Setting up perspective projection on Opengl ES 2.0 makes objects disappear - matrix

I'm working on a project using opengl-es 2.0, and I'm having some trouble setting up perspective projection.
If I don't set up the perspective projection and simply multiply the object-to-world matrix (I believe it's also called model matrix) by the vertex positions, the objects on screen are rendered correctly, they appear stretched, but as far as I know, that's something the projection matrix would fix. The problem is, whenever I set the perspective matrix and use it, the objects on screen disappear, and no matter how much I move them around they never show up in screen.
The calculations to get the Model-View-Projection matrix are done in CPU and the last multiplication the MVP-Matrix by the actual object-space vertex data is done in the vertex shader, this is why I believe the problem might be on the process to get that MVP-Matrix. I've run a bunch of unit tests, but according to those tests (and my basic knowledge of linear algebra) those matrices are being correctly calculated, and my internet-research throughout the day isn't helping for now. :-/
This is the code I use to calculate the MVP-Matrix:
Matrix4D projection_matrix;
projection_matrix.makePerspective(45.0f, 0.001f, 100.0f, 480.0f/320.0f);
Matrix4D view_matrix;
view_matrix.makeIdentity(); //Should be a real view matrix. TODO.
Matrix4D model_matrix(getWorldMatrix());
Matrix4D mvp_matrix(projection_matrix);
mvp_matrix *= view_matrix;
mvp_matrix *= model_matrix;
mMesh->draw(time, mvp_matrix.getRawData());
I think this code is pretty self-explanatory, but just in case, those Matrix4D are 4x4 matrices, and calling makePerspective/makeIdentity on them will make that matrix the Perspective or Identity matrix. The getRawData() call on Matrix4D objects returns the matrix data as a float array in column-major notation, and the mMesh variable is another object which, when draw is called, will simply send all the vertex and material data to the shaders.
The makePerspective function's code is the following:
Matrix4D& Matrix4D::makePerspective(const float field_of_view,
const float near, const float far, const float aspect_ratio) {
float size = near * tanf(DEGREES_TO_RADIANS(field_of_view) / 2.0f);
return this->makeFrustum(-size, size, -size / aspect_ratio,
size / aspect_ratio, near, far);
}
Matrix4D& Matrix4D::makeFrustum(const float left, const float right,
const float bottom, const float top, const float near,
const float far) {
this->mRawData[0] = 2.0f * near / (right - left);
this->mRawData[1] = 0.0f;
this->mRawData[2] = 0.0f;
this->mRawData[3] = 0.0f;
this->mRawData[4] = 0.0f;
this->mRawData[5] = 2.0f * near / (top - bottom);
this->mRawData[6] = 0.0f;
this->mRawData[7] = 0.0f;
this->mRawData[8] = (right + left) / (right - left);
this->mRawData[9] = (top + bottom) / (top - bottom);
this->mRawData[10] = - (far + near) / (far - near);
this->mRawData[11] = -1.0f;
this->mRawData[12] = 0.0f;
this->mRawData[13] = 0.0f;
this->mRawData[14] = -2.0f * far * near / (far - near);
this->mRawData[15] = 0.0f;
return *this;
}
And the getWorldMatrix() call does this(with some related code):
const Matrix4D& getWorldMatrix() {
return mWorldMatrix =
getTranslationMatrix() *
getRotationMatrix() *
getScaleMatrix();
}
const Matrix4D& getRotationMatrix() {
return this->mRotationMatrix.makeRotationFromEuler(this->mPitchAngle,
this->mRollAngle, this->mYawAngle);
}
const Matrix4D& getTranslationMatrix() {
return this->mTranslationMatrix.makeTranslation(this->mPosition.x,
this->mPosition.y, this->mPosition.z);
}
const Matrix4D& getScaleMatrix() {
return this->mScaleMatrix.makeScale(this->mScaleX, this->mScaleY, this->mScaleZ);
}
///This code goes in the Matrix4D class.
Matrix4D& Matrix4D::makeTranslation(const float x, const float y,
const float z) {
this->mRawData[0] = 1.0f;
this->mRawData[1] = 0.0f;
this->mRawData[2] = 0.0f;
this->mRawData[3] = 0.0f;
this->mRawData[4] = 0.0f;
this->mRawData[5] = 1.0f;
this->mRawData[6] = 0.0f;
this->mRawData[7] = 0.0f;
this->mRawData[8] = 0.0f;
this->mRawData[9] = 0.0f;
this->mRawData[10] = 1.0f;
this->mRawData[11] = 0.0f;
this->mRawData[12] = x;
this->mRawData[13] = y;
this->mRawData[14] = z;
this->mRawData[15] = 1.0f;
return *this;
}
Matrix4D& Matrix4D::makeScale(const float x, const float y,
const float z) {
this->mRawData[0] = x;
this->mRawData[1] = 0.0f;
this->mRawData[2] = 0.0f;
this->mRawData[3] = 0.0f;
this->mRawData[4] = 0.0f;
this->mRawData[5] = y;
this->mRawData[6] = 0.0f;
this->mRawData[7] = 0.0f;
this->mRawData[8] = 0.0f;
this->mRawData[9] = 0.0f;
this->mRawData[10] = z;
this->mRawData[11] = 0.0f;
this->mRawData[12] = 0.0f;
this->mRawData[13] = 0.0f;
this->mRawData[14] = 0.0f;
this->mRawData[15] = 1.0f;
return *this;
}
Matrix4D& Matrix4D::makeRotationFromEuler(const float angle_x,
const float angle_y, const float angle_z) {
float a = cosf(angle_x);
float b = sinf(angle_x);
float c = cosf(angle_y);
float d = sinf(angle_y);
float e = cosf(angle_z);
float f = sinf(angle_z);
float ad = a * d;
float bd = b * d;
this->mRawData[0] = c * e;
this->mRawData[1] = -bd * e + a * f;
this->mRawData[2] = ad * e + b * f;
this->mRawData[3] = 0.0f;
this->mRawData[4] = -c * f;
this->mRawData[5] = bd * f + a * e;
this->mRawData[6] = -ad * f + b * e;
this->mRawData[7] = 0.0f;
this->mRawData[8] = -d;
this->mRawData[9] = -b * c;
this->mRawData[10] = a * c;
this->mRawData[11] = 0.0f;
this->mRawData[12] = 0.0f;
this->mRawData[13] = 0.0f;
this->mRawData[14] = 0.0f;
this->mRawData[15] = 1.0f;
return *this;
}
Finally, the vertex shader is pretty much this:
#version 110
const float c_one = 1.0;
const float c_cero = 0.0;
uniform float time;
uniform mat4 mvp_matrix;
attribute vec3 position;
attribute vec3 normal;
attribute vec2 texture_coordinate;
varying vec2 v_texture_coordinate;
void main()
{
gl_Position = mvp_matrix * vec4(position, c_one);
v_texture_coordinate = texture_coordinate;
}
Just in case, the object being rendered is rendered on position (0.0f, 0.0f, -3.0f) with 0.5f scale applied to all the three axis's.
I don't really know what could be wrong, I'm hoping someone can spot what I may be missing, and any help would be appreciated. Debugging this would be a lot easier if I could get per-vertex results on the shader :-/.
As a side note, I'm having doubts on how to calculate the View or camera matrix, as far as I know it's simply a matrix with the inverted transformations the camera has to do, by which I understand something like, if I want to move the camera 100 units to the right, I move it 100 units to the left, is that right?
EDIT: Just trying to give more information, maybe that way someone will be able to help me. I've noticed the model matrix is incorrect with the code above, mostly because of the matrix order, I've changed it to the following and now the model matrix seems good:
const Matrix4D& getWorldMatrix() {
return mWorldMatrix =
getScaleMatrix() * getRotationMatrix() * getTranslationMatrix();
}
Despite this, still no luck. The matrices resulting from my test data are these:
Projection matrix:
[1.609506,0.000000,0.000000,0.000000]
[0.000000,2.414258,0.000000,0.000000]
[0.000000,0.000000,-1.000020,-0.002000]
[0.000000,0.000000,-1.000000,0.000000]
Model matrix:
[0.500000,0.000000,0.000000,0.000000]
[0.000000,0.500000,0.000000,0.000000]
[0.000000,0.000000,0.500000,-3.000000]
[0.000000,0.000000,0.000000,1.000000]
MVP matrix:
[0.804753,0.000000,0.000000,0.000000]
[0.000000,1.207129,0.000000,0.000000]
[0.000000,0.000000,2.499990,-0.001000]
[0.000000,0.000000,-1.000000,0.000000]
And the mesh I'm using to test all this is a simple cube going from 1.0f to -1.0f on each axis, centered on the origin. As far as I know, this should position the vertex closest to the near limit (0.0001f) on position -2.0f along the z axis, so the cube is in front of the camera and withing the view frustum. Any clues someone?

Related

What is this called and how to achieve! Visuals in processing

Hey does anyone know how to achieve this effect using processing or what this is called?
I have been trying to use the wave gradient example in the processing library and implementing Perlin noise but I can not get close to the gif quality.
I know the artist used processing but can not figure out how!
Link to gif:
https://giphy.com/gifs/processing-jodeus-QInYLzY33wMwM
The effect is reminescent of Op Art (optical illusion art): I recommend reading/learning more about this fascinating genre and artists like:
Bridget Riley
(Bridget Riley, Intake, 1964)
(Bridget Riley, Hesistate, 1964,
Copyright: (c) Bridget Riley 2018. All rights reserved. / Photo (c) Tate)
Victor Vasarely
(Victor Vasarely, Zebra Couple)
(Victor Vasarely, VegaII)
Frank Stella
(Frank Stella, Untitled 1965, Image curtesy of Art Gallery NSW)
and more
You notice this waves are reminiscent/heavily inspired by Bridget Riley's work.
I also recommend checking out San Charoenchai;s album visualiser for Beach House - 7
As mentioned in my comment: you should post your attempt.
Waves and perlin noise could work for sure.
There are many ways to achieve a similar look.
Here's tweaked version of Daniel Shiffman's Noise Wave example:
int numWaves = 24;
float[] yoff = new float[numWaves]; // 2nd dimension of perlin noise
float[] yoffIncrements = new float[numWaves];
void setup() {
size(640, 360);
noStroke();
for(int i = 0 ; i < numWaves; i++){
yoffIncrements[i] = map(i, 0, numWaves - 1, 0.01, 0.03);
}
}
void draw() {
background(0);
float waveHeight = height / numWaves;
for(int i = 0 ; i < numWaves; i++){
float waveY = i * waveHeight;
fill(i % 2 == 0 ? color(255) : color(0));
// We are going to draw a polygon out of the wave points
beginShape();
float xoff = 0; // Option #1: 2D Noise
// float xoff = yoff; // Option #2: 1D Noise
// Iterate over horizontal pixels
for (float x = 0; x <= width + 30; x += 20) {
// Calculate a y value according to noise, map to
float y = map(noise(xoff, yoff[i]), 0, 1, waveY , waveY + (waveHeight * 3)); // Option #1: 2D Noise
// float y = map(noise(xoff), 0, 1, 200,300); // Option #2: 1D Noise
// Set the vertex
vertex(x, y);
// Increment x dimension for noise
xoff += 0.05;
}
// increment y dimension for noise
yoff[i] += yoffIncrements[i];
vertex(width, height);
vertex(0, height);
endShape(CLOSE);
}
}
Notice the quality of the noise wave in comparison to the image you're trying to emulate: there is a constant rhythm to it. To me that is a hint that it's using cycling sine waves changing phase and amplitude (potentially even adding waves together).
I've written an extensive answer on animating sine waves here
(Reuben Margolin's kinectic sculpture system demo)
From your question it sounds like you would be comfortable implementing a sine wave animation. It it helps, here's an example of adding two waves together:
void setup(){
size(600,600);
noStroke();
}
void draw(){
background(0);
// how many waves per sketch height
int heightDivisions = 30;
// split the sketch height into equal height sections
float heightDivisionSize = (float)height / heightDivisions;
// for each height division
for(int j = 0 ; j < heightDivisions; j++){
// use % 2 to alternate between black and white
// see https://processing.org/reference/modulo.html and
// https://processing.org/reference/conditional.html for more
fill(j % 2 == 0 ? color(255) : color(0));
// offset drawing on Y axis
translate(0,(j * heightDivisionSize));
// start a wave shape
beginShape();
// first vertex is at the top left corner
vertex(0,height);
// how many horizontal (per wave) divisions ?
int widthDivisions = 12;
// equally space the points on the wave horizontally
float widthDivsionSize = (float)width / widthDivisions;
// for each point on the wave
for(int i = 0; i <= widthDivisions; i++){
// calculate different phases
// play with arithmetic operators to make interesting wave additions
float phase1 = (frameCount * 0.01) + ((i * j) * 0.025);
float phase2 = (frameCount * 0.05) + ((i + j) * 0.25);
// calculate vertex x position
float x = widthDivsionSize * i;
// multiple sine waves
// (can use cos() and use other ratios too
// 150 in this case is the wave amplitude (e.g. from -150 to + 150)
float y = ((sin(phase1) * sin(phase2) * 150));
// draw calculated vertex
vertex(x,y);
}
// last vertex is at bottom right corner
vertex(width,height);
// finish the shape
endShape();
}
}
The result:
Minor note on performance: this could be implemented more efficiently using PShape, however I recommend playing with the maths/geometry to find the form you're after, then as a last step think of optimizing it.
My intention is not to show you how to create an exact replica, but to show there's more to Op Art than an effect and hopefully inspire you to explore other methods of achieving something similar in the hope that you will discover your own methods and outcomes: something new and of your own through fun happy accidents.
In terms of other techniques/avenues to explore:
displacement maps:
Using an alternating black/white straight bars texture on wavy 3D geometry
using shaders:
Shaders are a huge topic on their own, but it's worth noting:
There's a very good Processing Shader Tutorial
You might be able to explore frament shaders on shadertoy, tweak the code in browser then make slight changes so you can run them in Processing.
Here are a few quick examples:
https://www.shadertoy.com/view/Wts3DB
tweaked for black/white waves in Processing as shader-Wts3DB.frag
// https://www.shadertoy.com/view/Wts3DB
uniform vec2 iResolution;
uniform float iTime;
#define COUNT 6.
#define COL_BLACK vec3(23,32,38) / 255.0
#define SF 1./min(iResolution.x,iResolution.y)
#define SS(l,s) smoothstep(SF,-SF,l-s)
#define hue(h) clamp( abs( fract(h + vec4(3,2,1,0)/3.) * 6. - 3.) -1. , 0., 1.)
// Original noise code from https://www.shadertoy.com/view/4sc3z2
#define MOD3 vec3(.1031,.11369,.13787)
vec3 hash33(vec3 p3)
{
p3 = fract(p3 * MOD3);
p3 += dot(p3, p3.yxz+19.19);
return -1.0 + 2.0 * fract(vec3((p3.x + p3.y)*p3.z, (p3.x+p3.z)*p3.y, (p3.y+p3.z)*p3.x));
}
float simplex_noise(vec3 p)
{
const float K1 = 0.333333333;
const float K2 = 0.166666667;
vec3 i = floor(p + (p.x + p.y + p.z) * K1);
vec3 d0 = p - (i - (i.x + i.y + i.z) * K2);
vec3 e = step(vec3(0.0), d0 - d0.yzx);
vec3 i1 = e * (1.0 - e.zxy);
vec3 i2 = 1.0 - e.zxy * (1.0 - e);
vec3 d1 = d0 - (i1 - 1.0 * K2);
vec3 d2 = d0 - (i2 - 2.0 * K2);
vec3 d3 = d0 - (1.0 - 3.0 * K2);
vec4 h = max(0.6 - vec4(dot(d0, d0), dot(d1, d1), dot(d2, d2), dot(d3, d3)), 0.0);
vec4 n = h * h * h * h * vec4(dot(d0, hash33(i)), dot(d1, hash33(i + i1)), dot(d2, hash33(i + i2)), dot(d3, hash33(i + 1.0)));
return dot(vec4(31.316), n);
}
void mainImage( vec4 fragColor, vec2 fragCoord )
{
}
void main(void) {
//vec2 uv = vec2(gl_FragColor.x / iResolution.y, gl_FragColor.y / iResolution.y);
vec2 uv = gl_FragCoord.xy / iResolution.y;
float m = 0.;
float t = iTime *.5;
vec3 col;
for(float i=COUNT; i>=0.; i-=1.){
float edge = simplex_noise(vec3(uv * vec2(2., 0.) + vec2(0, t + i*.15), 3.))*.2 + (.95/COUNT)*i;
float mi = SS(edge, uv.y) - SS(edge + .095, uv.y);
m += mi;
if(mi > 0.){
col = vec3(1.0);
}
}
col = mix(COL_BLACK, col, m);
gl_FragColor = vec4(col,1.0);
// mainImage(gl_FragColor,gl_FragCoord);
}
loaded in Processing as:
PShader shader;
void setup(){
size(300,300,P2D);
noStroke();
shader = loadShader("shader-Wts3DB.frag");
shader.set("iResolution",(float)width, float(height));
}
void draw(){
background(0);
shader.set("iTime",frameCount * 0.05);
shader(shader);
rect(0,0,width,height);
}
https://www.shadertoy.com/view/MtsXzl
tweaked as shader-MtsXzl.frag
//https://www.shadertoy.com/view/MtsXzl
#define SHOW_GRID 1
const float c_scale = 0.5;
const float c_rate = 2.0;
#define FLT_MAX 3.402823466e+38
uniform vec3 iMouse;
uniform vec2 iResolution;
uniform float iTime;
//=======================================================================================
float CubicHermite (float A, float B, float C, float D, float t)
{
float t2 = t*t;
float t3 = t*t*t;
float a = -A/2.0 + (3.0*B)/2.0 - (3.0*C)/2.0 + D/2.0;
float b = A - (5.0*B)/2.0 + 2.0*C - D / 2.0;
float c = -A/2.0 + C/2.0;
float d = B;
return a*t3 + b*t2 + c*t + d;
}
//=======================================================================================
float hash(float n) {
return fract(sin(n) * 43758.5453123);
}
//=======================================================================================
float GetHeightAtTile(vec2 T)
{
float rate = hash(hash(T.x) * hash(T.y))*0.5+0.5;
return (sin(iTime*rate*c_rate) * 0.5 + 0.5) * c_scale;
}
//=======================================================================================
float HeightAtPos(vec2 P)
{
vec2 tile = floor(P);
P = fract(P);
float CP0X = CubicHermite(
GetHeightAtTile(tile + vec2(-1.0,-1.0)),
GetHeightAtTile(tile + vec2(-1.0, 0.0)),
GetHeightAtTile(tile + vec2(-1.0, 1.0)),
GetHeightAtTile(tile + vec2(-1.0, 2.0)),
P.y
);
float CP1X = CubicHermite(
GetHeightAtTile(tile + vec2( 0.0,-1.0)),
GetHeightAtTile(tile + vec2( 0.0, 0.0)),
GetHeightAtTile(tile + vec2( 0.0, 1.0)),
GetHeightAtTile(tile + vec2( 0.0, 2.0)),
P.y
);
float CP2X = CubicHermite(
GetHeightAtTile(tile + vec2( 1.0,-1.0)),
GetHeightAtTile(tile + vec2( 1.0, 0.0)),
GetHeightAtTile(tile + vec2( 1.0, 1.0)),
GetHeightAtTile(tile + vec2( 1.0, 2.0)),
P.y
);
float CP3X = CubicHermite(
GetHeightAtTile(tile + vec2( 2.0,-1.0)),
GetHeightAtTile(tile + vec2( 2.0, 0.0)),
GetHeightAtTile(tile + vec2( 2.0, 1.0)),
GetHeightAtTile(tile + vec2( 2.0, 2.0)),
P.y
);
return CubicHermite(CP0X, CP1X, CP2X, CP3X, P.x);
}
//=======================================================================================
vec3 NormalAtPos( vec2 p )
{
float eps = 0.01;
vec3 n = vec3( HeightAtPos(vec2(p.x-eps,p.y)) - HeightAtPos(vec2(p.x+eps,p.y)),
2.0*eps,
HeightAtPos(vec2(p.x,p.y-eps)) - HeightAtPos(vec2(p.x,p.y+eps)));
return normalize( n );
}
//=======================================================================================
float RayIntersectSphere (vec4 sphere, in vec3 rayPos, in vec3 rayDir)
{
//get the vector from the center of this circle to where the ray begins.
vec3 m = rayPos - sphere.xyz;
//get the dot product of the above vector and the ray's vector
float b = dot(m, rayDir);
float c = dot(m, m) - sphere.w * sphere.w;
//exit if r's origin outside s (c > 0) and r pointing away from s (b > 0)
if(c > 0.0 && b > 0.0)
return -1.0;
//calculate discriminant
float discr = b * b - c;
//a negative discriminant corresponds to ray missing sphere
if(discr < 0.0)
return -1.0;
//ray now found to intersect sphere, compute smallest t value of intersection
float collisionTime = -b - sqrt(discr);
//if t is negative, ray started inside sphere so clamp t to zero and remember that we hit from the inside
if(collisionTime < 0.0)
collisionTime = -b + sqrt(discr);
return collisionTime;
}
//=======================================================================================
vec3 DiffuseColor (in vec3 pos)
{
#if SHOW_GRID
pos = mod(floor(pos),2.0);
return vec3(mod(pos.x, 2.0) < 1.0 ? 1.0 : 0.0);
#else
return vec3(0.1, 0.8, 0.9);
#endif
}
//=======================================================================================
vec3 ShadePoint (in vec3 pos, in vec3 rayDir, float time, bool fromUnderneath)
{
vec3 diffuseColor = DiffuseColor(pos);
vec3 reverseLightDir = normalize(vec3(1.0,1.0,-1.0));
vec3 lightColor = vec3(1.0);
vec3 ambientColor = vec3(0.05);
vec3 normal = NormalAtPos(pos.xz);
normal *= fromUnderneath ? -1.0 : 1.0;
// diffuse
vec3 color = diffuseColor;
float dp = dot(normal, reverseLightDir);
if(dp > 0.0)
color += (diffuseColor * lightColor);
return color;
}
//=======================================================================================
vec3 HandleRay (in vec3 rayPos, in vec3 rayDir, in vec3 pixelColor, out float hitTime)
{
float time = 0.0;
float lastHeight = 0.0;
float lastY = 0.0;
float height;
bool hitFound = false;
hitTime = FLT_MAX;
bool fromUnderneath = false;
vec2 timeMinMax = vec2(0.0, 20.0);
time = timeMinMax.x;
const int c_numIters = 100;
float deltaT = (timeMinMax.y - timeMinMax.x) / float(c_numIters);
vec3 pos = rayPos + rayDir * time;
float firstSign = sign(pos.y - HeightAtPos(pos.xz));
for (int index = 0; index < c_numIters; ++index)
{
pos = rayPos + rayDir * time;
height = HeightAtPos(pos.xz);
if (sign(pos.y - height) * firstSign < 0.0)
{
fromUnderneath = firstSign < 0.0;
hitFound = true;
break;
}
time += deltaT;
lastHeight = height;
lastY = pos.y;
}
if (hitFound) {
time = time - deltaT + deltaT*(lastHeight-lastY)/(pos.y-lastY-height+lastHeight);
pos = rayPos + rayDir * time;
pixelColor = ShadePoint(pos, rayDir, time, fromUnderneath);
hitTime = time;
}
return pixelColor;
}
//=======================================================================================
void main()
{
// scrolling camera
vec3 cameraOffset = vec3(iTime, 0.5, iTime);
//----- camera
vec2 mouse = iMouse.xy / iResolution.xy;
vec3 cameraAt = vec3(0.5,0.5,0.5) + cameraOffset;
float angleX = iMouse.z > 0.0 ? 6.28 * mouse.x : 3.14 + iTime * 0.25;
float angleY = iMouse.z > 0.0 ? (mouse.y * 6.28) - 0.4 : 0.5;
vec3 cameraPos = (vec3(sin(angleX)*cos(angleY), sin(angleY), cos(angleX)*cos(angleY))) * 5.0;
// float angleX = 0.8;
// float angleY = 0.8;
// vec3 cameraPos = vec3(0.0,0.0,0.0);
cameraPos += vec3(0.5,0.5,0.5) + cameraOffset;
vec3 cameraFwd = normalize(cameraAt - cameraPos);
vec3 cameraLeft = normalize(cross(normalize(cameraAt - cameraPos), vec3(0.0,sign(cos(angleY)),0.0)));
vec3 cameraUp = normalize(cross(cameraLeft, cameraFwd));
float cameraViewWidth = 6.0;
float cameraViewHeight = cameraViewWidth * iResolution.y / iResolution.x;
float cameraDistance = 6.0; // intuitively backwards!
// Objects
vec2 rawPercent = (gl_FragCoord.xy / iResolution.xy);
vec2 percent = rawPercent - vec2(0.5,0.5);
vec3 rayTarget = (cameraFwd * vec3(cameraDistance,cameraDistance,cameraDistance))
- (cameraLeft * percent.x * cameraViewWidth)
+ (cameraUp * percent.y * cameraViewHeight);
vec3 rayDir = normalize(rayTarget);
float hitTime = FLT_MAX;
vec3 pixelColor = vec3(1.0, 1.0, 1.0);
pixelColor = HandleRay(cameraPos, rayDir, pixelColor, hitTime);
gl_FragColor = vec4(clamp(pixelColor,0.0,1.0), 1.0);
}
and the mouse interactive Processing sketch:
PShader shader;
void setup(){
size(300,300,P2D);
noStroke();
shader = loadShader("shader-MtsXzl.frag");
shader.set("iResolution",(float)width, float(height));
}
void draw(){
background(0);
shader.set("iTime",frameCount * 0.05);
shader.set("iMouse",(float)mouseX , (float)mouseY, mousePressed ? 1.0 : 0.0);
shader(shader);
rect(0,0,width,height);
}
Shadertoy is great way to play/learn: have fun !
Update
Here's a quick test tweaking Daniel Shiffman's 3D Terrain Generation example to add a stripped texture and basic sine waves instead of perlin noise:
// Daniel Shiffman
// http://codingtra.in
// http://patreon.com/codingtrain
// Code for: https://youtu.be/IKB1hWWedMk
int cols, rows;
int scl = 20;
int w = 2000;
int h = 1600;
float flying = 0;
float[][] terrain;
PImage texture;
void setup() {
size(600, 600, P3D);
textureMode(NORMAL);
noStroke();
cols = w / scl;
rows = h/ scl;
terrain = new float[cols][rows];
texture = getBarsTexture(512,512,96);
}
void draw() {
flying -= 0.1;
float yoff = flying;
for (int y = 0; y < rows; y++) {
float xoff = 0;
for (int x = 0; x < cols; x++) {
//terrain[x][y] = map(noise(xoff, yoff), 0, 1, -100, 100);
terrain[x][y] = map(sin(xoff) * sin(yoff), 0, 1, -60, 60);
xoff += 0.2;
}
yoff += 0.2;
}
background(0);
translate(width/2, height/2+50);
rotateX(PI/9);
translate(-w/2, -h/2);
for (int y = 0; y < rows-1; y++) {
beginShape(TRIANGLE_STRIP);
texture(texture);
for (int x = 0; x < cols; x++) {
float u0 = map(x,0,cols-1,0.0,1.0);
float u1 = map(x+1,0,cols-1,0.0,1.0);
float v0 = map(y,0,rows-1,0.0,1.0);
float v1 = map(y+1,0,rows-1,0.0,1.0);
vertex(x*scl, y*scl, terrain[x][y], u0, v0);
vertex(x*scl, (y+1)*scl, terrain[x][y+1], u1, v1);
}
endShape();
}
}
PGraphics getBarsTexture(int textureWidth, int textureHeight, int numBars){
PGraphics texture = createGraphics(textureWidth, textureHeight);
int moduleSide = textureWidth / numBars;
texture.beginDraw();
texture.background(0);
texture.noStroke();
for(int i = 0; i < numBars; i+= 2){
texture.rect(0, i * moduleSide, textureWidth, moduleSide);
}
texture.endDraw();
return texture;
}

Optimize WebGL shader?

I wrote the following shader to render a pattern with a bunch of concentric circles. Eventually I want to have each rotating sphere be a light emitter to create something along these lines.
Of course right now I'm just doing the most basic part to render the different objects.
Unfortunately the shader is incredibly slow (16fps full screen on a high-end macbook). I'm pretty sure this is due to the numerous for loops and branching that I have in the shader. I'm wondering how I can pull off the geometry I'm trying to achieve in a more performance optimized way:
EDIT: you can run the shader here: https://www.shadertoy.com/view/lssyRH
One obvious optimization I am missing is that currently all the fragments are checked against the entire 24 surrounding circles. It would be pretty quick and easy to just discard these checks entirely by checking if the fragment intersects the outer bounds of the diagram. I guess I'm just trying to get a handle on how the best practice is of doing something like this.
#define N 10
#define M 5
#define K 24
#define M_PI 3.1415926535897932384626433832795
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
float aspectRatio = iResolution.x / iResolution.y;
float h = 1.0;
float w = aspectRatio;
vec2 uv = vec2(fragCoord.x / iResolution.x * aspectRatio, fragCoord.y / iResolution.y);
float radius = 0.01;
float orbitR = 0.02;
float orbiterRadius = 0.005;
float centerRadius = 0.002;
float encloseR = 2.0 * orbitR;
float encloserRadius = 0.002;
float spacingX = (w / (float(N) + 1.0));
float spacingY = h / (float(M) + 1.0);
float x = 0.0;
float y = 0.0;
vec4 totalLight = vec4(0.0, 0.0, 0.0, 1.0);
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
// compute the center of the diagram
vec2 center = vec2(spacingX * (float(i) + 1.0), spacingY * (float(j) + 1.0));
x = center.x + orbitR * cos(iGlobalTime);
y = center.y + orbitR * sin(iGlobalTime);
vec2 bulb = vec2(x,y);
if (length(uv - center) < centerRadius) {
// frag intersects white center marker
fragColor = vec4(1.0);
return;
} else if (length(uv - bulb) < radius) {
// intersects rotating "light"
fragColor = vec4(uv,0.5+0.5*sin(iGlobalTime),1.0);
return;
} else {
// intersects one of the enclosing 24 cylinders
for(int k = 0; k < K; k++) {
float theta = M_PI * 2.0 * float(k)/ float(K);
x = center.x + cos(theta) * encloseR;
y = center.y + sin(theta) * encloseR;
vec2 encloser = vec2(x,y);
if (length(uv - encloser) < encloserRadius) {
fragColor = vec4(uv,0.5+0.5*sin(iGlobalTime),1.0);
return;
}
}
}
}
}
}
Keeping in mind that you want to optimize the fragment shader, and only the fragment shader:
Move the sin(iGlobalTime) and cos(iGlobalTime) out of the loops, these remain static over the whole draw call so no need to recalculate them every loop iteration.
GPUs employ vectorized instruction sets (SIMD) where possible, take advantage of that. You're wasting lots of cycles by doing multiple scalar ops where you could use a single vector instruction(see annotated code)
[Three years wiser me here: I'm not really sure if this statement is true in regards to how modern GPUs process the instructions, however it certainly does help readability and maybe even give a hint or two to the compiler]
Do your radius checks squared, save that sqrt(length) for when you really need it
Replace float casts of constants(your loop limits) with a float constant(intelligent shader compilers will already do this, not something to count on though)
Don't have undefined behavior in your shader(not writing to gl_FragColor)
Here is an optimized and annotated version of your shader(still containing that undefined behavior, just like the one you provided). Annotation is in the form of:
// annotation
// old code, if any
new code
#define N 10
// define float constant N
#define fN 10.
#define M 5
// define float constant M
#define fM 5.
#define K 24
// define float constant K
#define fK 24.
#define M_PI 3.1415926535897932384626433832795
// predefine 2 times PI
#define M_PI2 6.28318531
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
float aspectRatio = iResolution.x / iResolution.y;
// we dont need these separate
// float h = 1.0;
// float w = aspectRatio;
// use vector ops(2 divs 1 mul => 1 div 1 mul)
// vec2 uv = vec2(fragCoord.x / iResolution.x * aspectRatio, fragCoord.y / iResolution.y);
vec2 uv = fragCoord.xy / iResolution.xy;
uv.x *= aspectRatio;
// most of the following declarations should be predefined or marked as "const"...
float radius = 0.01;
// precalc squared radius
float radius2 = radius*radius;
float orbitR = 0.02;
float orbiterRadius = 0.005;
float centerRadius = 0.002;
// precalc squared center radius
float centerRadius2 = centerRadius * centerRadius;
float encloseR = 2.0 * orbitR;
float encloserRadius = 0.002;
// precalc squared encloser radius
float encloserRadius2 = encloserRadius * encloserRadius;
// Use float constants and vector ops here(2 casts 2 adds 2 divs => 1 add 1 div)
// float spacingX = w / (float(N) + 1.0);
// float spacingY = h / (float(M) + 1.0);
vec2 spacing = vec2(aspectRatio, 1.0) / (vec2(fN, fM)+1.);
// calc sin and cos of global time
// saves N*M(sin,cos,2 muls)
vec2 stct = vec2(sin(iGlobalTime), cos(iGlobalTime));
vec2 orbit = orbitR * stct;
// not needed anymore
// float x = 0.0;
// float y = 0.0;
// was never used
// vec4 totalLight = vec4(0.0, 0.0, 0.0, 1.0);
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
// compute the center of the diagram
// Use vector ops
// vec2 center = vec2(spacingX * (float(i) + 1.0), spacingY * (float(j) + 1.0));
vec2 center = spacing * (vec2(i,j)+1.0);
// Again use vector opts, use precalced time trig(orbit = orbitR * stct)
// x = center.x + orbitR * cos(iGlobalTime);
// y = center.y + orbitR * sin(iGlobalTime);
// vec2 bulb = vec2(x,y);
vec2 bulb = center + orbit;
// calculate offsets
vec2 centerOffset = uv - center;
vec2 bulbOffset = uv - bulb;
// use squared length check
// if (length(uv - center) < centerRadius) {
if (dot(centerOffset, centerOffset) < centerRadius2) {
// frag intersects white center marker
fragColor = vec4(1.0);
return;
// use squared length check
// } else if (length(uv - bulb) < radius) {
} else if (dot(bulbOffset, bulbOffset) < radius2) {
// Use precalced sin global time in stct.x
// intersects rotating "light"
fragColor = vec4(uv,0.5+0.5*stct.x,1.0);
return;
} else {
// intersects one of the enclosing 24 cylinders
for(int k = 0; k < K; k++) {
// use predefined 2*PI and float K
float theta = M_PI2 * float(k) / fK;
// Use vector ops(2 muls 2 adds => 1 mul 1 add)
// x = center.x + cos(theta) * encloseR;
// y = center.y + sin(theta) * encloseR;
// vec2 encloser = vec2(x,y);
vec2 encloseOffset = uv - (center + vec2(cos(theta),sin(theta)) * encloseR);
if (dot(encloseOffset,encloseOffset) < encloserRadius2) {
fragColor = vec4(uv,0.5+0.5*stct.x,1.0);
return;
}
}
}
}
}
}
I did a little more thinking ... I realized the best way to optimize it is to actually change the logic so that before doing intersection tests on the small circles it checks the bounds of the group of circles. This got it to run at 60fps:
Example here:
https://www.shadertoy.com/view/lssyRH

Assimp animation bone transformation

Recently I'm working on bone animation import, so I made a 3d minecraft-like model with some IK technique to test Assimp animation import. Ouput format is COLLADA(*.dae),and the tool I used is Blender. On the programming side, my enviroment is opengl/glm/assimp. I think these information for my problem is enough.One thing, the animation of the model, I just record 7 unmove keyframe for testing assimp animation.
First, I guess my transformation except local transform part is correct, so let the function only return glm::mat4(1.0f), and the result show the bind pose(not sure) model. (see below image)
Second, Turn back the value glm::mat4(1.0f) to bone->localTransform = transform * scaling * glm::mat4(1.0f);, then the model deform. (see below image)
Test image and model in blender:
(bone->localTransform = glm::mat4(1.0f) * scaling * rotate; : this image is under ground :( )
The code here:
void MeshModel::UpdateAnimations(float time, std::vector<Bone*>& bones)
{
for each (Bone* bone in bones)
{
glm::mat4 rotate = GetInterpolateRotation(time, bone->rotationKeys);
glm::mat4 transform = GetInterpolateTransform(time, bone->transformKeys);
glm::mat4 scaling = GetInterpolateScaling(time, bone->scalingKeys);
//bone->localTransform = transform * scaling * glm::mat4(1.0f);
//bone->localTransform = glm::mat4(1.0f) * scaling * rotate;
//bone->localTransform = glm::translate(glm::mat4(1.0f), glm::vec3(0.5f));
bone->localTransform = glm::mat4(1.0f);
}
}
void MeshModel::UpdateBone(Bone * bone)
{
glm::mat4 parentTransform = bone->getParentTransform();
bone->nodeTransform = parentTransform
* bone->transform // assimp_node->mTransformation
* bone->localTransform; // T S R matrix
bone->finalTransform = globalInverse
* bone->nodeTransform
* bone->inverseBindPoseMatrix; // ai_mesh->mBones[i]->mOffsetMatrix
for (int i = 0; i < (int)bone->children.size(); i++) {
UpdateBone(bone->children[i]);
}
}
glm::mat4 Bone::getParentTransform()
{
if (this->parent != nullptr)
return parent->nodeTransform;
else
return glm::mat4(1.0f);
}
glm::mat4 MeshModel::GetInterpolateRotation(float time, std::vector<BoneKey>& keys)
{
// we need at least two values to interpolate...
if ((int)keys.size() == 0) {
return glm::mat4(1.0f);
}
if ((int)keys.size() == 1) {
return glm::mat4_cast(keys[0].rotation);
}
int rotationIndex = FindBestTimeIndex(time, keys);
int nextRotationIndex = (rotationIndex + 1);
assert(nextRotationIndex < (int)keys.size());
float DeltaTime = (float)(keys[nextRotationIndex].time - keys[rotationIndex].time);
float Factor = (time - (float)keys[rotationIndex].time) / DeltaTime;
if (Factor < 0.0f)
Factor = 0.0f;
if (Factor > 1.0f)
Factor = 1.0f;
assert(Factor >= 0.0f && Factor <= 1.0f);
const glm::quat& startRotationQ = keys[rotationIndex].rotation;
const glm::quat& endRotationQ = keys[nextRotationIndex].rotation;
glm::quat interpolateQ = glm::lerp(endRotationQ, startRotationQ, Factor);
interpolateQ = glm::normalize(interpolateQ);
return glm::mat4_cast(interpolateQ);
}
glm::mat4 MeshModel::GetInterpolateTransform(float time, std::vector<BoneKey>& keys)
{
// we need at least two values to interpolate...
if ((int)keys.size() == 0) {
return glm::mat4(1.0f);
}
if ((int)keys.size() == 1) {
return glm::translate(glm::mat4(1.0f), keys[0].vector);
}
int translateIndex = FindBestTimeIndex(time, keys);
int nextTranslateIndex = (translateIndex + 1);
assert(nextTranslateIndex < (int)keys.size());
float DeltaTime = (float)(keys[nextTranslateIndex].time - keys[translateIndex].time);
float Factor = (time - (float)keys[translateIndex].time) / DeltaTime;
if (Factor < 0.0f)
Factor = 0.0f;
if (Factor > 1.0f)
Factor = 1.0f;
assert(Factor >= 0.0f && Factor <= 1.0f);
const glm::vec3& startTranslate = keys[translateIndex].vector;
const glm::vec3& endTrabslate = keys[nextTranslateIndex].vector;
glm::vec3 delta = endTrabslate - startTranslate;
glm::vec3 resultVec = startTranslate + delta * Factor;
return glm::translate(glm::mat4(1.0f), resultVec);
}
The code idea is referenced from Matrix calculations for gpu skinning and Skeletal Animation With Assimp.
Overall, I fectch all the information from assimp to MeshModel and save it to the bone structure, so I think the information is alright?
The last thing, my vertex shader code:
#version 330 core
#define MAX_BONES_PER_VERTEX 4
in vec3 position;
in vec2 texCoord;
in vec3 normal;
in ivec4 boneID;
in vec4 boneWeight;
const int MAX_BONES = 100;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
uniform mat4 boneTransform[MAX_BONES];
out vec3 FragPos;
out vec3 Normal;
out vec2 TexCoords;
out float Visibility;
const float density = 0.007f;
const float gradient = 1.5f;
void main()
{
mat4 boneTransformation = boneTransform[boneID[0]] * boneWeight[0];
boneTransformation += boneTransform[boneID[1]] * boneWeight[1];
boneTransformation += boneTransform[boneID[2]] * boneWeight[2];
boneTransformation += boneTransform[boneID[3]] * boneWeight[3];
vec3 usingPosition = (boneTransformation * vec4(position, 1.0)).xyz;
vec3 usingNormal = (boneTransformation * vec4(normal, 1.0)).xyz;
vec4 viewPos = view * model * vec4(usingPosition, 1.0);
gl_Position = projection * viewPos;
FragPos = vec3(model * vec4(usingPosition, 1.0f));
Normal = mat3(transpose(inverse(model))) * usingNormal;
TexCoords = texCoord;
float distance = length(viewPos.xyz);
Visibility = exp(-pow(distance * density, gradient));
Visibility = clamp(Visibility, 0.0f, 1.0f);
}
If my question above, lack of code or describe vaguely, please let me know, Thanks!
Edit:(1)
In additional, my bone information like this(code fetching part):
for (int i = 0; i < (int)nodeAnim->mNumPositionKeys; i++)
{
BoneKey key;
key.time = nodeAnim->mPositionKeys[i].mTime;
aiVector3D vec = nodeAnim->mPositionKeys[i].mValue;
key.vector = glm::vec3(vec.x, vec.y, vec.z);
currentBone->transformKeys.push_back(key);
}
had some transformation vector, so my code above glm::mat4 transform = GetInterpolateTransform(time, bone->transformKeys);,Absloutely, get the same value from it. I'm not sure I made a nomove keyframe animation that provide the transform values is true or not (of course it has 7 keyframe).
A keyframe contents like this(debug on head bone):
7 different keyframe, same vector value.
Edit:(2)
If you want to test my dae file, I put it in jsfiddle, come and take it :). Another thing, in Unity my file work correctly, so I think maybe not my local transform occurs the problem, it seems the problem could be some other like parentTransform or bone->transform...etc? I aslo add local transform matrix with all bone, But can not figure out why COLLADA contains these value for my unmove animation...
For amounts of testing, and finally found the problem is the UpdateBone() part.
Before I point out my problem, I need to say the series of matrix multiplication let me confuse, but when I found the solution, it just make me totally (maybe just 90%) realize all the matrix doing.
The problem comes from the article,Matrix calculations for gpu skinning. I assumed the answer code is absolutely right and don't think any more about the matrix should be used. Thus, misusing matrix terribly transfer my look into the local transform matrix. Back to the result image in my question section is bind pose when I change the local transform matrix to return glm::mat4(1.0f).
So the question is why the changed make the bind pose? I assumed the problem must be local transform in bone space, but I'm wrong. Before I give the answer, look at the code below:
void MeshModel::UpdateBone(Bone * bone)
{
glm::mat4 parentTransform = bone->getParentTransform();
bone->nodeTransform = parentTransform
* bone->transform // assimp_node->mTransformation
* bone->localTransform; // T S R matrix
bone->finalTransform = globalInverse
* bone->nodeTransform
* bone->inverseBindPoseMatrix; // ai_mesh->mBones[i]->mOffsetMatrix
for (int i = 0; i < (int)bone->children.size(); i++) {
UpdateBone(bone->children[i]);
}
}
And I make the change as below:
void MeshModel::UpdateBone(Bone * bone)
{
glm::mat4 parentTransform = bone->getParentTransform();
if (boneName == "Scene" || boneName == "Armature")
{
bone->nodeTransform = parentTransform
* bone->transform // when isn't bone node, using assimp_node->mTransformation
* bone->localTransform; //this is your T * R matrix
}
else
{
bone->nodeTransform = parentTransform // This retrieve the transformation one level above in the tree
* bone->localTransform; //this is your T * R matrix
}
bone->finalTransform = globalInverse // scene->mRootNode->mTransformation
* bone->nodeTransform //defined above
* bone->inverseBindPoseMatrix; // ai_mesh->mBones[i]->mOffsetMatrix
for (int i = 0; i < (int)bone->children.size(); i++) {
UpdateBone(bone->children[i]);
}
}
I don't know what the assimp_node->mTransformation give me before, only the description "The transformation relative to the node's parent" in the assimp documentation. For some testing, I found that the mTransformation is the bind pose matrix which the current node relative to parent if I use these on bone node. Let me give a picture that captured the matrix on head bone.
The left part is the transform which is fetched from assimp_node->mTransformation.The right part is my unmove animation's localTransform which is calculated by the keys from nodeAnim->mPositionKeys, nodeAnim->mRotationKeys and nodeAnim->mScalingKeys.
Look back what I did, I made a bind pose tranformation twice, so the image in my question section look just seperate but not spaghetti :)
On the last, let me show what I did before the unmove animation testing and correct animation result.
(For everyone, If my concept is wrong , please point me out! Thx.)

2D topdown Water Ripple Effect (Fragment Shader)

So here's the code I found:
RippleSprite.cpp
void RippleEffectSprite::update(float delta) { //called per frame
updateRippleParams();
// TODO: improve
float rippleSpeed = 0.25f;
float maxRippleDistance = 1;
m_rippleDistance += rippleSpeed * delta;
m_rippleRange = (1 - m_rippleDistance / maxRippleDistance) * 0.02f;
if (m_rippleDistance > maxRippleDistance) {
updateRippleParams();
unscheduleUpdate(); //stop updating
}
}
void RippleEffectSprite::updateRippleParams() {
getGLProgramState()->setUniformFloat("u_rippleDistance", m_rippleDistance);
getGLProgramState()->setUniformFloat("u_rippleRange", m_rippleRange);
}
Fragment Shader
varying vec4 v_fragmentColor;
varying vec2 v_texCoord;
uniform float u_rippleDistance;
uniform float u_rippleRange;
float waveHeight(vec2 p) {
float ampFactor = 2;
float distFactor = 2;
float dist = length(p);
float delta = abs(u_rippleDistance - dist);
if (delta <= u_rippleRange) {
return cos((u_rippleDistance - dist) * distFactor) * (u_rippleRange - delta) * ampFactor;
}
else {
return 0;
}
}
void main() {
vec2 p = v_texCoord - vec2(0.5, 0.5);
vec2 normal = normalize(p);
// offset texcoord along dist direction
vec2 v_texCoord2 = v_texCoord + normal * waveHeight(p);
gl_FragColor = texture2D(CC_Texture0, v_texCoord2) * v_fragmentColor;
}
Now i'll try my best to describe it in English, when run this creates a small circle (well not really circle, more like oval) at the middle of the Sprite, then it slowly expands outward, the textures below get distorted a bit, like a wave.
I've been reading stuff about Shaders for a week now and I understand how they work, but i don't understand this algorithm, can anyone explain to me how it created a oval and made it 'evenly',slowly expand?
here's the link of the tutorial: http://www.cocos.com/doc/tutorial/show?id=2121

Drawing a circle with a sector cut out in OpenGL ES 1.1

I'm trying to draw the following shape using OpenGL ES 1.1. And well, I'm stuck, I don't really know how to go about it.
My game currently uses Android's Canvas API, which isn't hardware accelerated, so I'm rewriting it with OpenGL ES. The Canvas class has a method called drawArc which makes drawing this shape very very easy; Canvas.drawArc
Any advice/hints on doing the same with OpenGL ES?
Thank you for reading.
void gltDrawArc(unsigned int const segments, float angle_start, float angle_stop)
{
int i;
float const angle_step = (angle_stop - angle_start)/segments;
GLfloat *arc_vertices;
arc_vertices = malloc(2*sizeof(GLfloat) * (segments+2));
arc_vertices[0] = arc_vertices[1] = 0.
for(i=0; i<segments+1; i++) {
arc_vertices[2 + 2*i ] = cos(angle_start + i*angle_step);
arc_vertices[2 + 2*i + 1] = sin(angle_start + i*angle_step);
}
glVertexPointer(2, GL_FLOAT, 0, arc_vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays(GL_TRIANGLE_FAN, 0, segments+2);
free(arc_vertices);
}
What about just sampling the circle at discrete angles and drawing a GL_TRIANGLE_FAN?
EDIT: Something like this will just draw a sector of a unit circle around the origin in 2D:
glBegin(GL_TRIANGLE_FAN);
glVertex2f(0.0f, 0.0f);
for(angle=startAngle; angle<=endAngle; ++angle)
glVertex2f(cos(angle), sin(angle));
glEnd();
Actually take this more as pseudocode, as sin and cos usually work on radians and I'm using degrees, but you should get the point.
I am new to android programming so I am sure there is probably a better way to do this. But I was following the OpenGL ES 1.0 tutorial on the android developers site http://developer.android.com/resources/tutorials/opengl/opengl-es10.html which walks you through drawing a green triangle. You can follow the link and you will see most of the code I used there. I wanted to draw a circle on the triangle. The code I added is based on the above example posted by datenwolf. And is shown in snippets below:
public class HelloOpenGLES10Renderer implements GLSurfaceView.Renderer {
// the number small triangles used to make a circle
public int segments = 100;
public float mAngle;
private FloatBuffer triangleVB;
// array to hold the FloatBuffer for the small triangles
private FloatBuffer [] segmentsArray = new FloatBuffer[segments];
private void initShapes(){
.
.
.
// stuff to draw holes in the board
int i = 0;
float angle_start = 0.0f;
float angle_stop = 2.0f * (float) java.lang.Math.PI;
float angle_step = (angle_stop - angle_start)/segments;
for(i=0; i<segments; i++) {
float[] holeCoords;
FloatBuffer holeVB;
holeCoords = new float [ 9 ];
// initialize vertex Buffer for triangle
// (# of coordinate values * 4 bytes per float)
ByteBuffer vbb2 = ByteBuffer.allocateDirect(holeCoords.length * 4);
vbb2.order(ByteOrder.nativeOrder());// use the device hardware's native byte order
holeVB = vbb2.asFloatBuffer(); // create a floating point buffer from the ByteBuffer
float x1 = 0.05f * (float) java.lang.Math.cos(angle_start + i*angle_step);
float y1 = 0.05f * (float) java.lang.Math.sin(angle_start + i*angle_step);
float z1 = 0.1f;
float x2 = 0.05f * (float) java.lang.Math.cos(angle_start + i+1*angle_step);
float y2 = 0.05f * (float) java.lang.Math.sin(angle_start + i+1*angle_step);
float z2 = 0.1f;
holeCoords[0] = 0.0f;
holeCoords[1] = 0.0f;
holeCoords[2] = 0.1f;
holeCoords[3] = x1;
holeCoords[4] = y1;
holeCoords[5] = z1;
holeCoords[6] = x2;
holeCoords[7] = y2;
holeCoords[8] = z2;
holeVB.put(holeCoords); // add the coordinates to the FloatBuffer
holeVB.position(0); // set the buffer to read the first coordinate
segmentsArray[i] = holeVB;
}
}
.
.
.
public void onDrawFrame(GL10 gl) {
.
.
.
// Draw hole
gl.glColor4f( 1.0f - 0.63671875f, 1.0f - 0.76953125f, 1.0f - 0.22265625f, 0.0f);
for ( int i=0; i<segments; i++ ) {
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, segmentsArray[i]);
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3);
}
}

Resources