How do you do an in-place drop in Ruby - ruby

Can anybody explain why Array in Ruby doesn't have a drop! method?
Is there a way to drop or slice an array in place?

There's slice!. It can take an index (just like drop, so slice!(index) is the in-place drop you're looking for), a range, or two parameters for start and end.

You can use slice! with a range to accomplish this:
a = [1, 2, 3, 4]
a.drop(2)
=> [3, 4]
a
=> [1, 2, 3, 4]
vs
a = [1, 2, 3, 4]
a.slice!(0..1)
=> [1, 2]
a
=> [3, 4]

Related

Getting different output from manual vs. programmatic arrays

I’m getting some weird results implementing cyclic permutation on the children of a multidimensional array.
When I manually define the array e.g.
arr = [
[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]
]
the output is different from when I obtain that same array by calling a method that builds it.
I’ve compared the manual array to the generated version and they’re exactly the same (class and values, etc).
I tried writing the same algorithm in JS and encountered the same issue.
Any idea what might be going on?
def Build_array(child_arr, n)
#Creates larger array with arr as element, n times over. For example Build_array([1,2,3], 3) returns [[1,2,3], [1,2,3], [1,2,3]]
parent_arr = Array.new(4)
0.upto(n) do |i|
parent_arr[i] = child_arr
end
return parent_arr
end
def Cylce_child(arr, steps_tocycle)
# example: Cylce_child([1, 2, 3, 4, 5], 2) returns [4, 5, 1, 2, 3]
0.upto(steps_tocycle - 1) do |i|
x = arr.pop()
arr.unshift(x)
end
return arr
end
def Permute_array(parent_array, x, y, z)
#x, y, z = number of steps to cycle each child array
parent_array[0] = Cylce_child(parent_array[0], x)
parent_array[1] = Cylce_child(parent_array[1], y)
parent_array[2] = Cylce_child(parent_array[2], z)
return parent_array
end
arr = Build_array([1, 2, 3, 4, 5], 4)
# arr = [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]
puts "#{Permute_array(arr, 1, 2, 3)}"
# Line 34: When arr = Build_array([1, 2, 3, 4, 5], 4)
# Result (WRONG):
# [[5, 1, 2, 3, 4], [5, 1, 2, 3, 4], [5, 1, 2, 3, 4], [5, 1, 2, 3, 4]]
#
# Line 5: When arr = [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, # 2, 3, 4, 5]]
# Result (CORRECT):
# [[5, 1, 2, 3, 4], [4, 5, 1, 2, 3], [3, 4, 5, 1, 2], [1, 2, 3, 4, 5]]
#
The problem is in the way you build the array.
This line:
parent_arr[i] = child_arr
does not put in parent_arr[i] a copy of child_arr but a reference to it.
This means your initial array contains four references to the same child array. Later on, when the code changes parent_arr[0], it changes the same array that child_arr was referring to in the build method. And that array is also parent_arr[1] and parrent_arr[2] and so on.
A simple solution to the problem is to put in parent_arr[i] a copy of child_arr:
parent_arr[i] = Array.new(child_arr)
I see where the bug was. Added the clone method to line 8 so that it now reads:
parent_arr[i] = child_arr.clone
#Old: parent_arr[i] = child_arr
Thanks Robin, for pointing me in the right direction.
This is a fairly common mistake to make in Ruby since arrays do not contain objects per-se, but object references, which are effectively pointers to a dynamically allocated object, not the object itself.
That means this code:
Array.new(4, [ ])
Will yield an array containing four identical references to the same object, that object being the second argument.
To see what happens:
Array.new(4, [ ]).map(&:object_id)
# => => [70127689565700, 70127689565700, 70127689565700, 70127689565700]
Notice four identical object IDs. All the more obvious if you call uniq on that.
To fix this you must supply a block that yields a different object each time:
Array.new(4) { [ ] }.map(&:object_id)
# => => [70127689538260, 70127689538240, 70127689538220, 70127689538200]
Now adding to one element does not impact the others.
That being said, there's a lot of issues in your code that can be resolved by employing Ruby as it was intended (e.g. more "idiomatic" code):
def build_array(child_arr, n)
# Duplicate the object given each time to avoid referencing the same thing
# N times. Each `dup` object is independent.
Array.new(4) do
child_arr.dup
end
end
def cycle_child(arr, steps_tocycle)
# Ruby has a rotate method built-in
arr.rotate(steps_tocycle)
end
# Using varargs (*args) you can just loop over how many positions were given dynamically
def permute_array(parent_array, *args)
# Zip is great for working with two arrays in parallel, they get "zippered" together.
# Also map is what you use for transforming one array into another in a 1:1 mapping
args.zip(parent_array).map do |a, p|
# Rotate each element the right number of positions
cycle_child(p, -a)
end
end
arr = build_array([1, 2, 3, 4, 5], 4)
# => [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]
puts "#{permute_array(arr, 1, 2, 3)}"
# => [[5, 1, 2, 3, 4], [4, 5, 1, 2, 3], [3, 4, 5, 1, 2]]
A lot of these methods boil down to some very simple Ruby so they're not especially useful now, but this adapts the code as directly as possible for educational purposes.

How can you seed a first item with bufferWithCount in rx.js?

Say you do something like:
Rx.Observable.range(1, 5).bufferWithCount(2, 1).subscribe(console.log);
This returns:
[1, 2]
[2, 3]
[3, 4]
[4, 5]
[5]
I'd like for the result to look like (basically force the first value to emit):
[<userDefined>, 1]
[1, 2]
[3, 4]
etc...
How about:
Rx.Observable.range(1, 5)
// Note this value will get used for every subscription
// after it is defined.
.startWith(userDefined)
.bufferWithCount(2, 1)
.subscribe(console.log);

How can I get the next n number of elements using a Ruby enumerator?

I am trying to get the next n number of elements using a Ruby enumerator, with this:
a = [1, 2, 3, 4, 5, 6]
enum = a.each
enum.next(2) # expecting [1, 2]
enum.next(2) # expecting [3, 4]
But #next does not support that. Is there another way that I can do that?
Or shall I do?
What is the correct Ruby way to do that?
You can use take method
enum.take(2)
If you need slices of two elements, you could do:
e = enum.each_slice(2)
p e.next
#=> [1, 2]
p e.next
#=> [3, 4]
a = [1, 2, 3, 4, 5, 6]
enum = a.dup
enum.shift(2) # => [1, 2]
enum.shift(2) # => [3, 4]

How to make an array containing a duplicate of an array

I couldn't find a way to build an array such as
[ [1,2,3] , [1,2,3] , [1,2,3] , [1,2,3] , [1,2,3] ]
given [1,2,3] and the number 5. I guess there are some kind of operators on arrays, such as product of mult, but none in the doc does it. Please tell me. I missed something very simple.
Array.new(5, [1, 2, 3]) or Array.new(5) { [1, 2, 3] }
Array.new(size, default_object) creates an array with an initial size, filled with the default object you specify. Keep in mind that if you mutate any of the nested arrays, you'll mutate all of them, since each element is a reference to the same object.
array = Array.new(5, [1, 2, 3])
array.first << 4
array # => [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]
Array.new(size) { default_object } lets you create an array with separate objects.
array = Array.new(5) { [1, 2, 3] }
array.first << 4
array #=> [[1, 2, 3, 4], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]
Look up at the very top of the page you linked to, under the section entitled "Creating Arrays" for some more ways to create arrays.
Why not just use:
[[1, 2, 3]] * 5
# => [[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]
The documentation for Array.* says:
...returns a new array built by concatenating the int copies of self.
Typically we'd want to create a repeating single-level array:
[1, 2, 3] * 2
# => [1, 2, 3, 1, 2, 3]
but there's nothing to say we can't use a sub-array like I did above.
It looks like mutating one of the subarrays mutates all of them, but that may be what someone wants.
It's like Array.new(5, [1,2,3]):
foo = [[1, 2, 3]] * 2
foo[0][0] = 4
foo # => [[4, 2, 3], [4, 2, 3]]
foo = Array.new(2, [1,2,3])
foo[0][0] = 4
foo # => [[4, 2, 3], [4, 2, 3]]
A work-around, if that's not the behavior wanted is:
foo = ([[1, 2, 3]] * 2).map { |a| [*a] }
foo[0][0] = 4
foo # => [[4, 2, 3], [1, 2, 3]]
But, at that point it's not as convenient, so I'd use the default Array.new(n) {…} behavior.

How can I interweave items from two arrays?

How can I go from this:
for number in [1,2] do
puts 1+number
puts 2+number
puts 3+number
end
which will return 2,3,4 then 3,4,5 -> 2,3,4,3,4,5. This is just an example, and clearly not the real use.
Instead, I would like it to return 2,3 3,4 4,5 -> 2,3,3,4,4,5. I would like each of the puts to be iterated for each of the possible values of number; In this case 1 and 2 are the two possible values of 'number', before moving on to the next puts.
One way to do this is to create two lists, [2,3,4] and [3,4,5] and then use the zip method to combine them like [2,3,4].zip([3,4,5]) -> [2,3,3,4,4,5].
zip is good. You should also look at each_cons:
1.9.2p290 :006 > [2,3,4].each_cons(2).to_a
=> [[2, 3], [3, 4]]
1.9.2p290 :007 > [2,3,4,5,6].each_cons(2).to_a
=> [[2, 3], [3, 4], [4, 5], [5, 6]]
1.9.2p290 :008 > [2,3,4,5,6].each_cons(3).to_a
=> [[2, 3, 4], [3, 4, 5], [4, 5, 6]]
Because each_cons returns an Enumerator, you can use a block with it, as mentioned in the documentation for it, or convert it to an array using to_a like I did above. That returns the array of arrays, which can be flattened to get a single array:
[2,3,4,5].each_cons(2).to_a.flatten
=> [2, 3, 3, 4, 4, 5]
From the ri docs:
Iterates the given block for each array of consecutive elements. If no
block is given, returns an enumerator.
e.g.:
(1..10).each_cons(3) {|a| p a}
# outputs below
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]
Maybe not the most readable code but you could use inject on the first range to create an array based on the summed up second range.
(1..3).inject([]){|m,n| (1..2).each{|i| m<<n+i }; m }
=> [2, 3, 3, 4, 4, 5]
This might be a little more readable
res=[]
(1..3).each{|r1| (1..2).each{|r2| res<<r1+r2 } }
[1, 2, 3].each { |i| [1, 2].each { |y| puts i + y } }

Resources