When locally optimal solutions equal global optimal? Thinking about greedy algorithm - algorithm

Recently I've been looking at some greedy algorithm problems. I am confused about locally optimal. As you know, greedy algorithms are composed of locally optimal choices. But combining of locally optimal decisions doesn't necessarily mean globally optimal, right?
Take making change as an example: using the least number of coins to make 15¢, if we have
10¢, 5¢, and 1¢ coins then you can achieve this with one 10¢ and one 5¢. But if we add in a 12¢ coin the greedy algorithm fails as (1×12¢ + 3×1¢) uses more coins than (1×10¢ + 1×5¢).
Consider some classic greedy algorithms, e.g. Huffman, Dijkstra. In my opinion, these algorithms are successful as they have no degenerate cases which means a combination of locally optimal steps always equals global optimal. Do I understand right?
If my understanding is correct, is there a general method for checking if a greedy algorithm is optimal?
I found some discussion of greedy algorithms elsewhere on the site.
However, the problem doesn't go into too much detail.

Generally speaking, a locally optimal solution is always a global optimum whenever the problem is convex. This includes linear programming; quadratic programming with a positive definite objective; and non-linear programming with a convex objective function. (However, NLP problems tend to have a non-convex objective function.)
Heuristic search will give you a global optimum with locally optimum decisions if the heuristic function has certain properties. Consult an AI book for details on this.
In general, though, if the problem is not convex, I don't know of any methods for proving global optimality of a locally optimal solution.

There are some theorems that express problems for which greedy algorithms are optimal in terms of matroids (also:greedoids.) See this Wikipedia section for details: http://en.wikipedia.org/wiki/Matroid#Greedy_algorithms

A greedy algorithm almost never succeeds in finding the optimal solution. In the cases that it does, this is highly dependent on the problem itself. As Ted Hopp explained, with convex curves, the global optimal can be found, assuming you are to find the maximum of the objective function of course (conversely, concave curves also work if you are to minimise). Otherwise, you will almost certainly get stuck in the local optima. This assumes that you already know the objective function.
Another factor which I can think of is the neighbourhood function. Certain neighbourhoods, if large enough, will encompass both the global and local maximas, so that you can avoid the local maxima. However, you can't make the neighbourhood too large or search will be slow.
In other words, whether you find a global optimal or not with greedy algorithms is problem specific, although for most cases, you will not find the globally optimal.

You need to design a witness example where your premise that the algorithm is a global one fails. Design it according to the algorithm and the problem.
Your example of the coin change was not a valid one. Coins are designed purposely to have all the combinations possible, but not to add confusion. Your addition of 12c is not warranted and is extra.
With your addition, the problem is not coin change but a different one (even though the subject are coins, you can change the example to what you want). For this, you yourself gave a witness example to show the greedy algorithm for this problem will get stuck in a local maximum.

Related

The greedy algorithm and implementation

Hello I've just started learning greedy algorithm and I've first looked at the classic coin changing problem. I could understand the greediness (i.e., choosing locally optimal solution towards a global optimum.) in the algorithm as I am choosing the highest value of coin such that the
sum+{value of chosen coin}<=total value . Then I started to solve some greedy algorithm problem in some sites. I could solve most of the problems but couldn't figure out exactly where the greediness is applied in the problem. I coded the only solution i could think of, for the problems and got it accepted. The editorials also show the same way of solving problem but i could not understand the application of greedy paradigm in the algorithm.
Are greedy algorithms the only way of solving a particular range of problems? Or they are one way of solving problems which could be more efficient?
Could you give me pseudo codes of a same problem with and without the application of greedy paradigm?
There are lots of real life examples of greedy algorithms. One of the obvious is the coin changing problem, to make change in a certain currency, we repeatedly dispense the largest denomination, thus , to give out seventeen dollars and sixty one cents in change, we give out a ten-dollar bill, a five-dollar bill, two one-dollar bills, two quarters , one dime, and one penny. By doing this, we are guaranteed to minimize the number of bills and coins. This algorithm does not work in all monetary systems...more here
I think that there is always another way to solve a problem, but sometimes, as you've stated, it probably will be less efficient.
For example, you can always check all the options (coins permutations), store the results and choose the best, but of course the efficiency is terrible.
Hope it helps.
Greedy algorithms are just a class of algorithms that iteratively construct/improve a solution.
Imagine the most famous problem - TSP. You can formulate it as Integer Linear Programming problem and give it to an ILP solver and it will give you globally optimal solution (if it has enought time). But you could do it in a greedy way. You can construct some solution (e.g. randomly) and then look for changes (e.g. switch an order of two cities) that improve your solution and you keep doing these changes until there is no such change possible.
So the bottom line is: greedy algorithms are only a method of solving hard problems efficiently (in time, but not necessary in the quality of solution), but there are other classes of algorithms for solving such problems.
For coins, greedy algorithm is also the optimal one, therefore the "greediness" is not as visible as with some other problems.
In some cases you prefer solution, which is not the best one, but you can compute it much faster (computing the real best solution can takes years for example).
Then you choose heuristic, that should give you the best results - based on average input data, its structure and what you want to want to accomplish.
On wikipedia, there is good solution on finding the biggest sum of numbers in tree
Imagine that you have for example 2^1000 nodes in this tree. To find optimal solution, you have to visit each node once. Personal computer today is not able to do this in your lifetime, therefore you want some heuristic. Greedy alghoritm however find solution in just 1000 steps (which does not take more than one milisecond)

What is the difference between dynamic programming and greedy approach?

What is the main difference between dynamic programming and greedy approach in terms of usage?
As far as I understood, the greedy approach sometimes gives an optimal solution; in other cases, the dynamic programming approach gives an optimal solution.
Are there any particular conditions which must be met in order to use one approach (or the other) to obtain an optimal solution?
Based on Wikipedia's articles.
Greedy Approach
A greedy algorithm is an algorithm that follows the problem solving heuristic of making
the locally optimal choice at each stage with the hope of finding a global optimum. In
many problems, a greedy strategy does not in general produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions that approximate a global optimal solution in a reasonable time.
We can make whatever choice seems best at the moment and then solve the subproblems that arise later. The choice made by a greedy algorithm may depend on choices made so far but not on future choices or all the solutions to the subproblem. It iteratively makes one greedy choice after another, reducing each given problem into a smaller one.
Dynamic programming
The idea behind dynamic programming is quite simple. In general, to solve a given problem, we need to solve different parts of the problem (subproblems), then combine the solutions of the subproblems to reach an overall solution. Often when using a more naive method, many of the subproblems are generated and solved many times. The dynamic programming approach seeks to solve each subproblem only once, thus reducing the number of computations: once the solution to a given subproblem has been computed, it is stored or "memo-ized": the next time the same solution is needed, it is simply looked up. This approach is especially useful when the number of repeating subproblems grows exponentially as a function of the size of the input.
Difference
Greedy choice property
We can make whatever choice seems best at the moment and then solve the subproblems that arise later. The choice made by a greedy algorithm may depend on choices made so far but not on future choices or all the solutions to the subproblem. It iteratively makes one greedy choice after another, reducing each given problem into a smaller one. In other words, a greedy algorithm never reconsiders its choices.
This is the main difference from dynamic programming, which is exhaustive and is guaranteed to find the solution. After every stage, dynamic programming makes decisions based on all the decisions made in the previous stage, and may reconsider the previous stage's algorithmic path to solution.
For example, let's say that you have to get from point A to point B as fast as possible, in a given city, during rush hour. A dynamic programming algorithm will look into the entire traffic report, looking into all possible combinations of roads you might take, and will only then tell you which way is the fastest. Of course, you might have to wait for a while until the algorithm finishes, and only then can you start driving. The path you will take will be the fastest one (assuming that nothing changed in the external environment).
On the other hand, a greedy algorithm will start you driving immediately and will pick the road that looks the fastest at every intersection. As you can imagine, this strategy might not lead to the fastest arrival time, since you might take some "easy" streets and then find yourself hopelessly stuck in a traffic jam.
Some other details...
In mathematical optimization, greedy algorithms solve combinatorial problems having the properties of matroids.
Dynamic programming is applicable to problems exhibiting the properties of overlapping subproblems and optimal substructure.
I would like to cite a paragraph which describes the major difference between greedy algorithms and dynamic programming algorithms stated in the book Introduction to Algorithms (3rd edition) by Cormen, Chapter 15.3, page 381:
One major difference between greedy algorithms and dynamic programming is that instead of first finding optimal solutions to subproblems and then making an informed choice, greedy algorithms first make a greedy choice, the choice that looks best at the time, and then solve a resulting subproblem, without bothering to solve all possible related smaller subproblems.
Difference between greedy method and dynamic programming are given below :
Greedy method never reconsiders its choices whereas Dynamic programming may consider the previous state.
Greedy algorithm is less efficient whereas Dynamic programming is more efficient.
Greedy algorithm have a local choice of the sub-problems whereas Dynamic programming would solve the all sub-problems and then select one that would lead to an optimal solution.
Greedy algorithm take decision in one time whereas Dynamic programming take decision at every stage.
In simple words we can say that in Dynamic Programming (having problem sending message on network) one can first examine the path which takes the shortest time and then start journey,
On the other hand Greedy algorithm take the optimal decision on the spot without thinking for the next step and on the next step change its decision again and so on...
Notes: Dynamic programming is reliable while Greedy Algorithms is not reliable always.
With the reference of Biswajit Roy:
Dynamic Programming firstly plans then Go.
and
Greedy algorithm uses greedy choice, it firstly Go then continuously Plans.
the major difference between greedy method and dynamic programming is in greedy method only one optimal decision sequence is ever generated and in dynamic programming more than one optimal decision sequence may be generated.

In regards to genetic algorithms

Currently, I'm studying genetic algorithms (personal, not required) and I've come across some topics I'm unfamiliar or just basically familiar with and they are:
Search Space
The "extreme" of a Function
I understand that one's search space is a collection of all possible solutions but I also wish to know how one would decide the range of their search space. Furthermore I would like to know what an extreme is in relation to functions and how it is calculated.
I know I should probably understand what these are but so far I've only taken Algebra 2 and Geometry but I have ventured into physics, matrix/vector math, and data structures on my own so please excuse me if I seem naive.
Generally, all algorithms which are looking for a specific item in a collection of items are called search algorithms. When the collection of items is defined by a mathematical function (opposed to existing in a database), it is called a search space.
One of the most famous problems of this kind is the travelling salesman problem, where an algorithm is sought which will, given a list of cities and their distances, find the shortest route for visiting each city only once. For this problem, the exact solution can be found only by examining all possible routes (the entire search space), and finding the shortest one (the route which has the minimum distance, which is the extreme value in the search space). The best time complexity of such an algorithm (called an exhaustive search) is exponential (although it is still possible that there may be a better solution), meaning that the worst-case running time increases exponentially as the number of cities increases.
This is where genetic algorithms come into play. Similar to other heuristic algorithms, genetic algorithms try to get close to the optimal solution by improving a candidate solution iteratively, with no guarantee that an optimal solution will actually be found.
This iterative approach has the problem that the algorithm can easily get "stuck" in a local extreme (while trying to improve a solution), not knowing that there is a potentially better solution somewhere further away:
The figure shows that, in order to get to the actual, optimal solution (the global minimum), an algorithm currently examining the solution around the local minimum needs to "jump over" a large maximum in the search space. A genetic algorithm will rapidly locate such local optimums, but it will usually fail to "sacrifice" this short-term gain to get a potentially better solution.
So, a summary would be:
exhaustive search
examines the entire search space (long time)
finds global extremes
heuristic (e.g. genetic algorithms)
examines a part of the search space (short time)
finds local extremes
Genetic algorithms are not good in tuning to a local optimum. If you want to find a global optimum at least you should be able to approach or find a strategy to approach the local optimum. Recently some improvements have been developed to better find the local optima.
"GENETIC ALGORITHM FOR INFORMATIVE BASIS FUNCTION SELECTION
FROM THE WAVELET PACKET DECOMPOSITION WITH APPLICATION TO
CORROSION IDENTIFICATION USING ACOUSTIC EMISSION"
http://gbiomed.kuleuven.be/english/research/50000666/50000669/50488669/neuro_research/neuro_research_mvanhulle/comp_pdf/Chemometrics.pdf
In general, "search space" means, what type of answers are you looking for. For example, if you are writing a genetic algorithm which builds bridges, tests them out, and then builds more, the answers you are looking for are bridge models (in some form). As another example, if you're trying to find a function which agrees with a set of sample inputs on some number of points, you might try to find a polynomial which has this property. In this instance your search space might be polynomials. You might make this simpler by putting a bound on the number of terms, maximum degree of the polynomial, etc... So you could specify that you wanted to search for polynomials with integer exponents in the range [-4, 4]. In genetic algorithms, the search space is the set of possible solutions you could generate. In genetic algorithms you need to carefully limit your search space so you avoid answers which are completely dumb. At my former university, a physics student wrote a program which was a GA to calculate the best configuration of atoms in a molecule to have low energy properties: they found a great solution having almost no energy. Unfortunately, their solution put all the atoms at the exact center of the molecule, which is physically impossible :-). GAs really hone in on good solutions to your fitness functions, so it's important to choose your search space so that it doesn't produce solutions with good fitness but are in reality "impossible answers."
As for the "extreme" of a function. This is simply the point at which the function takes its maximum value. With respect to genetic algorithms, you want the best solution to the problem you're trying to solve. If you're building a bridge, you're looking for the best bridge. In this scenario, you have a fitness function that can tell you "this bridge can take 80 pounds of weight" and "that bridge can take 120 pounds of weight" then you look around for solutions which have higher fitness values than others. Some functions have simple extremes: you can find the extreme of a polynomial using simple high school calculus. Other functions don't have a simple way to calculate their extremes. Notably, highly nonlinear functions have extremes which might be difficult to find. Genetic algorithms excel at finding these solutions using a clever search technique which looks around for high points and then finds others. It's worth noting that there are other algorithms that do this as well, hill climbers in particular. The things that make GAs different is that if you find a local maximum, other types of algorithms can get "stuck," blinded by a locally good solution, so that they never see a possibly much better solution farther away in the search space. There are other ways to adapt hill climbers to this as well, simulated annealing, for one.
The range space usually requires some intuitive understanding of the problem you're trying to solve-- some expertise in the domain of the problem. There's really no guaranteed method to pick the range.
The extremes are just the minimum and maximum values of the function.
So for instance, if you're coding up a GA just for practice, to find the minimum of, say, f(x) = x^2, you know pretty well that your range should be +/- something because you already know that you're going to find the answer at x=0. But then of course, you wouldn't use a GA for that because you already have the answer, and even if you didn't, you could use calculus to find it.
One of the tricks in genetic algorithms is to take some real-world problem (often an engineering or scientific problem) and translate it, so to speak, into some mathematical function that can be minimized or maximized. But if you're doing that, you probably already have some basic notion where the solutions might lie, so it's not as hopeless as it sounds.
The term "search space" does not restrict to genetic algorithms. I actually just means the set of solutions to your optimization problem. An "extremum" is one solution that minimizes or maximizes the target function with respect to the search space.
Search space simply put is the space of all possible solutions. If you're looking for a shortest tour, the search space consists of all possible tours that can be formed. However, beware that it's not the space of all feasible solutions! It only depends on your encoding. If your encoding is e.g. a permutation, than the search space is that of the permutation which is n! (factorial) in size. If you're looking to minimize a certain function the search space with real valued input the search space is bounded by the hypercube of the real valued inputs. It's basically infinite, but of course limited by the precision of the computer.
If you're interested in genetic algorithms, maybe you're interested in experimenting with our software. We're using it to teach heuristic optimization in classes. It's GUI driven and windows based so you can start right away. We have included a number of problems such as real-valued test functions, traveling salesman, vehicle routing, etc. This allows you to e.g. look at how the best solution of a certain TSP is improving over the generations. It also exposes the problem of parameterization of metaheuristics and lets you find better parameters that will solve the problems more effectively. You can get it at http://dev.heuristiclab.com.

How to spot a "greedy" algorithm?

I am reading a tutorial about "greedy" algorithms but I have a hard time spotting them solving real "Top Coder" problems.
If I know that a given problem can be solved with a "greedy" algorithm it is pretty easy to code the solution. However if I am not told that this problem is "greedy" I can not spot it.
What are the common properties and patterns of the problems solved with "greedy" algorithms? Can I reduce them to one of the known "greedy" problems (e.g. MST)?
Formally, you'd have to prove the matroid property of course. However, I assume that in terms of topcoder you rather want to find out quickly if a problem can be approached greedily or not.
In that case, the most important point is the optimal sub-structure property. For this, you have to be able to spot that the problem can be decomposed into sub-problems and that their optimal solution is part of the optimal solution of the whole problem.
Of course, greedy problems come in such a wide variety that it's next to impossible to offer a general correct answer to your question. My best advice would hence be to think somewhere along these lines:
Do I have a choice between different alternatives at some point?
Does this choice result in sub-problems that can be solved individually?
Will I be able to use the solution of the sub-problem to derive a solution for the overall problem?
Together with loads and loads of experience (just had to say that, too) this should help you to quickly spot greedy problems. Of course, you may eventually classify a problem as greedy, which is not. In that case, you can only hope to realize it before working on the code for too long.
(Again, for reference, I assume a topcoder context.. for anything more realistic and of practical consequence I strongly advise to actually verify the matroid structure before selecting a greedy algorithm.)
A part of your problem may be caused by thinking of "greedy problems". There are greedy algorithms and problems where there is a greedy algorithm, that leads to an optimal solution. There are other hard problems that can also be solved by greedy algorithms but the result will not necessarily be optimal.
For example, for the bin packing problem, there are several greedy algorithms all of them with much better complexity than the exponential algorithm, but you can only be sure that you'll get a solution that is below a certain threshold compared to the optimal solution.
Only regarding problems where greedy algorithms will lead to an optimal solution, my guess would be that an inductive correctness proof feels totally natural and easy. For every single one of your greedy steps, it is quite clear that this was the best thing to do.
Typically problems with optimal, greedy solutions are easy anyway, and others will force you to come up with a greedy heuristic, because of complexity limitations. Usually a meaningful reduction would be showing that your problem is in fact at least NP-hard and hence you know you'll have to find a heuristic. For those problems, I'm a big fan of trying out. Implement your algorithm and try to find out if solutions are "pretty good" (ideal if you also have a slow but correct algorithm you can compare results against, otherwise you might need manually created ground truths). Only if you have something that works well, try to think why and maybe even try to come up with proof of boundaries. Maybe it works, maybe you'll spot border cases where it doesn't work and needs refinement.
"A term used to describe a family of algorithms. Most algorithms try to reach some "good" configuration from some initial configuration, making only legal moves. There is often some measure of "goodness" of the solution (assuming one is found).
The greedy algorithm always tries to perform the best legal move it can. Note that this criterion is local: the greedy algorithm doesn't "think ahead", agreeing to perform some mediocre-looking move now, which will allow better moves later.
For instance, the greedy algorithm for egyptian fractions is trying to find a representation with small denominators. Instead of looking for a representation where the last denominator is small, it takes at each step the smallest legal denominator. In general, this leads to very large denominators at later steps.
The main advantage of the greedy algorithm is usually simplicity of analysis. It is usually also very easy to program. Unfortunately, it is often sub-optimal."
--- ariels
(http://www.everything2.com/title/greedy+algorithm?searchy=search)

What is the difference between a heuristic and an algorithm?

What is the difference between a heuristic and an algorithm?
An algorithm is the description of an automated solution to a problem. What the algorithm does is precisely defined. The solution could or could not be the best possible one but you know from the start what kind of result you will get. You implement the algorithm using some programming language to get (a part of) a program.
Now, some problems are hard and you may not be able to get an acceptable solution in an acceptable time. In such cases you often can get a not too bad solution much faster, by applying some arbitrary choices (educated guesses): that's a heuristic.
A heuristic is still a kind of an algorithm, but one that will not explore all possible states of the problem, or will begin by exploring the most likely ones.
Typical examples are from games. When writing a chess game program you could imagine trying every possible move at some depth level and applying some evaluation function to the board. A heuristic would exclude full branches that begin with obviously bad moves.
In some cases you're not searching for the best solution, but for any solution fitting some constraint. A good heuristic would help to find a solution in a short time, but may also fail to find any if the only solutions are in the states it chose not to try.
An algorithm is typically deterministic and proven to yield an optimal result
A heuristic has no proof of correctness, often involves random elements, and may not yield optimal results.
Many problems for which no efficient algorithm to find an optimal solution is known have heuristic approaches that yield near-optimal results very quickly.
There are some overlaps: "genetic algorithms" is an accepted term, but strictly speaking, those are heuristics, not algorithms.
Heuristic, in a nutshell is an "Educated guess". Wikipedia explains it nicely. At the end, a "general acceptance" method is taken as an optimal solution to the specified problem.
Heuristic is an adjective for
experience-based techniques that help
in problem solving, learning and
discovery. A heuristic method is used
to rapidly come to a solution that is
hoped to be close to the best possible
answer, or 'optimal solution'.
Heuristics are "rules of thumb",
educated guesses, intuitive judgments
or simply common sense. A heuristic is
a general way of solving a problem.
Heuristics as a noun is another name
for heuristic methods.
In more precise terms, heuristics
stand for strategies using readily
accessible, though loosely applicable,
information to control problem solving
in human beings and machines.
While an algorithm is a method containing finite set of instructions used to solving a problem. The method has been proven mathematically or scientifically to work for the problem. There are formal methods and proofs.
Heuristic algorithm is an algorithm that is able to produce an
acceptable solution to a problem in
many practical scenarios, in the
fashion of a general heuristic, but
for which there is no formal proof of
its correctness.
An algorithm is a self-contained step-by-step set of operations to be performed 4, typically interpreted as a finite sequence of (computer or human) instructions to determine a solution to a problem such as: is there a path from A to B, or what is the smallest path between A and B. In the latter case, you could also be satisfied with a 'reasonably close' alternative solution.
There are certain categories of algorithms, of which the heuristic algorithm is one. Depending on the (proven) properties of the algorithm in this case, it falls into one of these three categories (note 1):
Exact: the solution is proven to be an optimal (or exact solution) to the input problem
Approximation: the deviation of the solution value is proven to be never further away from the optimal value than some pre-defined bound (for example, never more than 50% larger than the optimal value)
Heuristic: the algorithm has not been proven to be optimal, nor within a pre-defined bound of the optimal solution
Notice that an approximation algorithm is also a heuristic, but with the stronger property that there is a proven bound to the solution (value) it outputs.
For some problems, noone has ever found an 'efficient' algorithm to compute the optimal solutions (note 2). One of those problems is the well-known Traveling Salesman Problem. Christophides' algorithm for the Traveling Salesman Problem, for example, used to be called a heuristic, as it was not proven that it was within 50% of the optimal solution. Since it has been proven, however, Christophides' algorithm is more accurately referred to as an approximation algorithm.
Due to restrictions on what computers can do, it is not always possible to efficiently find the best solution possible. If there is enough structure in a problem, there may be an efficient way to traverse the solution space, even though the solution space is huge (i.e. in the shortest path problem).
Heuristics are typically applied to improve the running time of algorithms, by adding 'expert information' or 'educated guesses' to guide the search direction. In practice, a heuristic may also be a sub-routine for an optimal algorithm, to determine where to look first.
(note 1): Additionally, algorithms are characterised by whether they include random or non-deterministic elements. An algorithm that always executes the same way and produces the same answer, is called deterministic.
(note 2): This is called the P vs NP problem, and problems that are classified as NP-complete and NP-hard are unlikely to have an 'efficient' algorithm. Note; as #Kriss mentioned in the comments, there are even 'worse' types of problems, which may need exponential time or space to compute.
There are several answers that answer part of the question. I deemed them less complete and not accurate enough, and decided not to edit the accepted answer made by #Kriss
Actually I don't think that there is a lot in common between them. Some algorithm use heuristics in their logic (often to make fewer calculations or get faster results). Usually heuristics are used in the so called greedy algorithms.
Heuristics is some "knowledge" that we assume is good to use in order to get the best choice in our algorithm (when a choice should be taken). For example ... a heuristics in chess could be (always take the opponents' queen if you can, since you know this is the stronger figure). Heuristics do not guarantee you that will lead you to the correct answer, but (if the assumptions is correct) often get answer which are close to the best in much shorter time.
An Algorithm is a clearly defined set of instructions to solve a problem, Heuristics involve utilising an approach of learning and discovery to reach a solution.
So, if you know how to solve a problem then use an algorithm. If you need to develop a solution then it's heuristics.
Heuristics are algorithms, so in that sense there is none, however, heuristics take a 'guess' approach to problem solving, yielding a 'good enough' answer, rather than finding a 'best possible' solution.
A good example is where you have a very hard (read NP-complete) problem you want a solution for but don't have the time to arrive to it, so have to use a good enough solution based on a heuristic algorithm, such as finding a solution to a travelling salesman problem using a genetic algorithm.
Algorithm is a sequence of some operations that given an input computes something (a function) and outputs a result.
Algorithm may yield an exact or approximate values.
It also may compute a random value that is with high probability close to the exact value.
A heuristic algorithm uses some insight on input values and computes not exact value (but may be close to optimal).
In some special cases, heuristic can find exact solution.
A heuristic is usually an optimization or a strategy that usually provides a good enough answer, but not always and rarely the best answer. For example, if you were to solve the traveling salesman problem with brute force, discarding a partial solution once its cost exceeds that of the current best solution is a heuristic: sometimes it helps, other times it doesn't, and it definitely doesn't improve the theoretical (big-oh notation) run time of the algorithm
I think Heuristic is more of a constraint used in Learning Based Model in Artificial Intelligent since the future solution states are difficult to predict.
But then my doubt after reading above answers is
"How would Heuristic can be successfully applied using Stochastic Optimization Techniques? or can they function as full fledged algorithms when used with Stochastic Optimization?"
http://en.wikipedia.org/wiki/Stochastic_optimization
One of the best explanations I have read comes from the great book Code Complete, which I now quote:
A heuristic is a technique that helps you look for an answer. Its
results are subject to chance because a heuristic tells you only how
to look, not what to find. It doesn’t tell you how to get directly
from point A to point B; it might not even know where point A and
point B are. In effect, a heuristic is an algorithm in a clown suit.
It’s less predict- able, it’s more fun, and it comes without a 30-day,
money-back guarantee.
Here is an algorithm for driving to someone’s house: Take Highway 167
south to Puy-allup. Take the South Hill Mall exit and drive 4.5 miles
up the hill. Turn right at the light by the grocery store, and then
take the first left. Turn into the driveway of the large tan house on
the left, at 714 North Cedar.
Here’s a heuristic for getting to someone’s house: Find the last
letter we mailed you. Drive to the town in the return address. When
you get to town, ask someone where our house is. Everyone knows
us—someone will be glad to help you. If you can’t find anyone, call us
from a public phone, and we’ll come get you.
The difference between an algorithm and a heuristic is subtle, and the
two terms over-lap somewhat. For the purposes of this book, the main
difference between the two is the level of indirection from the
solution. An algorithm gives you the instructions directly. A
heuristic tells you how to discover the instructions for yourself, or
at least where to look for them.
They find a solution suboptimally without any guarantee as to the quality of solution found, it is obvious that it makes sense to the development of heuristics only polynomial. The application of these methods is suitable to solve real world problems or large problems so awkward from the computational point of view that for them there is not even an algorithm capable of finding an approximate solution in polynomial time.

Resources