A few years back, researchers announced that they had completed a brute-force comprehensive solution to checkers.
I have been interested in another similar game that should have fewer states, but is still quite impractical to run a complete solver on in any reasonable time frame. I would still like to make an attempt, as even a partial solution could give valuable information.
Conceptually I would like to have a database of game states that has every known position, as well as its succeeding positions. One or more clients can grab unexplored states from the database, calculate possible moves, and insert the new states into the database. Once an endgame state is found, all states leading up to it can be updated with the minimax information to build a decision trees. If intelligent decisions are made to pick probable branches to explore, I can build information for the most important branches, and then gradually build up to completion over time.
Ignoring the merits of this idea, or the feasability of it, what is the best way to implement such a database? I made a quick prototype in sql server that stored a string representation of each state. It worked, but my solver client ran very very slow, as it puled out one state at a time and calculated all moves. I feel like I need to do larger chunks in memory, but the search space is definitely too large to store it all in memory at once.
Is there a database system better suited to this kind of job? I will be doing many many inserts, a lot of reads (to check if states (or equivalent states) already exist), and very few updates.
Also, how can I parallelize it so that many clients can work on solving different branches without duplicating too much work. I'm thinking something along the lines of a program that checks out an assignment, generates a few million states, and submits it back to be integrated into the main database. I'm just not sure if something like that will work well, or if there is prior work on methods to do that kind of thing as well.
In order to solve a game, what you really need to know per a state in your database is what is its game-theoretic value, i.e. if it's win for the player whose turn it is to move, or loss, or forced draw. You need two bits to encode this information per a state.
You then find as compact encoding as possible for that set of game states for which you want to build your end-game database; let's say your encoding takes 20 bits. It's then enough to have an array of 221 bits on your hard disk, i.e. 213 bytes. When you analyze an end-game position, you first check if the corresponding value is already set in the database; if not, calculate all its successors, calculate their game-theoretic values recursively, and then calculate using min/max the game-theoretic value of the original node and store in database. (Note: if you store win/loss/draw data in two bits, you have one bit pattern left to denote 'not known'; e.g. 00=not known, 11 = draw, 10 = player to move wins, 01 = player to move loses).
For example, consider tic-tac-toe. There are nine squares; every one can be empty, "X" or "O". This naive analysis gives you 39 = 214.26 = 15 bits per state, so you would have an array of 216 bits.
You undoubtedly want a task queue service of some sort, such as RabbitMQ - probably in conjunction with a database which can store the data once you've calculated it. Alternately, you could use a hosted service like Amazon's SQS. The client would consume an item from the queue, generate the successors, and enqueue those, as well as adding the outcome of the item it just consumed to the queue. If the state is an end-state, it can propagate scoring information up to parent elements by consulting the database.
Two caveats to bear in mind:
The number of items in the queue will likely grow exponentially as you explore the tree, with each work item causing several more to be enqueued. Be prepared for a very long queue.
Depending on your game, it may be possible for there to be multiple paths to the same game state. You'll need to check for and eliminate duplicates, and your database will need to be structured so that it's a graph (possibly with cycles!), not a tree.
The first thing that popped into my mind is the Linda-style of a shared 'whiteboard', where different processes can consume 'problems' off the whiteboard, add new problems to the whiteboard, and add 'solutions' to the whiteboard.
Perhaps the Cassandra project is the more modern version of Linda.
There have been many attempts to parallelize problems across distributed computer systems; Folding#Home provides a framework that executes binary blob 'cores' to solve protein folding problems. Distributed.net might have started the modern incarnation of distributed problem solving, and might have clients that you can start from.
Related
I am building a simulation in which items (like chess pieces) move on a discrete set of positions that do not follow a sequence (like positions on a chessboard) according to a schedule.
Each position can hold only one item at any given time. The schedule could ask multiple items to move at the same time. If the destination position is occupied, the scheduled movement is cancelled.
Here is the question: if item A and item B, originally situated at position 1 and position 2 respectively, are scheduled to move simultaneously to their next positions position 2 and position 3, how do I make sure that item A gets to position 2, hopefully in an efficient design?
The reason to ask this question is that naively I would check whether position 2 is being occupied for item 1 to move into. If the check happens before item B is moved out of the way, item 1 would not move while in fact it should. Because the positions do not follow a sequence, it is not obvious which one to check first. You could imagine things gets messy if many items want to move at the same time. In the extreme case, a full chessboard of items should be allowed to move/rearrange themselves but the naive check may not be able to facilitate that.
Is there a common practice to handle such "nonexistent collision"? Ideas and references are all welcomed.
Two researchers, Ahmed Al Rowaei and Arnold Buss, published a paper in 2010 investigating the impact that using discrete time steps has on model accuracy/fidelity when the real-world system is event-based. There was also some follow-on work in 2011 with their colleague Stephen Lieberman. A major finding was that if you use time stepped models, order of execution matters and can cause the models to deviate from real-world behaviors in significant ways. Time-stepped models generally require you to introduce tie-breaking logic which doesn't exist in the real system. Logic that is needed for the model but doesn't exist in reality is called a "modeling artifact," and can lead to increased model complexity and inaccuracies. Systematic collision resolution schemes can lead to systematic biases.
Their recommendation was to build models based on continuous time. Events are scheduled using the actual (continuous) event times, which determine the order of event execution as in the real-world system. This occasionally (but rarely) requires priority tie breaking based on event type, so that (for example) departure events occur before arrival events if both were to occur at the exact same time.
If you insist on sticking with time-stepped models, a different strategy is to use two or more passes at each time step. The first pass lays out the desired state transitions and identifies potential conflicts, the last pass applies the actual transitions after conflicts have been resolved. The resolution process might be do-able in the initial setup pass, or may require additional passes if it's sufficiently complex.
I had some interviews recently and it's quite normal to be asked some scale problems.
For example, you have a long list of words(dict) and list of characters as the inputs, design an algorithm to find out a shortest word which in dict contains all the chars in the char list. Then the interviewer asked how to scale your algorithm into multiple machines.
Another example is you have been designed a traffic light control system for an intersection in a city. How do you scale this control system to the whole city which has many intersections.
I always have no idea about this kind of "scale" problems, welcome any suggestions and comments.
Your first question is completely different from your second question. In fact the control of traffic lights in cities is a local operation. There are boxes nearby that you can tune and optical sensor on top of the light that detects waiting cars. I guess if you need to optimize for some objective function of flow, you can route information to a server process, then it can become how to scale this server process over multiple machines.
I am no expert in design of distributed algorithm, which spans a whole field of research. But the questions in undergrad interviews usually are not that specialized. After all they are not interviewing a graduate student specializing in those fields. Take your first question as an example, it is quite generic indeed.
Normally these questions involve multiple data structures (several lists and hashtables) interacting (joining, iterating, etc) to solve a problem. Once you have worked out a basic solution, scaling is basically copying that solution on many machines and running them with partitions of the input at the same time. (Of course, in many cases this is difficult if not impossible, but interview questions won't be that hard)
That is, you have many identical workers splitting the input workload and work at the same time, but those workers are processes in different machines. That brings the problem of communication protocol and network latency etc, but we will ignore these to get to the basics.
The most common way to scale is let the workers hold copies of smaller data structures and have them split the larger data structures as workload. In your example (first question), the list of characters is small in size, so you would give each worker a copy of the list, and a portion of the dictionary to work on with the list. Notice that the other way around won't work, because each worker holding a dictionary will consume a large amount of memory in total, and it won't save you anything scaling up.
If your problem gets larger, then you may need more layer of splitting, which also implies you need a way of combining the outputs from the workers taking in the split input. This is the general concept and motivation for the MapReduce framework and its derivatives.
Hope it helps...
For the first question, how to search words that contain all the char in the char list that can run on the same time on the different machine. (Not yet the shortest). I will do it with map-reduce as the base.
First, this problem is actually can run on different machine at the same time. This is because for each word in the database, you can check it on another machine (so to check another word, you didn't have to wait for the previous word or the next word, you can literally send each word to different computer to be checked).
Using map-reduce, you can map each word as a value and then check it if it contain every char in the char list.
Map(Word, keyout, valueout){
//Word comes from dbase, keyout & valueout is input for Reduce
if(check if word contain all char){
sharedOutput(Key, Word)//Basically, you send the word to a shared file.
//The output shared file, should be managed by the 'said like' hadoop
}
}
After this Map running, you get all the Word that you want from the database locate in shared file. As for the reduce step, you can actually used some simple step to reduce it based on it length. And tada, you get the shortest one.
As for the second question, multi threading come to my mind. It's actually a problem that not relate to each other. I mean each intersection has its own timer right? So to be able handle tons of intersection, you should use multi threading.
The simple term will be using each core in the processor to control each intersection. Rather then go loop through all intersection on by one. You can alocate them in each core so that the process will be faster.
I am working on a project that involves many clients connecting to a server(servers if need be) that contains a bunch of graph info (node attributes and edges). They will have the option to introduce a new node or edge anytime they want and then request some information from the graph as a whole (shortest distance between two nodes, graph coloring, etc).
This is obviously quite easy to develop the naive algorithm for, but then I am trying to learn to scale this so that it can handle many users updating the graph at the same time, many users requesting information from the graph, and the possibility of handling a very large (500k +) nodes and possibly a very large number of edges as well.
The challenges I can foresee:
with a constantly updating graph, I need to process the whole graph every time someone requests information...which will increase computation time and latency quite a bit
with a very large graph, the computation time and latency will obviously be a lot higher (I read that this was remedied by some companies by batch processing a ton of results and storing them with an index for later use...but then since my graph is being constantly updated and users want the most up to date info, this is not a viable solution)
a large number of users requesting information which will be quite a load on the servers since it has to process the graph that many times
How do I start facing these challenges? I looked at hadoop and spark, but they seem have high latency solutions (with batch processing) or solutions that address problems where the graph is not constantly changing.
I had the idea of maybe processing different parts of the graph and indexing them, then keeping track of where the graph is updated and re-process that section of the graph (a kind of distributed dynamic programming approach), but im not sure how feasible that is.
Thanks!
How do I start facing these challenges?
I'm going to answer this question, because it's the important one. You've enumerated a number of valid concerns, all of which you'll need to deal with and none of which I'll address directly.
In order to start, you need to finish defining your semantics. You might think you're done, but you're not. When you say "users want the most up to date info", does "up to date" mean
"everything in the past", which leads to total serialization of each transaction to the graph, so that answers reflect every possible piece of information?
Or "everything transacted more than X seconds ago", which leads to partial serialization, which multiple database states in the present that are progressively serialized into the past?
If 1. is required, you may well have unavoidable hot spots in your code, depending on the application. You have immediate information for when to roll back a transaction because it of inconsistency.
If 2. is acceptable, you have the possibility for much better performance. There are tradeoffs, though. You'll have situations where you have to roll back a transaction after initial acceptance.
Once you've answered this question, you've started facing your challenges and, I assume, will have further questions.
I don't know much about graphs, but I do understand a bit of networking.
One rule I try to keep in mind is... don't do work on the server side if you can get the client to do it.
All your server needs to do is maintain the raw data, serve raw data to clients, and notify connected clients when data changes.
The clients can have their own copy of raw data and then generate calculations/visualizations based on what they know and the updates they receive.
Clients only need to know if there are new records or if old records have changed.
If, for some reason, you ABSOLUTELY have to process data server side and send it to the client (for example, client is 3rd party software, not something you have control over and it expects processed data, not raw data), THEN, you do have a bit of an issue, so get a bad ass server... or 3 or 30. In this case, I would have to know exactly what the data is and how it's being processed in order to make any kind of suggestions on scaled configuration.
I'm developing a game which features a sizeable square 2d playing area. The gaming area is tileless with bounded sides (no wrapping around). I am trying to figure out how I can best divide up this world to increase the performance of collision detection. Rather than checking each entity for collision with all other entities I want to only check nearby entities for collision and obstacle avoidance.
I have a few special concerns for this game world...
I want to be able to be able to use a large number of entities in the game world at once. However, a % of entities won't collide with entities of the same type. For example projectiles won't collide with other projectiles.
I want to be able to use a large range of entity sizes. I want there to be a very large size difference between the smallest entities and the largest.
There are very few static or non-moving entities in the game world.
I'm interested in using something similar to what's described in the answer here: Quadtree vs Red-Black tree for a game in C++?
My concern is how well will a tree subdivision of the world be able to handle large size differences in entities? To divide the world up enough for the smaller entities the larger ones will need to occupy a large number of regions and I'm concerned about how that will affect the performance of the system.
My other major concern is how to properly keep the list of occupied areas up to date. Since there's a lot of moving entities, and some very large ones, it seems like dividing the world up will create a significant amount of overhead for keeping track of which entities occupy which regions.
I'm mostly looking for any good algorithms or ideas that will help reduce the number collision detection and obstacle avoidance calculations.
If I were you I'd start off by implementing a simple BSP (binary space partition) tree. Since you are working in 2D, bound box checks are really fast. You basically need three classes: CBspTree, CBspNode and CBspCut (not really needed)
CBspTree has one root node instance of class CBspNode
CBspNode has an instance of CBspCut
CBspCut symbolize how you cut a set in two disjoint sets. This can neatly be solved by introducing polymorphism (e.g. CBspCutX or CBspCutY or some other cutting line). CBspCut also has two CBspNode
The interface towards the divided world will be through the tree class and it can be a really good idea to create one more layer on top of that, in case you would like to replace the BSP solution with e.g. a quad tree. Once you're getting the hang of it. But in my experience, a BSP will do just fine.
There are different strategies of how to store your items in the tree. What I mean by that is that you can choose to have e.g. some kind of container in each node that contains references to the objects occuping that area. This means though (as you are asking yourself) that large items will occupy many leaves, i.e. there will be many references to large objects and very small items will show up at single leaves.
In my experience this doesn't have that large impact. Of course it matters, but you'd have to do some testing to check if it's really an issue or not. You would be able to get around this by simply leaving those items at branched nodes in the tree, i.e. you will not store them on "leaf level". This means you will find those objects quick while traversing down the tree.
When it comes to your first question. If you only are going to use this subdivision for collision testing and nothing else, I suggest that things that can never collide never are inserted into the tree. A missile for example as you say, can't collide with another missile. Which would mean that you dont even have to store the missile in the tree.
However, you might want to use the bsp for other things as well, you didn't specify that but keep that in mind (for picking objects with e.g. the mouse). Otherwise I propose that you store everything in the bsp, and resolve the collision later on. Just ask the bsp of a list of objects in a certain area to get a limited set of possible collision candidates and perform the check after that (assuming objects know what they can collide with, or some other external mechanism).
If you want to speed up things, you also need to take care of merge and split, i.e. when things are removed from the tree, a lot of nodes will become empty or the number of items below some node level will decrease below some merge threshold. Then you want to merge two subtrees into one node containing all items. Splitting happens when you insert items into the world. So when the number of items exceed some splitting threshold you introduce a new cut, which splits the world in two. These merge and split thresholds should be two constants that you can use to tune the efficiency of the tree.
Merge and split are mainly used to keep the tree balanced and to make sure that it works as efficient as it can according to its specifications. This is really what you need to worry about. Moving things from one location and thus updating the tree is imo fast. But when it comes to merging and splitting it might become expensive if you do it too often.
This can be avoided by introducing some kind of lazy merge and split system, i.e. you have some kind of dirty flagging or modify count. Batch up all operations that can be batched, i.e. moving 10 objects and inserting 5 might be one batch. Once that batch of operations is finished, you check if the tree is dirty and then you do the needed merge and/or split operations.
Post some comments if you want me to explain further.
Cheers !
Edit
There are many things that can be optimized in the tree. But as you know, premature optimization is the root to all evil. So start off simple. For example, you might create some generic callback system that you can use while traversing the tree. This way you dont have to query the tree to get a list of objects that matched the bound box "question", instead you can just traverse down the tree and execute that call back each time you hit something. "If this bound box I'm providing intersects you, then execute this callback with these parameters"
You most definitely want to check this list of collision detection resources from gamedev.net out. It's full of resources with game development conventions.
For other than collision detection only, check their entire list of articles and resources.
My concern is how well will a tree
subdivision of the world be able to
handle large size differences in
entities? To divide the world up
enough for the smaller entities the
larger ones will need to occupy a
large number of regions and I'm
concerned about how that will affect
the performance of the system.
Use a quad tree. For objects that exist in multiple areas you have a few options:
Store the object in both branches, all the way down. Everything ends up in leaf nodes but you may end up with a significant number of extra pointers. May be appropriate for static things.
Split the object on the zone border and insert each part in their respective locations. Creates a lot of pain and isn't well defined for a lot of objects.
Store the object at the lowest point in the tree you can. Sets of objects now exist in leaf and non-leaf nodes, but each object has one pointer to it in the tree. Probably best for objects that are going to move.
By the way, the reason you're using a quad tree is because it's really really easy to work with. You don't have any heuristic based creation like you might with some BSP implementations. It's simple and it gets the job done.
My other major concern is how to
properly keep the list of occupied
areas up to date. Since there's a lot
of moving entities, and some very
large ones, it seems like dividing the
world up will create a significant
amount of overhead for keeping track
of which entities occupy which
regions.
There will be overhead to keeping your entities in the correct spots in the tree every time they move, yes, and it can be significant. But the whole point is that you're doing much much less work in your collision code. Even though you're adding some overhead with the tree traversal and update it should be much smaller than the overhead you just removed by using the tree at all.
Obviously depending on the number of objects, size of game world, etc etc the trade off might not be worth it. Usually it turns out to be a win, but it's hard to know without doing it.
There are lots of approaches. I'd recommend settings some specific goals (e.g., x collision tests per second with a ratio of y between smallest to largest entities), and do some prototyping to find the simplest approach that achieves those goals. You might be surprised how little work you have to do to get what you need. (Or it might be a ton of work, depending on your particulars.)
Many acceleration structures (e.g., a good BSP) can take a while to set up and thus are generally inappropriate for rapid animation.
There's a lot of literature out there on this topic, so spend some time searching and researching to come up with a list candidate approaches. Mock them up and profile.
I'd be tempted just to overlay a coarse grid over the play area to form a 2D hash. If the grid is at least the size of the largest entity then you only ever have 9 grid squares to check for collisions and it's a lot simpler than managing quad-trees or arbitrary BSP trees. The overhead of determining which coarse grid square you're in is typically just 2 arithmetic operations and when a change is detected the grid just has to remove one reference/ID/pointer from one square's list and add the same to another square.
Further gains can be had from keeping the projectiles out of the grid/tree/etc lookup system - since you can quickly determine where the projectile would be in the grid, you know which grid squares to query for potential collidees. If you check collisions against the environment for each projectile in turn, there's no need for the other entities to then check for collisions against the projectiles in reverse.
I'm trying to write a VB6 program (for a laugh) that will compute event times + the critical path JUST BASED ON A PRECEDENCE TABLE. I want my students to use it as a checking mechanism ie. to do everything without drawing the activity network. I'm happy that I can do all this once I've got start and finish events for each activity. How do I allocate events without drawing the network. Everything I come up with works for a specific example and then doesn't work for another one. I need a more general algorithm and it's driving me mental. Help!
I am not a professional programmer - I do this in my spare time to create teaching resources - simple English would really be appreciated.
Okay, so you have a precedence table, which I take to be a table of pairs like
A→B
B→C
and so forth, for activities {A,B,C}. Each of the activities also has a duration and (maybe) a distribution on the duration, so you know A takes 3 days, B takes 2, and so on. This would be interpreted as "A must be finished before B which must be finished before C".
Right?
Now, the obvious thing to do is construct the graph of activities and arrows -- in fact, you basically have the graph there in incidence-list form. The critical part is the greatest-weight (biggest sum of times) path. This is a longest-path problem, and assuming your chart isn't cyclic (which would be bad anyway) it can be solved with topological sort or transitive closure.