Bulk SMS service provider Business - sms

I am planning to start a bulk sms service provider business. However I have the following doubts:
Which SMS/MMS Gateway software is good/best for high volume traffic(
OzekiNG, NowSMS etc)?
Do I need to setup connections with all the
major mobile operators or a single major operator will also work?
For the case of 2-way SMSs how can I charge money from the
customers?(e.g. usually the operator charges for the sms, but I need
to get something also)
How much will be the initial costing?

Consider kannel? http://www.kannel.org/
It depend, to guarantee realiability, you should consider connect to the mobile operator. But it would seem a lot of mno in the world hence there are some other aggregators which you can connect to such as the one you mentioned in your first question.
You need something called reverse charging. Read http://en.wikipedia.org/wiki/Reverse_SMS_billing for more information.
The cost will always depend on which operator you integrate with. So remember to quote for their initial costing. You can reference the operators pricing mechanism.

You can read following guide especially written for service providers mentioning that how one can start VoIP based Voice SMS or FAX broadcasting business, Following are answers to your questions respectively
For bulk SMS traffic you must go with SMPP protocol, Fortunately kannel has good support for SMPP and its available freely.
Multiple providers are better, for Failover and comparatively lower cost due to LCR.
It is obvious that you will charge your clients for outgoing SMS. however for inbound you can earn from DID numbers ( user have to pay rent for their inbound number ) further if you have large number of active DIDs / Phone numbers you can earn money from providers too ( who send traffic to your DIDs ) against termination and SS7 dips. but its very advance topic and only feasible for big players.
For initial cost calculation you have to consider multiple things like Infrastructure and server setup, Software licensing fees and 3rd party cost regarding DIDs and Termination services.
Hope it will help

Related

Advice on pubsub topic division based on geohashes for ably websocket connection service

My question concerns the following use case:
Use case actors
User A: The user who sets a broadcast region and views stream with live posts.
User B: The first user who sends a broadcast message from within the broadcast region set by user A.
User C: The second user who sends a broadcast message from within the broadcast region set by user A.
Use case description
User A selects a broadcast region within which boundaries (radius) (s)he wants to receive live broadcast messages.
User A opens the livefeed and requests an initial set of livefeed items.
User B broadcasts a message from within the broadcast region of user A while user A’s livefeed is still open.
A label with 1 new livefeed item appears at the top of User A’s livefeed while it is open.
As user C publishes another livefeed post from within the selected broadcast region from user A, the label counter increments.
User A receives a notification similar to this example of Facebook:
The solution I thought to apply (and which I think Pubnub uses), is to create a topic per geohash.
In my case that would mean that for every user who broadcasted a message, it needs to be published to the geohash-topic, and clients (app / website users) would consume the geohash-topic through a websocket if it fell within the range of the defined area (radius). Ably seems to provide this kind of scalable service using web sockets.
I guess it would simplified be something like this:
So this means that a geohash needs to be extracted from the current location from where the broadcast message is sent. This geohash should have granular scale that is small enough so that the receiving user can set a broadcast region that is more or less accurate. (I.e. the geohash should have enough accuracy if we want to allow users to define a broadcast region within which to receive live messages, which means that one should expect a quite large amount of topics if we decided to scale).
Option 2 would be to create topics for a geohash that has a less specific granularity (covering a larger area), and let clients handle the accuracy based on latlng values that are sent along with the message.
The client would then decide whether or not to drop messages. However, this means more messages are sent (more overhead), and a higher cost.
I don't have experience with this kind of architecture, and question the viability / scalability of this approach.
Could you think of an alternate solution to this question to achieve the desired result or provide more insight on how to solve this kind of problem overall? (I also considered using regular req-res flow, but this means spamming the server, which also doesn't seem like a very good solution).
I actually checked.
Given a region of 161.4 km² (like region Brussels), the division of geohashes by length of the string is as follows:
1 ≤ 5,000km × 5,000km
2 ≤ 1,250km × 625km
3 ≤ 156km × 156km
4 ≤ 39.1km × 19.5km
5 ≤ 4.89km × 4.89km
6 ≤ 1.22km × 0.61km
7 ≤ 153m × 153m
8 ≤ 38.2m × 19.1m
9 ≤ 4.77m × 4.77m
10 ≤ 1.19m × 0.596m
11 ≤ 149mm × 149mm
12 ≤ 37.2mm × 18.6mm
Given that we would allow users to have a possible inaccuracy up to 153m (on the region to which users may want to subscribe to receive local broadcast messages), it would require an amount of topics that is definitely already too large to even only cover the entire region of Brussels.
So I'm still a bit stuck at this level currently.
1. PubNub
PubNub is currently the only service that offers an out of the box geohash pub-sub solution over websockets, but their pricing is extremely high (500 connected devices cost about 49$, 20k devices cost 799$) UPDATE: PubNub has updated price, now with unlimited devices. Website updates coming soon.
Pubnub is working on their pricing model because some of their customers were paying a lot for unexpected spikes in traffic.
However, it will not be a viable solution for a generic broadcasting messaging app that is meant to be open for everybody, and for which traffic is therefore very highly unpredictable.
This is a pity, since this service would have been the perfect solution for us otherwise.
2. Ably
Ably offers a pubsub system to stream data to clients over websockets for custom channels. Channels are created dynamically when a client attaches itself in order to either publish or subscribe to that channel.
The main problem here is that:
If we want high geohash accuracy, we need a high number of channels and hence we have to pay more;
If we go with low geohash accuracy, there will be a lot of redundant messaging:
Let's say that we take a channel that is represented by a geohash of 4 characters, spanning a geographical area of 39.1 x 19.5 km.
Any post that gets sent to that channel, would be multiplexed to everybody within that region who is currently listening.
However, let's say that our app allows for a maximum radius of 10km, and half of the connected users has its setting to a 1km radius.
This means that all posts outside of that 2km radius will be multiplexed to these users unnecessarily, and will just be dropped without having any further use.
We should also take into account the scalability of this approach. For every geohash that either producer or consumer needs, another channel will be created.
It is definitely more expensive to have an app that requires topics based on geohashes worldwide, than an app that requires only theme-based topics.
That is, on world-wide adoption, the number of topics increases dramatically, hence will the price.
Another consideration is that our app requires an additional number of channels:
By geohash and group: Our app allows the possibility to create geolocation based groups (which would be the equivalent of Twitter like #hashtags).
By place
By followed users (premium feature)
There are a few optimistic considerations to this approach despite:
Streaming is only required when the newsfeed is active:
when the user has a browser window open with our website +
when the user is on a mobile device, and actively has the related feed open
Further optimisation can be done, e.g. only start streaming as from 10
to 20 seconds after refresh of the feed
Streaming by place / followed users may have high traffic depending on current activity, but many place channels will be idle as well
A very important note in this regard is how Ably bills its consumers, which can be used to our full advantage:
A channel is opened when any of the following happens:
A message is published on the channel via REST
A realtime client attaches to the channel. The channel remains active for the entire time the client is attached to that channel, so
if you connect to Ably, attach to a channel, and publish a message but
never detach the channel, the channel will remain active for as long
as that connection remains open.
A channel that is open will automatically close when all of the
following conditions apply:
There are no more realtime clients attached to the channel At least
two minutes has passed since the last message was published. We keep
channels alive for two minutes to ensure that we can provide
continuity on the channel as part of our connection state recovery.
As an example, if you have 10,000 users, and at your busiest time of
the month there is a single spike where 500 customers establish a
realtime connection to Ably and each attach to one unique channel and
one global shared channel, the peak number of channels would be the
sum of the 500 unique channels per client and the one global shared
channel i.e. 501 peak channels. If throughout the month each of those
10,000 users connects and attaches to their own unique channel, but
not necessarily at the same time, then this does not affect your peak
channel count as peak channels is the concurrent number of channels
open at any point of time during that month.
Optimistic conclusion
The most important conclusion is that we should consider that this feature may not be as crucial as believe it is for a first version of the app.
Although Twitter, Facebook, etc offer this feature of receiving live updates (and users have grown to expect it), an initial beta of our app on a limited scale can work without, i.e. the user has to refresh in order to receive new updates.
During a first launch of the app, statistics can ba gathered to gain more insight into detailed user behaviour. This will enable us to build more solid infrastructural and financial reflections based on factual data.
Putting aside the question of Ably, Pubnub and a DIY solution, the core of the question is this:
Where is message filtering taking place?
There are three possible solution:
The Pub/Sub service.
The Server (WebSocket connection handler).
Client side (the client's device).
Since this is obviously a mobile oriented approach, client side message filtering is extremely rude, as it increases data consumption by the client while much of the data might be irrelevant.
Client side filtering will also increase battery consumption and will likely result in lower acceptance rates by clients.
This leaves pub/sub filtering (channel names / pattern matching) and server-side filtering.
Pub/Sub channel name filtering
A single pub/sub service serves a number of servers (if not all of them), making it a very expensive resource (relative to the resources we have at hand).
Using channel names to filter messages would be ideal - as long as the filtering is cheap (using exact matches with channel name hash mapping).
However, pattern matching (when subscribing to channels with inexact names, such as "users.*") is very expansive when compared to exact pattern matching.
This means that Pub/Sub channel name filtering can't be used to filter all the messages without overloading the pub/sub system.
Server side filtering
Since a server accepts WebSocket connections and bridges between the WebSocket and the pub/sub service, it's in an ideal position to filter the messages.
However, we don't want the server to process all the messages for all the clients for each connection, as this is an extreme duplication of effort.
Hybrid solution
A classic solution would divide the earth into manageable sections (1 sq. km per section will require 510.1 million unique channel names for full coverage... but I would suggest that the 70% ocean space should be neglected).
Busy sections might be subdivided (NYC might require a section per 250 sq meters rather than 1 sq kilometer).
This allows publishers to publish to exact channel names and subscribers to subscribe to exact channel names.
Publishers might need to publish to more than one channel and subscribers might need to subscribe to more than one channel, depending on their exact location and the grid's borders.
This filtering scheme will filter much, but not all.
The server node will need to look into the message, review it's exact geo-location and filter messages before deciding if they should be sent along the WebSocket connection to the client.
Why the Hybrid Solution?
This allows the system to scale with relative ease.
Since server nodes are (by design) cheaper than the pub/sub service, they could be used to handle the exact location filtering (the heavy work).
At the same time, the strength of the pub/sub system can be used to minimize the server's workload and filter the obvious mis-matches.
Pubnub vs. Ably?
I don't know. I didn't use either of them. I worked with Redis and implemented my own pub/sub solution.
I assume they are both great and it's really up to your needs.
Personally I prefer the DIY approach when it comes to customized or complex situations. IMHO, this seems like it would fall into the DIY category if I were to implement it.

phoenix channels and their relation to sockets

I need some advice about elixir/phoenix channels. I have an application that is related to venue changes and in order to reduce the amount of data sent to each client I only want each client to subscribe to the venues it cares about.
With this in mind I was thinking of going down the route of having a channel for "VenueChanges/*" and having each client subscribe to the channel several times with each venue id it cares about i.e. "VenueChanges/1", "VenueChanges/2" etc.
The venues that the client care about will change frequently which will mean a lot of joining and leaving channels.
My question is, what's the overhead of having a client join a channel lots of times. Am I correct in assuming that there would still only be one socket open and not a new socket for each of the channels joined?
Also any advice on managing the constant joining and leaving of channels from the client? Any other advice in general? If this is a bad idea what are better alternatives?
With respect to the socket question, you are correct in that you will still only have one socket per client (multiple channels are multiplexed over that one socket).
While not directly answering your consistent join/leave question, Chris McCord's post on Phoenix Channels vs Rails Action Cable has some really good data on performance best summarized by:
With Phoenix, we've shown that channels performance remains consistent
as notification demand increases, which is essential for handling
traffic spikes and avoiding overload
That said, your server hardware and deployment distribution strategy would also play a significant role in answering that concern.
Lastly, on the basis that you meant join/leaving channel topics (or "rooms" as it's termed in some places) as seen in the Chris's test with 55,000 connections:
It's important to note that Phoenix maintains the same responsiveness when broadcasting for both the 50 and 200 users per room tests.

voting algorithm in distributed systems

assume distributed systems network. Each system measures a value. There is a correct decision to be made in consensus by all systems depending on all values. communication links may drop. Is there a voting and synchronization algorithm for this case?
Examples of voting algorithm in distributed systems:
Bully algorithm (http://en.wikipedia.org/wiki/Bully_algorithm)
Chang and Roberts algorithm (http://en.wikipedia.org/wiki/Chang_and_Roberts_algorithm)
I have solved a similar problem. It is a failure detection scheme, so I'll describe it in those terms instead of the generic terms of the OP.
Clients ping our servers periodically, and after some time of no pings the client is considered dead or behind a network partition. (They are the same to us.) Because the clients can pick an arbitrary server to connect to, different servers have different views on if the client is dead or alive.
Our servers use a gossip/epidemic protocol to exchange their view of the clients with each other. This is where the logic comes that one server's data is better than another's. The nice thing about an epidemic protocol is that it is light on the network, yet will still converge.
When a decision is made (in our case, declaring that a client is dead) any of the servers has a tolerably up-to-date table of all the client's heartbeats. Any server is free to make the decision, which we do via a consensus protocol amongst themselves (Paxos or Raft). Note that the server may be wrong with its decision—but it's unlikely that it doesn't have a somewhat up-to-date table but still run a successful Paxos round.

APNS - what is the cost for sending out a message?

Do the carriers (say AT&T) charge a fee for sending messages through APNS? If so, where can I find the pricing details?
As far as I'm aware there are no costs to the sender... The only possible costs would be on the customer's side.. if they do not have an all inclusive data plan or if they have gone over their data limits. But the notifications are absolutely tiny in size data wise.. so that really shouldn't be an issue.
So basically it's sent as data and not through the cellular networks.

Low-latency, large-scale message queuing

I'm going through a bit of a re-think of large-scale multiplayer games in the age of Facebook applications and cloud computing.
Suppose I were to build something on top of existing open protocols, and I want to serve 1,000,000 simultaneous players, just to scope the problem.
Suppose each player has an incoming message queue (for chat and whatnot), and on average one more incoming message queue (guilds, zones, instances, auction, ...) so we have 2,000,000 queues. A player will listen to 1-10 queues at a time. Each queue will have on average maybe 1 message per second, but certain queues will have much higher rate and higher number of listeners (say, a "entity location" queue for a level instance). Let's assume no more than 100 milliseconds of system queuing latency, which is OK for mildly action-oriented games (but not games like Quake or Unreal Tournament).
From other systems, I know that serving 10,000 users on a single 1U or blade box is a reasonable expectation (assuming there's nothing else expensive going on, like physics simulation or whatnot).
So, with a crossbar cluster system, where clients connect to connection gateways, which in turn connect to message queue servers, we'd get 10,000 users per gateway with 100 gateway machines, and 20,000 message queues per queue server with 100 queue machines. Again, just for general scoping. The number of connections on each MQ machine would be tiny: about 100, to talk to each of the gateways. The number of connections on the gateways would be alot higher: 10,100 for the clients + connections to all the queue servers. (On top of this, add some connections for game world simulation servers or whatnot, but I'm trying to keep that separate for now)
If I didn't want to build this from scratch, I'd have to use some messaging and/or queuing infrastructure that exists. The two open protocols I can find are AMQP and XMPP. The intended use of XMPP is a little more like what this game system would need, but the overhead is quite noticeable (XML, plus the verbose presence data, plus various other channels that have to be built on top). The actual data model of AMQP is closer to what I describe above, but all the users seem to be large, enterprise-type corporations, and the workloads seem to be workflow related, not real-time game update related.
Does anyone have any daytime experience with these technologies, or implementations thereof, that you can share?
#MSalters
Re 'message queue':
RabbitMQ's default operation is exactly what you describe: transient pubsub. But with TCP instead of UDP.
If you want guaranteed eventual delivery and other persistence and recovery features, then you CAN have that too - it's an option. That's the whole point of RabbitMQ and AMQP -- you can have lots of behaviours with just one message delivery system.
The model you describe is the DEFAULT behaviour, which is transient, "fire and forget", and routing messages to wherever the recipients are. People use RabbitMQ to do multicast discovery on EC2 for just that reason. You can get UDP type behaviours over unicast TCP pubsub. Neat, huh?
Re UDP:
I am not sure if UDP would be useful here. If you turn off Nagling then RabbitMQ single message roundtrip latency (client-broker-client) has been measured at 250-300 microseconds. See here for a comparison with Windows latency (which was a bit higher) http://old.nabble.com/High%28er%29-latency-with-1.5.1--p21663105.html
I cannot think of many multiplayer games that need roundtrip latency lower than 300 microseconds. You could get below 300us with TCP. TCP windowing is more expensive than raw UDP, but if you use UDP to go faster, and add a custom loss-recovery or seqno/ack/resend manager then that may slow you down again. It all depends on your use case. If you really really really need to use UDP and lazy acks and so on, then you could strip out RabbitMQ's TCP and probably pull that off.
I hope this helps clarify why I recommended RabbitMQ for Jon's use case.
I am building such a system now, actually.
I have done a fair amount of evaluation of several MQs, including RabbitMQ, Qpid, and ZeroMQ. The latency and throughput of any of those are more than adequate for this type of application. What is not good, however, is queue creation time in the midst of half a million queues or more. Qpid in particular degrades quite severely after a few thousand queues. To circumvent that problem, you will typically have to create your own routing mechanisms (smaller number of total queues, and consumers on those queues are getting messages that they don't have an interest in).
My current system will probably use ZeroMQ, but in a fairly limited way, inside the cluster. Connections from clients are handled with a custom sim. daemon that I built using libev and is entirely single-threaded (and is showing very good scaling -- it should be able to handle 50,000 connections on one box without any problems -- our sim. tick rate is quite low though, and there are no physics).
XML (and therefore XMPP) is very much not suited to this, as you'll peg the CPU processing XML long before you become bound on I/O, which isn't what you want. We're using Google Protocol Buffers, at the moment, and those seem well suited to our particular needs. We're also using TCP for the client connections. I have had experience using both UDP and TCP for this in the past, and as pointed out by others, UDP does have some advantage, but it's slightly more difficult to work with.
Hopefully when we're a little closer to launch, I'll be able to share more details.
Jon, this sounds like an ideal use case for AMQP and RabbitMQ.
I am not sure why you say that AMQP users are all large enterprise-type corporations. More than half of our customers are in the 'web' space ranging from huge to tiny companies. Lots of games, betting systems, chat systems, twittery type systems, and cloud computing infras have been built out of RabbitMQ. There are even mobile phone applications. Workflows are just one of many use cases.
We try to keep track of what is going on here:
http://www.rabbitmq.com/how.html (make sure you click through to the lists of use cases on del.icio.us too!)
Please do take a look. We are here to help. Feel free to email us at info#rabbitmq.com or hit me on twitter (#monadic).
My experience was with a non-open alternative, BizTalk. The most painful lesson we learnt is that these complex systems are NOT fast. And as you figured from the hardware requirements, that translates directly into significant costs.
For that reason, don't even go near XML for the core interfaces. Your server cluster will be parsing 2 million messages per second. That could easily be 2-20 GB/sec of XML! However, most messages will be for a few queues, while most queues are in fact low-traffic.
Therefore, design your architecture so that it's easy to start with COTS queue servers and then move each queue (type) to a custom queue server when a bottleneck is identified.
Also, for similar reasons, don't assume that a message queue architecture is the best for all comminication needs your application has. Take your "entity location in an instance" example. This is a classic case where you don't want guaranteed message delivery. The reason that you need to share this information is because it changes all the time. So, if a message is lost, you don't want to spend time recovering it. You'd only send the old locatiom of the affected entity. Instead, you'd want to send the current location of that entity. Technology-wise this means you want UDP, not TCP and a custom loss-recovery mechanism.
FWIW, for cases where intermediate results are not important (like positioning info) Qpid has a "last-value queue" that can deliver only the most recent value to a subscriber.

Resources