl
| _ -> 0 (* Invalid input *)
let rec incr = function
| [] -> []
| Concat :: rest -> Plus :: incr rest
| x :: rest -> succ x :: rest
let find nums tot =
match nums with
| [] -> []
| numhd :: numtl ->
let rec try1 ops accum =
let accum' =
if eval [] [numhd] ops numtl = tot then
ops :: accum
else
accum
in
if List.for_all ((=) Concat) ops then
accum'
else try1 (incr ops) accum'
in
try1 (List.map (fun _ -> Plus) numtl) []
I came up with a slightly obscure implementation (for a variant of this problem) that is a bit better than brute force. It works in place, rather than generating intermediate data structures, keeping track of the combined values of the operators that have already been evaluated.
The trick is to keep track of a pending operator and value so that you can evaluate the "none" operator easily. That is, if the algorithm had just progressed though 1 + 23, the pending operator would be +, and the pending value would be 23, allowing you to easily generate either 1 + 23 + 4 or 1 + 234 as necessary.
type op = Add | Sub | Nothing
let print_ops ops =
let len = Array.length ops in
print_char '1';
for i = 1 to len - 1 do
Printf.printf "%s%d" (match ops.(i) with
| Add -> " + "
| Sub -> " - "
| Nothing -> "") (i + 1)
done;
print_newline ()
let solve k target =
let ops = Array.create k Nothing in
let rec recur i sum pending_op pending_value =
let sum' = match pending_op with
| Add -> sum + pending_value
| Sub -> if sum = 0 then pending_value else sum - pending_value
| Nothing -> pending_value in
if i = k then
if sum' = target then print_ops ops else ()
else
let digit = i + 1 in
ops.(i) <- Add;
recur (i + 1) sum' Add digit;
ops.(i) <- Sub;
recur (i + 1) sum' Sub digit;
ops.(i) <- Nothing;
recur (i + 1) sum pending_op (pending_value * 10 + digit) in
recur 0 0 Nothing 0
Note that this will generate duplicates - I didn't bother to fix that. Also, if you are doing this exercise to gain strength in functional programming, it might be beneficial to reject the imperative approach taken here and search for a similar solution that doesn't make use of assignments.

how to build binary tree from post order

I find an example build from preorder, how about how to build binary tree from post
order ?
i edit as following, is it correct
type BinaryTree =
| Nil
| Node of NodeType * BinaryTree * BinaryTree
let rec buildBSTfromPostOrder (l:NodeType list) =
match l with
| [] -> Nil
| [a] -> Node(a, Nil, Nil)
| h::t ->
let b = Node(h, buildBSTfromPostOrder(t), buildBSTfromPostOrder(t))
let smaller =
t
|> Seq.takeWhile (fun n -> n < h)
|> Seq.toList
let bigger =
t
|> Seq.skipWhile (fun n -> n < h)
|> Seq.toList
b
let input = [10; 1; 2; 2; 1; 50]
You can't, if you want reconstruct some binary tree from streams (lists) must use at least two.
There is a Haskell version (very closed to F#)
post [] _ = []
post (x:xs) ys = post (take q xs) (take q ys) ++ -- left
post (drop q xs) (drop (q + 1) ys) ++ -- right
[x] -- node
where (Just q) = elemIndex x ys
That function reconstruct post order from pre and in order. Can be adapted to other versions.
(The keys should be uniques too)
If your tree is ordered (BST) then, simply populate tree with keys.
To populate your BST, you can write
let rec insert tree n =
match tree with
| Nil -> Node(n, Nil, Nil)
| Node(x, left, right) -> if n < x then Node(x, insert left n, right)
else Node(x, left, insert right n)
let populate xs = Seq.fold insert Nil xs
example
let rec show tree =
match tree with
| Nil -> printf ""
| Node(x, left, right) -> do printf "[%d;" x
show left
printf ";"
show right
printf "]"
do show <| populate [|1;6;4;8;2;|]

Optimizing a sudoku solver on Haskell

I have written a sudoku solver in Haskell. It goes through a list and when it finds '0' (an empty cell) it will get the numbers that could fit and try them:
import Data.List (group, (\\), sort)
import Data.Maybe (fromMaybe)
row :: Int -> [Int] -> [Int]
row y grid = foldl (\acc x -> (grid !! x):acc) [] [y*9 .. y*9+8]
where y' = y*9
column :: Int -> [Int] -> [Int]
column x grid = foldl (\acc n -> (grid !! n):acc) [] [x,x+9..80]
box :: Int -> Int -> [Int] -> [Int]
box x y grid = foldl (\acc n -> (grid !! n):acc) [] [x+y*9*3+y' | y' <- [0,9,18], x <- [x'..x'+2]]
where x' = x*3
isValid :: [Int] -> Bool
isValid grid = and [isValidRow, isValidCol, isValidBox]
where isValidRow = isValidDiv row
isValidCol = isValidDiv column
isValidBox = and $ foldl (\acc (x,y) -> isValidList (box x y grid):acc) [] [(x,y) | x <- [0..2], y <- [0..2]]
isValidDiv f = and $ foldl (\acc x -> isValidList (f x grid):acc) [] [0..8]
isValidList = all (\x -> length x <= 1) . tail . group . sort -- tail removes entries that are '0'
isComplete :: [Int] -> Bool
isComplete grid = length (filter (== 0) grid) == 0
solve :: Maybe [Int] -> Maybe [Int]
solve grid' = foldl f Nothing [0..80]
where grid = fromMaybe [] grid'
f acc x
| isValid grid = if isComplete grid then grid' else f' acc x
| otherwise = acc
f' acc x
| (grid !! x) == 0 = case guess x grid of
Nothing -> acc
Just x -> Just x
| otherwise = acc
guess :: Int -> [Int] -> Maybe [Int]
guess x grid
| length valid /= 0 = foldl f Nothing valid
| otherwise = Nothing
where valid = [1..9] \\ (row rowN grid ++ column colN grid ++ box (fst boxN) (snd boxN) grid) -- remove numbers already used in row/collumn/box
rowN = x `div` 9 -- e.g. 0/9=0 75/9=8
colN = x - (rowN * 9) -- e.g. 0-0=0 75-72=3
boxN = (colN `div` 3, rowN `div` 3)
before x = take x grid
after x = drop (x+1) grid
f acc y = case solve $ Just $ before x ++ [y] ++ after x of
Nothing -> acc
Just x -> Just x
For some puzzles this works, for example this one:
sudoku :: [Int]
sudoku = [5,3,0,6,7,8,0,1,2,
6,7,0,0,0,0,3,4,8,
0,0,8,0,0,0,5,0,7,
8,0,0,0,0,1,0,0,3,
4,2,6,0,0,3,7,9,0,
7,0,0,9,0,0,0,5,0,
9,0,0,5,0,7,0,0,0,
2,8,7,4,1,9,6,0,5,
3,0,0,2,8,0,1,0,0]
Took under a second, however this one:
sudoku :: [Int]
sudoku = [5,3,0,0,7,0,0,1,2,
6,7,0,0,0,0,3,4,8,
0,0,0,0,0,0,5,0,7,
8,0,0,0,0,1,0,0,3,
4,2,6,0,0,3,7,9,0,
7,0,0,9,0,0,0,5,0,
9,0,0,5,0,7,0,0,0,
2,8,7,4,1,9,6,0,5,
3,0,0,2,8,0,1,0,0]
I have not seen finish. I don't think this is a problem with the method, as it does return correct results.
Profiling showed that most of the time was spent in the "isValid" function. Is there something obviously inefficient/slow about that function?
The implementation is of course improvable, but that's not the problem. The problem is that for the second grid, the simple guess-and-check algorithm needs a lot of backtracking. Even if you speed up each of your functions 1000-fold, there will be grids where it still needs several times the age of the universe to find the (first, if the grid is not unique) solution.
You need a better algorithm to avoid that. A fairly efficient method to avoid such cases is to guess the square with the least number of possibilities first. That doesn't avoid all bad cases, but reduces them much.
One thing that you should also do is replace the length thing == 0 check with null thing. With the relatively short lists occurring here, the effect is limited, but in general it can be dramatic (and in general you should also not use length list <= 1, use null $ drop 1 list instead).
isValidList = all (\x -> length x <= 1) . tail . group . sort -- tail removes entries that are '0'
If the original list does not contain any zeros, tail will remove something else, perhaps a list of two ones. I'd replace tail . group. sort with group . sort . filter (/= 0).
I don't understand why isValidBox and isValidDiv use foldl as map appears to be adequate. Have I missed something / are they doing something terribly clever?

Create (pseudo) Cyclic Discriminated Unions in F#

I've run into a small problem here. I wrote the Tortoise and Hare cycle detection algorithm.
type Node =
| DataNode of int * Node
| LastNode of int
let next node =
match node with
|DataNode(_,n) -> n
|LastNode(_) -> failwith "Error"
let findCycle(first) =
try
let rec fc slow fast =
match (slow,fast) with
| LastNode(a),LastNode(b) when a=b -> true
| DataNode(_,a), DataNode(_,b) when a=b -> true
| _ -> fc (next slow) (next <| next fast)
fc first <| next first
with
| _ -> false
This is working great for
let first = DataNode(1, DataNode(2, DataNode(3, DataNode(4, LastNode(5)))))
findCycle(first)
It shows false. Right. Now when try to test it for a cycle, I'm unable to create a loop!
Obviously this would never work:
let first = DataNode(1, DataNode(2, DataNode(3, DataNode(4, first))))
But I need something of that kind! Can you tell me how to create one?
You can't do this with your type as you've defined it. See How to create a recursive data structure value in (functional) F#? for some alternative approaches which would work.
As an alternative to Brian's solution, you might try something like:
type Node =
| DataNode of int * NodeRec
| LastNode of int
and NodeRec = { node : Node }
let rec cycle = DataNode(1, { node =
DataNode(2, { node =
DataNode(3, { node =
DataNode(4, { node = cycle}) }) }) })
Here is one way:
type Node =
| DataNode of int * Lazy<Node>
| LastNode of int
let next node = match node with |DataNode(_,n) -> n.Value |LastNode(_) -> failwith "Error"
let findCycle(first) =
try
let rec fc slow fast =
match (slow,fast) with
| LastNode(a),LastNode(b) when a=b->true
| DataNode(a,_), DataNode(b,_) when a=b -> true
| _ -> fc (next slow) (next <| next fast)
fc first <| next first
with
| _ -> false
let first = DataNode(1, lazy DataNode(2, lazy DataNode(3, lazy DataNode(4, lazy LastNode(5)))))
printfn "%A" (findCycle(first))
let rec first2 = lazy DataNode(1, lazy DataNode(2, lazy DataNode(3, lazy DataNode(4, first2))))
printfn "%A" (findCycle(first2.Value))
Even though both Brian and kvb posted answers that work, I still felt I needed to see if it was possible to achieve the same thing in a different way. This code will give you a cyclic structure wrapped as a Seq<'a>
type Node<'a> = Empty | Node of 'a * Node<'a>
let cyclic (n:Node<_>) : _ =
let rn = ref n
let rec next _ =
match !rn with
| Empty -> rn := n; next Unchecked.defaultof<_>
| Node(v, x) -> rn := x; v
Seq.initInfinite next
let nodes = Node(1, Node(2, Node(3, Empty)))
cyclic <| nodes |> Seq.take 40 // val it : seq<int> = seq [1; 2; 3; 1; ...]
The structure itself is not cyclic, but it looks like it from the outside.
Or you could do this:
//removes warning about x being recursive
#nowarn "40"
type Node<'a> = Empty | Node of 'a * Lazy<Node<'a>>
let rec x = Node(1, lazy Node(2, lazy x))
let first =
match x with
| Node(1, Lazy(Node(2,first))) -> first.Value
| _ -> Empty
Can you tell me how to create one?
There are various hacks to get a directly cyclic value in F# (as Brian and kvb have shown) but I'd note that this is rarely what you actually want. Directly cyclic data structures are a pig to debug and are usually used for performance and, therefore, made mutable.
For example, your cyclic graph might be represented as:
> Map[1, 2; 2, 3; 3, 4; 4, 1];;
val it : Map<int,int> = map [(1, 2); (2, 3); (3, 4); (4, 1)]
The idiomatic way to represent a graph in F# is to store a dictionary that maps from handles to vertices and, if necessary, another for edges. This approach is much easier to debug because you traverse indirect recursion via lookup tables that are comprehensible as opposed to trying to decipher a graph in the heap. However, if you want to have the GC collect unreachable subgraphs for you then a purely functional alternative to a weak hash map is apparently an unsolved problem in computer science.

Resources