Prolog Beginner - Is This a Bad Idea? - prolog

The application I'm working on is a "configurator" of sorts. It's written in C# and I even wrote a rules engine to go with it. The idea is that there are a bunch of propositional logic statements, and the user can make selections. Based on what they've selected, some other items become required or completely unavailable.
The propositional logic statements generally take the following forms:
A => ~X
ABC => ~(X+Y)
A+B => Q
A(~(B+C)) => ~Q A <=> B
The symbols:
=> -- Implication
<=> -- Material Equivalence
~ -- Not
+ -- Or
Two letters side-by-side -- And
I'm very new to Prolog, but it seems like it might be able to handle all of the "rules processing" for me, allowing me to get out of my current rules engine (it works, but it's not as fast or easy to maintain as I would like).
In addition, all of the available options fall in a hierarchy. For instance:
Outside
Color
Red
Blue
Green
Material
Wood
Metal
If an item at the second level (feature, such as Color) is implied, then an item at the third level (option, such as Red) must be selected. Similarly if we know that a feature is false, then all of the options under it are also false.
The catch is that every product has it's own set of rules. Is it a reasonable approach to set up a knowledge base containing these operators as predicates, then at runtime start buliding all of the rules for the product?
The way I imagine it might work would be to set up the idea of components, features, and options. Then set up the relationships between then (for instance, if the feature is false, then all of its options are false). At runtime, add the product's specific rules. Then pass all of the user's selections to a function, retrieving as output which items are true and which items are false.
I don't know all the implications of what I'm asking about, as I'm just getting into Prolog, but I'm trying to avoid going down a bad path and wasting lots of time in the process.
Some questions that might help target what I'm trying to find out:
Does this sound do-able?
Am I barking up the wrong tree?
Are there any drawbacks or concerns to trying to create all of these rules at runtime?
Is there a better system for this kind of thing out there that I might be able to squeeze into a C# app (Silverlight, to be exact)?
Are there other competing systems that I should examine?
Do you have any general advice about this sort of thing?
Thanks in advance for your advice!

Sure, but Prolog has a learning curve.
Rule-based inference is Prolog's game, though you may have to rewrite many rules into Horn clauses. A+B => Q is doable (it becomes q :- a. q :- b. or q :- (a;b).) but your other examples must be rewritten, including A => ~X.
Depends on your Prolog compiler, specifically whether it supports indexing for dynamic predicates.
Search around for terms like "forward checking", "inference engine" and "business rules". Various communities keep inventing different terminologies for this problem.
Constraint Handling Rules (CHR) is a logic programming language, implemented as a Prolog extension, that is much closer to rule-based inference/forward chaining/business rules engines. If you want to use it, you'll still have to learn basic Prolog, though.
Keep in mind that Prolog is a programming language, not a silver bullet for logical inference. It cuts some corners of first-order logic to keep things efficiently computable. This is why it only handles Horn clauses: they can be mapped one-to-one with procedures/subroutines.

You can also throw in DCGs to generate bill of materials. The idea is
roughly that terminals can be used to indicate subproducts, and
non-terminals to define more and more complex combinations of a subproducts
until you arrive at your final configurable products.
Take for example the two attribute value pairs Color in {red, blue, green}
and Material in {wood, metal}. These could specify a door knob, whereby
not all combinations are possible:
knob(red,wood) --> ['100101'].
knob(red,metal) --> ['100102'].
knob(blue,metal) --> ['100202'].
You could then define a door as:
door ... --> knob ..., panel ...
Interestingly you will not see any logic formula in such a product specification,
only facts and rules, and a lot of parameters passed around. You can use the
parameters in a knowledge acquisition component. By just running uninstantiated
goals you can derive possible values for the attribute value pairs. The predicate
setof/3 will sort and removen duplicates for you:
?- setof(Color,Material^Bill^knob(Color,Material,Bill,[]),Values).
Value = [blue, red]
?- setof(Material,Color^Bill^knob(Color,Material,Bill,[]),Values).
Material = [metal, wood]
Now you know the range of the attributes and you can let the end-user successively
pick an attribute and a value. Assume he takes the attribute Color and its value blue.
The range of the attribute Material then shrinks accordingly:
?- setof(Material,Bill^knob(blue,Material,Bill,[]),Values).
Material = [metal]
In the end when all attributes have been specified you can read off the article
numbers of the subproducts. You can use this for price calculation, by adding some
facts that give you additional information on the article numbers, or to generate
ordering lists etc..:
?- knob(blue,metal,Bill,[]).
Bill = ['100202']
Best Regards
P.S.:
Oh it seems that the bill of materials idea used in the product configurator
goes back to Clocksin & Mellish. At least I find a corresponding
comment here:
http://www.amzi.com/manuals/amzi/pro/ref_dcg.htm#DCGBillMaterials

Related

How is predicate logic represented in Prolog?

may be a strange and broad question and not a 100% programming question, but I hope this is ok. I recently had a discussion about, that a lot of programs in Prolog don´t follow strict predicate logic (of Frege) but often are "object oriented" which I am trying to grasp.
I know that Prolog is based on first order predicate logic especially Horn Clauses and that they are a special form of modus ponens. A fact and a rule if they occur solo are simply clauses, but as soon as I add more than one occurrence they become a predicate.
How are the quantors of first order predicate logic represented and related to fact , rule , predicate or the Prolog concept in general? What does the functor express and what the arguments in relation to predicate logic. How is predicate logic and first order predicate logic reflected in Prolog and where does prolog leave their concepts? e.g. how would I define a point, a line and a vertical line in predicate logic and first order predicate logic.
How do I formulate this in predicate logic and first order predicate logic what is the semantic and logic difference between
vertical(line).
line(vertical).
Or a line and point in this example. Are point and line not predicate logic?
For me it is " point(X) the set of all points" and when I pick a concrete point "there exists one point(110, 12)."
point(X,Y).
line(point(W,X), point(Y,Z)).
vertical(line(point(X,Y), point(X,Z))).
horizontal(line(point(X,Y), point(Z,Y))).
Any info helps! Many thanks, H
A chapter of Programming in Prolog by W.Clocksin and C.Mellish is devoted to explain the relation of Prolog with logic. Citing from there
If we wish to discuss how Prolog is related to logic, we must first establish what we
mean by logic. Logic was originally devised as a way of representing the form of
arguments, so that it would be possible to check in a formal way whether or not they
are valid. Thus we can use logic to express propositions, the relations between propositions and how one can validly infer some propositions from others. The particular
form of logic that we will be talking about here is called the Predicate Calculus. We
will only be able to say a few words about it here. There are scores of good basic
introductions to logic you can turn to for background reading.
If we wish to express propositions about the world, we must be able to describe
the objects that are involved in them. In Predicate Calculus, we represent objects by
terms. A term is of one of the following forms:
A constant symbol. This is a symbol that stands for a single individual or concept.
We can think of this as a Prolog atom, and we will use the Prolog syntax. So
greek, agatha, and peace are constant symbols.
A variable symbol. This is a symbol that we may want to stand for different
individuals at different times. Variables are really only introduced in conjunction
with quantifiers, which are discussed below. We can think of them as Prolog
variables and will use the Prolog syntax. Thus X, Man, and Greek are variable
symbols.
A compound term. A compound term consists of a function symbol, together
with an ordered set of terms as its arguments. The idea is that the compound
term represents some individual that depends on the individuals represented by
the arguments. The function symbol represents how the first depends on the second. For instance, we could have a function symbol standing for the notion of
"distance" and two arguments. In this case, the compound term stands for the
distance between the objects represented by the arguments. We can think of a
compound term as a Prolog structure with the function symbol as the functor.
We will write Predicate Calculus compound terms using the Prolog syntax, so
that, for instance, wife(henry) might mean Henry's wife, distance(point1, X)
might mean the distance between some particular point and some other place to
be specified, and classes(mary, dayafter(W)) might mean the classes that Mary
teaches on the day after some day W to be specified.
Thus in Predicate Calculus the ways of representing objects are just like the ways available in Prolog.
Seems not appropriate to put the entire chapter here... there is also a program, very explanatory, in appendix B, that performs an automatic translation of WFFs into clauses.
The book is very readable, just a pity it's not among the titles in Free Prolog Programming Books section.
I know that Prolog is based on first order predicate logic especially Horn Clauses and that they are a special form of modus ponens.
In a sense, inverse "modus ponens":
a :- b
You want to show "a true", and to do so, you have to show "b true"
A fact and a rule if they occur solo are simply clauses, but as soon as I add more than one occurrence they become a predicate.
No, they are all predicates. The "predicate" is an object/agent/program/platonic-phenomenon which expresses that there (objectively) is some "relationship" between "things", and you can ask the Prolog Processor about that relationship. There is no direct meaning associated to all of that though, it's "strings related to strings via strings". We are working with syntactic machines after all (i.e. computers).
Enter this logic program:
p(x,y). % Predicate p/2 states that there is a relationship p between x and y
And now, you can query the database about what the program is saying:
?- p(x,y).
true. % a p relationship exists (fact, but could also be rule)
?- p(x,A).
A = y. % the thing related to x via p is y
?- p(A,y).
A = x. % the thing related to x via p is y
?- p(A,B).
A = x, % things related via p are x and y
B = y.
?- p(c,d).
false. % not REALLY "false" but "as far as I can tell, there
% is no relationship p between c and d"
Note the interpretation of "false", which is not the "strong false" of classical logic. Even though it is traditionally state that Prolog works in classical logic, this is not really the case:
From "Logic Programming with Strong Negation" (David Pearce, Gerd Wagner, FU Berlin, 1991), appears in Springer LNAI 475: Extensions of Logic Programming, International Workshop Tübingen, FRG, December 8–10, 1989 Proceedings):
According to the standard view, a logic program is a set of definite Horn clauses. Thus, logic programs are regarded as syntactically restricted first-order theories within the framework of classical logic. Correspondingly, the proof theory of logic programs is considered as the specialized version of classical resolution, known as SLD-resolution. This view, however, neglects the fact that a program clause, a_0 <— a_1, a_2, • • •, a_n, is an expression of a fragment of positive logic (a subsystem of intuitionistic logic) rather than an implicational formula of classical logic. The classical interpretation of logic programs, therefore, seems to be a semantical overkill.
It should be clear that in order to explain the deduction mechanism of Prolog one does not have to refer to the indirect method of SLD-resolution which checks for the refutability of the contrary. It is certainly more natural to view Prolog's proof procedure as a kind of natural deduction, as, for example, in [Hallnäs & Schroeder-Heister 1987] and [Miller 1989]. This also is more in line with the intuitions of a Prolog programmer. Since Prolog is the paradigm, logic programming semantics should take it as a point of departure.
Now:
How are the quantors of first order predicate logic represented and related
to fact, rule, predicate or the Prolog concept in general?
That is a long story. Note that Prolog is primarily about "programming using logic", and also about "modeling using logic". The two aspects certainly overlap well for problems that can be solved using explicit enumeration, but Prolog is not made for specifying general FOL constraints describing a sought-for solution. In fact, certain FOL constraints cannot be represented and other have to be transformed into nominally equivalent expression that are agreeable to the machine. Look up "skolemization". For example: https://www.cs.toronto.edu/~sheila/384/w11/Lectures/csc384w11-KR-tutorial.pdf
On the flip side, Prolog provides "meta-predicates" which generate solutions by calling other predicates, so it's making forays into second-order logic. As it must - nobody can survive in the FOL desert for long.
What does the functor express
Nothing. It just stands for itself. Pure syntax. Look up "Herbrand Universe".
How do I formulate this in predicate logic and first order predicate logic
what is the semantic and logic difference between
vertical(line).
line(vertical).
It's you who imbues vertical and line with meaning. So, feelings. You want a "vertial line", so you would say, the "thing" is the "line" and "vertical" is an attribute of the "line". So vertical(line) sounds appropriate. Or maybe attribute(line,vertical). It depends.
Here:
point(X,Y).
line(point(W,X), point(Y,Z)).
You have to aspects:
Predicates express "relationships". "Function symbols" are used to construct "things with structure": you can form trees of stuff with function symbols on nodes and integers/strings/variables on leaves. These are called "term". But terms can appear as predicates or as things, depending on the context, it's quite fluid. So you can for example construct a Prolog program with another Prolog program.
point(X,Y)
line(point(W,X), point(Y,Z))
These are terms!
If you type this into a file program.pl:
point_on_line(point(X,Y),line(point(W,X), point(Y,Z))).
The terms appear as "things" related by predicate point_on_line/2. The whole line is itself a term.
If you type this into a file program.pl:
point(X,Y).
line(point(W,X), point(Y,Z)).
The terms appear as "predicates", and point appears both as predicate point/2 and as "thing" about which predicate line/2 is talking.
This is actually a vast subject and it takes some time getting used to it, much more than functional programming. I had some Prolog and Logic courses at uni but 20 years later I found out that I had badly misunderstood a lot of aspects.

How to use member predicate to specify constraints in prolog

I'm trying to write a Prolog program which does the following:
I have some relations defined in the Relations list. (For example: [f1,s1] means f1 needs s1) Depending on what features(f1,f2,f3) are selected in the TargetFeat list, I would like to create Result list using constraint programming.
Here is a sample code:
Relations =[[f1, s1], [f2, s2], [f3, s3], [f3, s4]],
TargetFeat = [f3, f1],
Result = [],
member(f3,TargetFeat) #= member(s3,Result), %One of the constraints
labeling(Result).
This doesn't work because #= works only with arithmetic expressions as operands. What are the alternatives to achieve something like this ?
There are many possible ways to model such dependencies with constraints. I consider in this post CLP(FD) and CLP(B) constraints, because they are most commonly used for solving combinatorial tasks.
Consider first CLP(FD), which is more frequently used and more convenient in many ways. When using CLP(FD) constraints, you again have several options to represent your task. However, no matter which model you eventually choose, you must first switch all items in your representation to suitable entitites that the constraint solver can actually reason about. In the case of CLP(FD), this means switching your entities to integers.
Translating your entities to corresponding integers is very straight-forward, and it is one of the reasons why CLP(FD) constraints also suffice to model tasks over domains that actually do not contain integers, but can be mapped to integers. So, let us suppose you are not reasoning about features f1, f2 and f3, but about integers 0, 1, and 2, or any other set of integers that suits you.
You can directly translate your requirements to this new domain. For example, instead of:
[f1,s1] means: f1 needs s1
we can say for example:
0 -> 3 means: 0 needs 3
And this brings us already very close to CLP(FD) constraints that let us model the whole problem. We only need to make one more mental leap to obtain a representation that lets us model all requirements. Instead of concrete integers, we now use CLP(FD) variables to indicate whether or not a specific requirement must be met to obtain the desired features. We shall use the variables R1, R2, R3, ... to denote which requirements are needed, by using either 0 (not needed) or 1 (needed) for each of the possible requirements.
At this point, you must develop a clear mental model of what you actually want to describe. I explain what I have in mind: I want to describe a relation between three things:
a list Fs of features
a list Ds of dependencies between features and requirements
a list Rs of requirements
We have already considered how to represent all these entitites: (1) is a list of integers that represent the features we want to obtain. (2) is a list of F -> R pairs that mean "feature F needs requirement R", and (3) is a list of Boolean variables that indicate whether or not each requirement is eventually needed.
Now let us try to relate all these entitites to one another.
First things first: If no features are desired, it all is trivial:
features_dependencies_requirements([], _, _).
But what if a feature is actually desired? Well, it's simple: We only need to take into account the dependencies of that feature:
features_dependencies_requirements([F|Fs], Ds, Rs) :-
member(F->R, Ds),
so we have in R the requirement of feature F. Now we only need to find the suitable variable in Rs that denotes requirement R. But how do we find the right variable? After all, a Prolog variable "does not have a bow tie", or—to foreigners—lacks a mark by which we could distinguish it from others. So, at this point, we would actually find it convenient to be able to nicely pick a variable out of Rs given the name of its requirement. Let us hence suppose that we represent Rs as a list of pairs of the form I=R, where I is the integer that defines the requirement, and R is the Boolean indicator that denotes whether that requirement is needed. Given this representation, we can define the clause above in its entirety as follows:
features_dependencies_requirements([F|Fs], Ds, Rs) :-
member(F->I, Ds),
member(I=1, Rs),
features_dependencies_requirements(Fs, Ds, Rs).
That's it. This fully relates a list of features, dependencies and requirements in such a way that the third argument indicates which requirements are necessary to obtain the features.
At this point, the attentive reader will see that no CLP(FD) constraints whatsoever were actually used in the code above, and in fact the translation of features to integers was completely unnecessary. We can as well use atoms to denote features and requirements, using the exact same code shown above.
Sample query and answers:
?- features_dependencies_requirements([f3,f1],
[f1->s1,f2->s2,f3->s3,f3->s4],
[s1=S1,s2=S2,s3=S3,s4=S4]).
S1 = S3, S3 = 1 ;
S1 = S4, S4 = 1 ;
false.
Obviously, I have made the following assumption: The dependencies are disjunctive, which means that the feature can be implemented if at least one of the requirements is satisifed. If you want to turn this into a conjunction, you will obviously have to change this. You can start by representing dependencies as F -> [R1,R2,...R_n].
Other than that, can it still be useful to translate your entitites do integers? Yes, because many of your constraints can likely be formulated also with CLP(FD) constraints, and you need integers for this to work.
To get you started, here are two ways that may be usable in your case:
use constraint reification to express what implies what. For example: F #==> R.
use global constraints like table/2 that express relations.
Particularly in the first case, CLP(B) constraints may also be useful. You can always use Boolean variables to express whether a requirement must be met.
Not a solution but some observations that would not fit a comment.
Don't use lists to represent relations. For example, instead of [f1, s1], write requires(f1, s1). If these requirement are fixed, then define requires/2 as a predicate. If you need to identify or enumerate features, consider a feature/1 predicate. For example:
feature(f1).
feature(f2).
...
Same for s1, s2, ... E.g.
support(s1).
support(s2).
...

How to avoid using assert and retractall in Prolog to implement global (or state) variables

I often end up writing code in Prolog which involves some arithmetic calculation (or state information important throughout the program), by means of first obtaining the value stored in a predicate, then recalculating the value and finally storing the value using retractall and assert because in Prolog we cannot assign values to variable twice using is (thus making almost every variable that needs modification, global). I have come to know that this is not a good practice in Prolog. In this regard I would like to ask:
Why is it a bad practice in Prolog (though i myself don't like to go through the above mentioned steps just to have have a kind of flexible (modifiable) variable)?
What are some general ways to avoid this practice? Small examples will be greatly appreciated.
P.S. I just started learning Prolog. I do have programming experience in languages like C.
Edited for further clarification
A bad example (in win-prolog) of what I want to say is given below:
:- dynamic(value/1).
:- assert(value(0)).
adds :-
value(X),
NewX is X + 4,
retractall(value(_)),
assert(value(NewX)).
mults :-
value(Y),
NewY is Y * 2,
retractall(value(_)),
assert(value(NewY)).
start :-
retractall(value(_)),
assert(value(3)),
adds,
mults,
value(Q),
write(Q).
Then we can query like:
?- start.
Here, it is very trivial, but in real program and application, the above shown method of global variable becomes unavoidable. Sometimes the list given above like assert(value(0))... grows very long with many more assert predicates for defining more variables. This is done to make communication of the values between different functions possible and to store states of variables during the runtime of program.
Finally, I'd like to know one more thing:
When does the practice mentioned above become unavoidable in spite of various solutions suggested by you to avoid it?
The general way to avoid this is to think in terms of relations between states of your computations: You use one argument to hold the state that is relevant to your program before a calculation, and a second argument that describes the state after some calculation. For example, to describe a sequence of arithmetic operations on a value V0, you can use:
state0_state(V0, V) :-
operation1_result(V0, V1),
operation2_result(V1, V2),
operation3_result(V2, V).
Notice how the state (in your case: the arithmetic value) is threaded through the predicates. The naming convention V0 -> V1 -> ... -> V scales easily to any number of operations and helps to keep in mind that V0 is the initial value, and V is the value after the various operations have been applied. Each predicate that needs to access or modify the state will have an argument that allows you to pass it the state.
A huge advantage of threading the state through like this is that you can easily reason about each operation in isolation: You can test it, debug it, analyze it with other tools etc., without having to set up any implicit global state. As another huge benefit, you can then use your programs in more directions provided you are using sufficiently general predicates. For example, you can ask: Which initial values lead to a given outcome?
?- state0_state(V0, given_outcome).
This is of course not readily possible when using the imperative style. You should therefore use constraints instead of is/2, because is/2 only works in one direction. Constraints are much easier to use and a more general modern alternative to low-level arithmetic.
The dynamic database is also slower than threading states through in variables, because it performs indexing etc. on each assertz/1.
1 - it's bad practice because destroys the declarative model that (pure) Prolog programs exhibit.
Then the programmer must think in procedural terms, and the procedural model of Prolog is rather complicate and difficult to follow.
Specifically, we must be able to decide about the validity of asserted knowledge while the programs backtracks, i.e. follow alternative paths to those already tried, that (maybe) caused the assertions.
2 - We need additional variables to keep the state. A practical, maybe not very intuitive way, is using grammar rules (a DCG) instead of plain predicates. Grammar rules are translated adding two list arguments, normally hidden, and we can use those arguments to pass around the state implicitly, and reference/change it only where needed.
A really interesting introduction is here: DCGs in Prolog by Markus Triska. Look for Implicitly passing states around: you'll find this enlighting small example:
num_leaves(nil), [N1] --> [N0], { N1 is N0 + 1 }.
num_leaves(node(_,Left,Right)) -->
num_leaves(Left),
num_leaves(Right).
More generally, and for further practical examples, see Thinking in States, from the same author.
edit: generally, assert/retract are required only if you need to change the database, or keep track of computation result along backtracking. A simple example from my (very) old Prolog interpreter:
findall_p(X,G,_):-
asserta(found('$mark')),
call(G),
asserta(found(X)),
fail.
findall_p(_,_,N) :-
collect_found([],N),
!.
collect_found(S,L) :-
getnext(X),
!,
collect_found([X|S],L).
collect_found(L,L).
getnext(X) :-
retract(found(X)),
!,
X \= '$mark'.
findall/3 can be seen as the basic all solutions predicate. That code should be the very same from Clockins-Mellish textbook - Programming in Prolog. I used it while testing the 'real' findall/3 I implemented. You can see that it's not 'reentrant', because of the '$mark' aliased.

What would cause Prolog to succeed on a match, but fail when asked to label outputs?

I'm trying to solve a logic puzzle with Prolog, as a learning exercise, and I think I've correctly mapped the problem using the GNU Prolog finite domain solver.
When I run the solve function, Prolog spits back: yes and a list of variables all bounded in the range 0..1 (booleans, as I've so constrained them). The problem is, when I try to add a fd_labeling(Solution) clause, Prolog about faces and spits out: no.
I'm new to this language and I can't seem to find any course of attack to figure out why everything seems to work until I actually ask it to label the answers...
Apparently, you didn't "correctly" map the problem to FD, since you get a "no" when you try to label the variables.
What you do in Constraint Logic Programming is set up a constraint model, where you have variables with a domain (in your case booleans with the domain [0,1]), and a number of constraints between these variables. Each constraint has a propagation rule that tries to achieve consistency for the domains of the variables on which the constraint is posted. Values that are not consistent are removed from the domains. There are several types of consistency, but they have one thing in common: the constraints usually won't by themselves give you a full solution, or even tell you whether there is a solution for the constraint model.
As an example, say you have two variables X and Y, both with domains [1..10], and the constraint X < Y. Then the propagation rule will remove the value 1 from the domain of Y and remove 10 from the domain of X. It will then stop, since the domains are now consistent: for each value in one domain there exists a value in the other domain so that the constraint is fulfilled.
In order to get a solution (where all variables are bound to values), you need to label variables. Each labeling will wake up the constraints attached to the labeled variable, triggering another round of propagation. This will lead to a solution (all variables bound to values, answer: yes) or failure (in each branch of the search tree, some variable ends up with an empty domain, answer: no)
Since each constraint is only aiming for consistency of the domains of the variables on which it is posted, it is possible that an infeasibility that arises from a combination of constraints is not detected during the propagation stage. For example, three variables X,Y,Z with domains [1..2], and pairwise inequality constraints. This seems to have happened with your constraint model.
If you are sure that there must be a solution to the puzzle, then your constraint model contains some infeasibility. Maybe a sharp look at the constraints is already sufficient to spot it.
If you don't see any obvious infeasibility (e.g., some contradicting constraints like the inequality example above), you need to debug your program. If it's possible, don't use a built-in labeling predicate, but write your own. Then you can add some output predicate that allows you to trace what variable was instantiated and what changes in the boolean decision variables this caused or whether it led to a failure.
(#twinterer already gave an explanation, my answer tries to take it from a different angle)
When you enter a query to Prolog what you get back is an answer. Often an answer contains a solution, sometimes it contains several solutions and sometimes it does not contain any solution at all. Quite often these two notions are confused. Let's look at examples with GNU Prolog:
| ?- length(Vs,3), fd_domain_bool(Vs).
Vs = [_#0(0..1),_#19(0..1),_#38(0..1)]
yes
Here, we have an answer that contains 8 solutions. That is:
| ?- length(Vs,3), fd_domain_bool(Vs), fd_labeling(Vs).
Vs = [0,0,0] ? ;
Vs = [0,0,1] ? ;
...
Vs = [1,1,1]
yes
And now another query. That is the example #twinterer referred to.
| ?- length(Vs,3), fd_domain_bool(Vs), fd_all_different(Vs).
Vs = [_#0(0..1),_#19(0..1),_#38(0..1)]
yes
The answer looks the same as before. However, it does no longer contain a solution.
| ?- length(Vs,3), fd_domain_bool(Vs), fd_all_different(Vs), fd_labeling(Vs).
no
Ideally in such a case, the toplevel would not say "yes" but "maybe". In fact, CLP(R), one of the very first constraint systems, did this.
Another way to make this a little bit less mysterious is to show the actual constraints involved. SWI does this:
?- length(Vs,3), Vs ins 0..1, all_different(Vs).
Vs = [_G565,_G568,_G571],
_G565 in 0..1,
all_different([_G565,_G568,_G571]),
_G568 in 0..1,
_G571 in 0..1.
?- length(Vs,3), Vs ins 0..1, all_different(Vs), labeling([], Vs).
false.
So SWI shows you all constraints that have to be satisfied to get a concrete solution. Read SWI's answer as: Yes, there is a solution, provided all this fine print is true!
Alas, the fine print is false.
And yet another way to solve this problem is to get an implementation of all_different/1 with stronger consistency. But this only works in specific cases.
?- length(Vs,3), Vs ins 0..1, all_distinct(Vs).
false.
In the general case you cannot expect a system to maintain global consistency. Reasons:
Maintaining consistency can be very expensive. It is often better to delegate such decisions to labeling. In fact, the simple all_different/1 is often faster than all_distinct/1.
Better consistency algorithms are often very complex.
In the general case, maintaining global consistency is an undecidable problem.

2D PHP Pattern Creator Altgorithm

I'm looking for an algorithm to help me build 2D patterns based on rules. The idea is that I could write a script using a given site of parameters, and it would return a random, 2-dimensional sequence up to a given length.
My plan is to use this to generate image patterns based on rules. Things like image fractals or sprites for game levels could possibly use this.
For example, lets say that you can use A, B, C, & D to create the pattern. The rule is that C and A can never be next to each other, and that D always follows C. Next, lets say I want a pattern of size 4x4. The result might be the following which respects all the rules.
A B C D
B B B B
C D B B
C D C D
Are there any existing libraries that can do calculations like this? Are there any mathematical formulas I can read-up on?
While pretty inefficient concering runtime, backtracking is an often used algorithm for such a problem.
It follows a simple pattern, and if written correctly, you can easily replace a rule set into it.
Define your rule data structures; i.e., define the set of operations that the rules can encapsulate, and define the available cross-referencing that can be done. Once you've done this, you should have a clearer view of what type of algorithms to use to apply these rules to a potential result set.
Supposing that your rules are restricted to "type X is allowed to have type Y immediately to its left/right/top/bottom" you potentially have situations where generating possible patterns is computationally difficult. Take a look at Wang Tiles (a good source is the book Tilings and Patterns by Grunbaum and Shephard) and you'll see that with the states sets of rules you might define sets of Wang Tiles. Appropriate sets of these are Turing Complete.
For small rectangles, or your sets of rules, this may only be of academic interest. As mentioned elsewhere a backtracking approach might be appropriate for your ruleset - in which case you may want to consider appropriate heuristics for the order in which new components are added to your grid. Again, depending on your rulesets, other approaches might work. E.g. if your ruleset admits many solutions you might get a long way by randomly allocating many items to the grid before attempting to fill in remaining gaps.

Resources