Could someone please explain what exactly recursion is (and how it works in Ruby, if that's not too much to ask for). I came across a lengthy code snippet relying on recursion and it confused me (I lost it now, and it's not entirely relevant).
A recursive function/method calls itself. For a recursive algorithm to terminate you need a base case (e.g. a condition where the function does not call itself recursively) and you also need to make sure that you get closer to that base case in each recursive call. Let's look at a very simple example:
def countdown(n)
return if n.zero? # base case
puts n
countdown(n-1) # getting closer to base case
end
countdown(5)
5
4
3
2
1
Some problems can be very elegantly expressed with recursion, e.g a lot of mathematical functions are described in a recursive way.
To understand recursion, you first need to understand recursion.
Now, on a serious note, a recursive function is one that calls itself. One classic example of this construct is the fibonacci sequence:
def fib(n)
return n if (0..1).include? n
fib(n-1) + fib(n-2) if n > 1
end
Using recursive functions gives you great power, but also comes with a lot of responsability (pun intended) and it presents some risk. For instance, you could end up with stack overflows (I'm on a roll) if your recursiveness is too big :-)
Ruby on Rails example:
Recursion will generate array of parents parents
a/m/document.rb
class Document < ActiveRecord::Base
belongs_to :parent, class_name: 'Document'
def self.get_ancestors(who)
#tree ||= []
# #tree is instance variable of Document class object not document instance object
# so: Document.get_instance_variable('#tree')
if who.parent.nil?
return #tree
else
#tree << who.parent
get_ancestors(who.parent)
end
end
def ancestors
#ancestors ||= Document.get_ancestors(self)
end
end
console:
d = Document.last
d.ancestors.collect(&:id)
# => [570, 569, 568]
https://gist.github.com/equivalent/5063770
Typically recursion is about method calling themselves, but maybe what you encountered were recursive structures, i.e. objects referring to themselves. Ruby 1.9 handles these really well:
h = {foo: 42, bar: 666}
parent = {child: {foo: 42, bar: 666}}
h[:parent] = parent
h.inspect # => {:foo=>42, :bar=>666, :parent=>{:child=>{...}}}
x = []
y = [x]
x << y
x.inspect # => [[[...]]]
x == [x] # => true
I find that last line is quite wicked; I blogged about this kind of issues with comparison of recursive structures a couple of years ago.
I just wanted to add to the answers in here that every recursion algorithm is composed of two things:
base case
recursive case
Base case is what tells your algorithm to break out so it does not continue to infinity or your memory runs out.
Recursive case is the part that ensures to call itself but shaving or shrinking the arguments you are calling it with.
Related
I was trying to make my bubble sort shorter and I came up with this
class Array
def bubble_sort!(&block)
block = Proc.new { |a, b| a <=> b } unless block_given?
sorted = each_index.each_cons(2).none? do |i, next_i|
if block.call(self[i], self[next_i]) == 1
self[i], self[next_i] = self[next_i], self[i]
end
end until sorted
self
end
def bubble_sort(&prc)
self.dup.bubble_sort!(&prc)
end
end
I don't particularly like the thing with sorted = --sort code-- until sorted.
I just want to run the each_index.each_cons(s).none? code until it returns true. It's a weird situation that I use until, but the condition is a code I want to run. Any way, my try seems awkward, and ruby usually has a nice concise way of putting things. Is there a better way to do this?
This is just my opinion
have you ever read the ruby source code of each and map to understand what they do?
No, because they have a clear task expressed from the method name and if you test them, they will take an object, some parameters and then return a value to you.
For example if I want to test the String method split()
s = "a new string"
s.split("new")
=> ["a ", " string"]
Do you know if .split() takes a block?
It is one of the core ruby methods, but to call it I don't pass a block 90% of the times, I can understand what it does from the name .split() and from the return value
Focus on the objects you are using, the task the methods should accomplish and their return values.
I read your code and I can not refactor it, I hardly can understand what the code does.
I decided to write down some points, with possibility to follow up:
1) do not use the proc for now, first get the Object Oriented code clean.
2) split bubble_sort! into several methods, each one with a clear task
def ordered_inverted! (bubble_sort!), def invert_values, maybe perform a invert_values until sorted, check if existing methods already perform this sorting functionality
3) write specs for those methods, tdd will push you to keep methods simple and easy to test
4) If those methods do not belong to the Array class, include them in the appropriate class, sometimes overly complicated methods are just performing simple String operations.
5) Reading books about refactoring may actually help more then trying to force the usage of proc and functional programming when not necessary.
After looking into it further I'm fairly sure the best solution is
loop do
break if condition
end
Either that or the way I have it in the question, but I think the loop do version is clearer.
Edit:
Ha, a couple weeks later after I settled for the loop do solution, I stumbled into a better one. You can just use a while or until loop with an empty block like this:
while condition; end
until condition; end
So the bubble sort example in the question can be written like this
class Array
def bubble_sort!(&block)
block = Proc.new { |a, b| a <=> b } unless block_given?
until (each_index.each_cons(2).none? do |i, next_i|
if block.call(self[i], self[next_i]) == 1
self[i], self[next_i] = self[next_i], self[i]
end
end); end
self
end
def bubble_sort(&prc)
self.dup.bubble_sort!(&prc)
end
end
Why is each loop preferred over for loop in Ruby? Is there a difference in time complexity or are they just syntactically different?
Yes, these are two different ways of iterating over, But hope this calculation helps.
require 'benchmark'
a = Array( 1..100000000 )
sum = 0
Benchmark.realtime {
a.each { |x| sum += x }
}
This takes 5.866932 sec
a = Array( 1..100000000 )
sum = 0
Benchmark.realtime {
for x in a
sum += x
end
}
This takes 6.146521 sec.
Though its not a right way to do the benchmarking, there are some other constraints too. But on a single machine, each seems to be a bit faster than for.
The variable referencing an item in iteration is temporary and does not have significance outside of the iteration. It is better if it is hidden from outside of the iteration. With external iterators, such variable is located outside of the iteration block. In the following, e is useful only within do ... end, but is separated from the block, and written outside of it; it does not look easy to a programmer:
for e in [:foo, :bar] do
...
end
With internal iterators, the block variable is defined right inside the block, where it is used. It is easier to read:
[:foo, :bar].each do |e|
...
end
This visibility issue is not just for a programmer. With respect to visibility in the sense of scope, the variable for an external iterator is accessible outside of the iteration:
for e in [:foo] do; end
e # => :foo
whereas in internal iterator, a block variable is invisible from outside:
[:foo].each do |e|; end
e # => undefined local variable or method `e'
The latter is better from the point of view of encapsulation.
When you want to nest the loops, the order of variables would be somewhat backwards with external iterators:
for a in [[:foo, :bar]] do
for e in a do
...
end
end
but with internal iterators, the order is more straightforward:
[[:foo, :bar]].each do |a|
a.each do |e|
...
end
end
With external iterators, you can only use hard-coded Ruby syntax, and you also have to remember the matching between the keyword and the method that is internally called (for calls each), but for internal iterators, you can define your own, which gives flexibility.
each is the Ruby Way. Implements the Iterator Pattern that has decoupling benefits.
Check also this: "for" vs "each" in Ruby
An interesting question. There are several ways of looping in Ruby. I have noted that there is a design principle in Ruby, that when there are multiple ways of doing the same, there are usually subtle differences between them, and each case has its own unique use, its own problem that it solves. So in the end you end up needing to be able to write (and not just to read) all of them.
As for the question about for loop, this is similar to my earlier question whethe for loop is a trap.
Basically there are 2 main explicit ways of looping, one is by iterators (or, more generally, blocks), such as
[1, 2, 3].each { |e| puts e * 10 }
[1, 2, 3].map { |e| e * 10 )
# etc., see Array and Enumerable documentation for more iterator methods.
Connected to this way of iterating is the class Enumerator, which you should strive to understand.
The other way is Pascal-ish looping by while, until and for loops.
for y in [1, 2, 3]
puts y
end
x = 0
while x < 3
puts x; x += 1
end
# same for until loop
Like if and unless, while and until have their tail form, such as
a = 'alligator'
a.chop! until a.chars.last == 'g'
#=> 'allig'
The third very important way of looping is implicit looping, or looping by recursion. Ruby is extremely malleable, all classes are modifiable, hooks can be set up for various events, and this can be exploited to produce most unusual ways of looping. The possibilities are so endless that I don't even know where to start talking about them. Perhaps a good place is the blog by Yusuke Endoh, a well known artist working with Ruby code as his artistic material of choice.
To demonstrate what I mean, consider this loop
class Object
def method_missing sym
s = sym.to_s
if s.chars.last == 'g' then s else eval s.chop end
end
end
alligator
#=> "allig"
Aside of readability issues, the for loop iterates in the Ruby land whereas each does it from native code, so in principle each should be more efficient when iterating all elements in an array.
Loop with each:
arr.each {|x| puts x}
Loop with for:
for i in 0..arr.length
puts arr[i]
end
In the each case we are just passing a code block to a method implemented in the machine's native code (fast code), whereas in the for case, all code must be interpreted and run taking into account all the complexity of the Ruby language.
However for is more flexible and lets you iterate in more complex ways than each does, for example, iterating with a given step.
EDIT
I didn't come across that you can step over a range by using the step() method before calling each(), so the flexibility I claimed for the for loop is actually unjustified.
I am toying around with Ruby to learn the language. Currently I'm trying to wrap my head around the concept of fibers. According to this answer, they are fairly often used for creating (infinite) external enumerators. On the other hand, this seems to overlap with the concept of so called explicit enumerators.
Say, I want to write a code snippet that fires consecutive prime numbers (yes, the following algorithm has a runtime of O(scary)). I can implement it by using fibers:
prime_fiber = Fiber.new do
primes = [2]
Fiber.yield 2
current = 1
loop do
current += 2
unless primes.find {|value| (current % value) == 0}
Fiber.yield current
primes << current
end
end
end
ARGV[0].to_i.times {print "#{prime_fiber.resume}, "}
This does not emit an enumerator object by itself, although it is not difficult to create one out of it. In contrast, I can also utilize an explicitly defined enumerator, which has the added benefit of already being an enumerator object:
prime_enum = Enumerator.new do |yielder|
primes = [2]
yielder.yield 2
current = 1
loop do
current += 2
unless primes.find {|value| (current % value) == 0}
yielder.yield current
primes << current
end
end
end
ARGV[0].to_i.times {print "#{prime_enum.next}, "}
# I could also write:
# p prime_enum.first(ARGV[0].to_i)
Both methods allow me to implement some sort of co-routines and they seem to be interchangeable to me. So when do I prefer one over the other? Is there some commonly agreed practice? I find it difficult to get all those idioms in my head, so I apologize in advance if this is considered a dumb question.
I would use Enumerator, it allows you to use take, take_while, even each if your sequence is finite. While Fiber is designed for light weight concurrency and is pretty limited as enumerator.
prime_enum.take(ARGV[0].to_i).each { |x| puts x }
or
prime_enum.take_while { |x| x < ARGV[0].to_i }.each { |x| puts x }
I'm looking for a way to do the following in Ruby in a cleaner way:
class Array
def find_index_with_offset(offset, &block)
[offset..-1].find &block
end
end
offset = array.find_index {|element| element.meets_some_criterion?}
the_object_I_want =
array.find_index_with_offset(offset+1) {|element| element.meets_another_criterion?}
So I'm searching a Ruby array for the index of some object and then I do a follow-up search to find the first object that matches some other criterion and has a higher index in the array. Is there a better way to do this?
What do I mean by cleaner: something that doesn't involve explicitly slicing the array. When you do this a couple of times, calculating the slicing indices gets messy fast. I'd like to keep operating on the original array. It's easier to understand and less error-prone.
NB. In my actual code I haven't monkey-patched Array, but I want to draw attention to the fact that I expect I'm duplicating existing functionality of Array/Enumerable
Edits
Fixed location of offset + 1 as per Mladen Jablanović's comment; rewrite error
Added explanation of 'cleaner' as per Mladen Jablanović's comment
Cleaner is here obviously subjective matter. If you aim for short, I don't think you could do better than that. If you want to be able to chain multiple such finds, or you are bothered by slicing, you can do something like this:
module Enumerable
def find_multi *procs
return nil if procs.empty?
find do |e|
if procs.first.call(e)
procs.shift
next true if procs.empty?
end
false
end
end
end
a = (1..10).to_a
p a.find_multi(lambda{|e| e % 5 == 0}, lambda{|e| e % 3 == 0}, lambda{|e| e % 4 == 0})
#=> 8
Edit: And if you're not concerned with the performance you could do something like:
array.drop_while{|element|
!element.meets_some_criterion?
}.drop(1).find{|element|
element.meets_another_criterion?
}
When programming ruby I always find myself doing this:
a = [a, b].min
This means compare a and b and store the smallest value in a. I don't like writing the code above as I have to write a twice.
I know that some non-standard dialects of C++ had an operator which did exactly this
a <?= b
Which I find very convenient. But I'm not really interested in the operator as much as I'm in the feature of avoiding repetition. I would also be happy if I could write
a.keep_max(b)
a can be a quite long variable, like my_array[indice1][indice2], and you don't want to write that twice.
I did alot of googling on this and found no result, hopefully this question will pop up and be useful for others aswell.
So, is there any non-repeitive way to express what I want in ruby?
What you would like to do is in fact not possible in ruby (see this question). I think the best you can do is
def max(*args)
args.max
end
a = max a, b
I don't understand your question. You can always do something like this ...
module Comparable
def keep_min(other)
(self <=> other) <= 0 ? self : other
end
def keep_max(other)
(self <=> other) >= 0 ? self : other
end
end
1.keep_min(2)
=> 1
1.keep_max(2)
=> 2
Well, that won't work for all objects with <=> because not all of them are implementing Comparable, so you could monkey-patch Object.
Personally I prefer clarity and tend to avoid monkey-patching. Plus, this clearly is a binary predicate, just like "+", therefore method-chaining doesn't necessarily make sense so I prefer something like this to get rid of that array syntax:
def min(*args)
args.min
end
def max(*args)
args.max
end
min(1, 2)
=> 1
max(1, 2)
=> 2
But hey, I'm also a Python developer :-)
You can define your own method for it:
class Object
def keep_max(other)
[self, other].max
end
end
a = 3
b = 7
puts a.keep_max(b)
But you should be careful defining methods on Object as it can have unpredictable behaviour (for example, if objects cannot be compared).
def keep_max(var, other, binding)
eval "#{var} = [#{var}, #{other}].max", binding
end
a = 5
b = 78
keep_max(:a, :b, binding)
puts a
#=> 78
This basically does what you want. Take a look at Change variable passed in a method