non-Hamilton path elimination in a graph - algorithm

Assume that we have a random graph. How do you remove or add edges in the minimum number of steps such that every edge in the resulting graph would be in a Hamilton path?
I would really appreciate if someone can share any ideas.

There's an algorithm to find Hamilton paths quickly in certain random graphs due to Angluin–Valiant. Perhaps you could run it repeatedly for each edge in the graph to extend that edge to a Hamilton path, adding edges when that fails.

Related

Given undirected weighted connected graph, s,t. Find path from s to t that its most weighted edge is low as possible

Given: undirected weighted connected graph. s,t are vertices.
Question: Find an algorithm as efficient as possible that returns a path from s to t. In that path, the edge that has the highest weight, will has the least weight as possible. So if we have 5 paths from s,t and for every path we have the heaviest edge, so the minimum edge of these 5.
What I've tried:
Use some algorithm to find the shortest path between s and t.
Delete all the edges that are not part of the shortest paths we've found
Use BFS with some modification, We run BFS depending on the number of paths from s to t. Every time we find a maximum edge and store it in an array, then we find the minimum of the array.
I'm struggling to find an algorithm that can be ran in (1), Bellman ford won't work - because it has to be directed graph. Dijkstra won't work because we don't know if it has negative circles or negative edges. And Prim is for finding MST which I'm not aware of how it can help us in finding the shortest path. Any ideas?
And other from that, If you have an algorithm in mind that can solve this question, would be much appreciated.
You can solve this with Kruskal's algorithm. Add edges as usual and stop as soon as s and t are in the same cluster.
The idea is that at each stage of the algorithm we have effectively added all edges below a certain weight threshold. Therefore, if s and t are in the same cluster then there is a route between them consisting entirely of edges with weight less than the threshold.
You can solve it by converting into a MST problem, basically the path from s to t in the MST would be the path which has the least possible maximum weight
find the most negative edge in the graph
add that (weight+1) to every edge.
Now all edge are positive so you can apply Dijkstra's algorithm
you can get the shortest_path between source and destination
Now count the number of edges between source and destination (say x)
Real shortest path will be: shortest_path - x * (weight+1)

need to detect a ending path in the graph with minimilistic weight

Would like to find the shortest weighted path from the node a to any node. The destination node is not given. One can visit any vertex many time.
if the path weight's should be less than Integer.MAX
what is the algorithm to proceed ..?? cant detect the algorithm itself.
i did try for travelling salesman problem but it doesn't match ; neither it match for Dijkstra ...
how to keep in memory all the paths is the major challenge here ..
Edit: Graph is not directed one and there are no negative wieghts.
references: http://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
http://en.wikipedia.org/wiki/Travelling_salesman_problem
For an undirected graph with no negative weights, it's possible to use Floyd-Warshall algorithm to find all-pairs shortest path with time complexity of O(V^3), where V is a number of vertices. The algorithm also allows an easy way to reconstruct the all computed shortest paths. It uses O(V^2) memory to store distances and additional information for reconstructing the path.
There are also some other algorithms for solving this problem with better time complexity, but Floyd-Warshall is really easy to code and start with.
Would like to find the shortest weighted path from the node a to any
node.
I immediately think Dijkstra's algorithm, because that's exactly what it does.
how to keep in memory all the paths is the major challenge here ..
For each node in the graph, keep track of it's previous node that would result in the shortest path. Take a look at the pseudocode, line 20.
To build the path, simply go backwards from the destination node until you reach the source node.

Find the shortest path between a given source and a set of destinations

You are given a weighted connected graph (20 nodes) with all edges having positive weight. We have a robot that starts at point A and it must pass at points B, D and E for example. The idea is to find the shortest path that connects all these 4 points. The robot also has a limited battery, but it can be recharged in some points.
After researching on the internet I have two algorithms in mind: Dijkstra's and TSP. Dijkstra's will find the shortest path between a node and every other node and TSP will find the shortest path that connects all points. Is there any variant of the TSP that only finds the shortest path between a set of nodes? After all, in the TSP all nodes are labeled "must-pass". I'm still not taking in account the battery constraint.
Thanks in advance!
You can reduce your graph to a TSP and then invoke a TSP algorithm on it:
Use Floyd-Warshall algorithm to find the distance u,v for ALL pairs of vertices u and v.
Create a new graph, containing only the "desired" vertices, and set the weight between two such vertices u and v as the distance found by Floyd-Warshall.
Run TSP Solver on the modified graph to get the path in the modified graph, and switch each edge in the modified graph with a shortest path from the original graph.
The above is optimal, because assume there is a shorter path.
D0=u->...D1->...->D2->...->Dk->...->t=D{k+1}
Di->...->D{i+1} has at least the weight of FloydWarshall(Di,D{i+1}) (correctness of Floyd-Warshall), and thus the edges (D0,D1),(D1,D2),...,(Dk,D{k+1) exist in the modified graph with a weight smaller/equal the weight in the given path.
Thus, from correctness of your TSP-Solver, by using D0->D1->...->Dk->D{k+1}, you get a path that is at least as good as the candidate optimal path.
You might also want to look into the generalized traveling salesman problem (GTSP): The nodes are partitioned into subsets, and the problem is to find the minimum-length route that visits exactly one node in each subset. The model is allowed to choose whichever node it wants from each subset. If there are nodes that must be visited, you can put them in a subset all by themselves.

TSP-Variant, possible algorithm?

One of the classical Travelling Salesman Problem (TSP) definitions is:
Given a weighted complete undirected graph where triangle inequality holds return an Hamiltonian path of minimal total weight.
In my case I do not want an Hamiltonian path, I need a path between two well known vertexes. So the formulation would be:
Given a weighted complete undirected graph where triangle inequality holds and two special vertexes called source and destination return a minimal weighted path that visits all nodes exactly once and starts from the source and ends to the destination.
I recall that an Hamiltonian path is a path in an undirected graph that visits each vertex exactly once.
For the original problem a good approximation (at worse 3/2 of the best solution) is the Christodes' algorithm, it is possible to modify for my case? Or you know another way?
Add an edge (= road) from your destination node to your source node with cost 0 and you've got a TSP (for which the triangle inequality doesn't hold though).
The book "In pursuit of the Traveling Salesman" briefly mentions this technique.
Why don't you use dijkstra's algorithm with extra book keeping on each node for the path information. i.e., the list of vertices passed in the shortest path to that particular vertex from the source.
And stop when you reach your end vertex. Then your path will be
Path to the starting vertex of the current edge + current edge.
where current edge is the last edge which lead you to your destination.
You can alter a TSP algorithm to make sure you use the edge between start and finish. Then simply remove the edge from the TSP result and you get your path.
In other words, if you add the edge from start to finish to your path, you get a TSP solution, but not necessary the optimal one.
In greedy algorithm, you have a sorted list of all edges L and an empty list I. You keep adding the shortest edge that does not form a cycle until you pass all vertexes. Simply remove the edge from start to finish from L and add it to I before you add the rest of the edges.
In nearest neighbor, you start from one vertex, then add the shortest edge that starts at that vertex and leads to any vertex that has not been visited. Mark your finish as visited, then start from your start vertex and add the edge between the last vertex in the resulted path and the finish and you got your path from start to finish.
There are other TSP algorithms that can be altered to provide this path.

Minimal path - all edges at least once

I have directed graph with lot of cycles, probably strongly connected, and I need to get a minimal cycle from it. I mean I need to get cycle, which is the shortest cycle in graph, and every edge is covered at least once.
I have been searching for some algorithm or some theoretical background, but only thing I have found is Chinese postman algorithm. But this solution is not for directed graph.
Can anybody help me? Thanks
Edit>> All edges of that graph have the same cost - for instance 1
Take a look at this paper - Directed Chinese Postman Problem. That is the correct problem classification though (assuming there are no more restrictions).
If you're just reading into theory, take a good read at this page, which is from the Algorithms Design Manual.
Key quote (the second half for the directed version):
The optimal postman tour can be constructed by adding the appropriate edges to the graph G so as to make it Eulerian. Specifically, we find the shortest path between each pair of odd-degree vertices in G. Adding a path between two odd-degree vertices in G turns both of them to even-degree, thus moving us closer to an Eulerian graph. Finding the best set of shortest paths to add to G reduces to identifying a minimum-weight perfect matching in a graph on the odd-degree vertices, where the weight of edge (i,j) is the length of the shortest path from i to j. For directed graphs, this can be solved using bipartite matching, where the vertices are partitioned depending on whether they have more ingoing or outgoing edges. Once the graph is Eulerian, the actual cycle can be extracted in linear time using the procedure described above.
I doubt that it's optimal, but you could do a queue based search assuming the graph is guaranteed to have a cycle. Each queue entry would contain a list of nodes representing paths. When you take an element off the queue, add all possible next steps to the queue, ensuring you are not re-visiting nodes. If the last node is the same as the first node, you've found the minimum cycle.
what you are looking for is called "Eulerian path". You can google it to find enough info, basics are here
And about algorithm, there is an algorithm called Fleury's algorithm, google for it or take a look here
I think it might be worth while just simply writing which vertices are odd and then find which combo of them will lead to the least amount of extra time (if the weights are for times or distances) then the total length will be every edge weight plus the extra. For example, if the odd order vertices are A,B,C,D try AB&CD then AC&BD and so on. (I'm not sure if this is a specifically named method, it just worked for me).
edit: just realised this mostly only works for undirected graphs.
The special case in which the network consists entirely of directed edges can be solved in polynomial time. I think the original paper is Matching, Euler tours and the Chinese postman (1973) - a clear description of the algorithm for the directed graph problem begins on page 115 (page 28 of the pdf):
When all of the edges of a connected graph are directed and the graph
is symmetric, there is a particularly simple and attractive algorithm for
specifying an Euler tour...
The algorithm to find an Euler tour in a directed, symmetric, connected graph G is to first find a spanning arborescence of G. Then, at
any node n, except the root r of the arborescence, specify any order for
the edges directed away from n so long as the edge of the arborescence
is last in the ordering. For the root r, specify any order at all for the
edges directed away from r.
This algorithm was used by van Aardenne-Ehrenfest and de Bruin to
enumerate all Euler tours in a certain directed graph [ 1 ].

Resources