Lazily load columns in ActiveRecord - activerecord

So I've been doing some research and have yet to come across a good solution for this. I am trying to avoid loading rarely used columns in an ActiveRecord model.
Here's my real world problem: I have an Accounts table:
create_table "accounts", :force => true do |t|
t.string "name"
t.text "policies" # this can be a lot of data
end
I pull accounts from the database all the time and I rarely need the policies field. My concern is overhead. Thats extra data I am transferring that I rarely need.
How do I default rails to only pull the name column and grab the policies column when I need it?
I know DataMapper has a solution for this called "lazy load" for attributes. Is there a standard or generally accepted solution for this in ActiveRecord?
Thanks for your help.

The activerecord-lazy-attributes library may provide the functionality you require.
Excerpt from the README:
This ActiveRecord extension allows to define attributes to be lazy-loaded. It’s main purpose is to avoid loading large columns (such as BLOBs) with every SELECT.

Related

Why in the world would I have_many relationships?

I just ran into an interesting situation about relationships and databases. I am writing a ruby app and for my database I am using postgresql. I have a parent object "user" and a related object "thingies" where a user can have one or more thingies. What would be the advantage of using a separate table vs just embedding data within a field in the parent table?
Example from ActiveRecord:
using a related table:
def change
create_table :users do |i|
i.text :name
end
create_table :thingies do |i|
i.integer :thingie
i.text :discription
end
end
class User < ActiveRecord::Base
has_many :thingies
end
class Thingie < ActiveRecord::Base
belongs_to :user
end
using an embedded data structure (multidimensional array) method:
def change
create_table :users do |i|
i.text :name
i.text :thingies, array: true # example contents: [[thingie,discription],[thingie,discription]]
end
end
class User < ActiveRecord::Base
end
Relevant Information
I am using heroku and heroku-posgres as my database. I am using their free option, which limits me to 10,000 rows. This seems to make me want to use the multidimensional array way, but I don't really know.
Embedding a data structure in a field can work for simple cases but it prevents you from taking advantage of relational databases. Relational databases are designed to find, update, delete and protect your data. With an embedded field containing its own wad-o-data (array, JSON, xml etc), you wind up writing all the code to do this yourself.
There are cases where the embedded field might be more suitable, but for this question as an example I will use a case that highlights the advantages of a related table approch.
Imagine a User and Post example for a blog.
For an embedded post solution, you would have a table something like this (psuedocode - these are probably not valid ddl):
create table Users {
id int auto_increment,
name varchar(200)
post text[][],
}
With related tables, you would do something like
create table Users {
id int auto_increment,
name varchar(200)
}
create table Posts {
id auto_increment,
user_id int,
content text
}
Object Relational Mapping (ORM) tools: With the embedded post, you will be writing the code manually to add posts to a user, navigate through existing posts, validate them, delete them etc. With the separate table design, you can leverage the ActiveRecord (or whatever object relational system you are using) tools for this which should keep your code much simpler.
Flexibility: Imagine you want to add a date field to the post. You can do it with an embedded field, but you will have to write code to parse your array, validate the fields, update the existing embedded posts etc. With the separate table, this is much simpler. In addition, lets say you want to add an Editor to your system who approves all the posts. With the relational example this is easy. As an example to find all posts edited by 'Bob' with ActiveRecord, you would just need:
Editor.where(name: 'Bob').posts
For the embedded side, you would have to write code to walk through every user in the database, parse every one of their posts and look for 'Bob' in the editor field.
Performance: Imagine that you have 10,000 users with an average of 100 posts each. Now you want to find all posts done on a certain date. With the embedded field, you must loop through every record, parse the entire array of all posts, extract the dates and check agains the one you want. This will chew up both cpu and disk i/0. For the database, you can easily index the date field and pull out the exact records you need without parsing every post from every user.
Standards: Using a vendor specific data structure means that moving your application to another database could be a pain. Postgres appears to have a rich set of data types, but they are not the same as MySQL, Oracle, SQL Server etc. If you stick with standard data types, you will have a much easier time swapping backends.
These are the main issues I see off the top. I have made this mistake and paid the price for it, so unless there is a super-compelling reason do do otherwise, I would use the separate table.
what if users John and Ann have the same thingies? the records will be duplicated and if you decide to change the name of thingie you will have to change two or more records. If thingie is stored in the separate table you have to change only one record. FYI https://en.wikipedia.org/wiki/Database_normalization
Benefits of one to many:
Easier ORM (Object Relational Mapping) integration. You can use it either way, but you have to define your tables with native sql. Having distinct tables is easier and you can make use of auto-generated mappings.
Your space limitation of 10,000 rows will go further with the one to many relationship in the case that 2 or more people can have the same "thingies."
Handle users and thingies separately. In some cases, you might only care about people or thingies, not their relationship with each other. Some examples, updating a username or thingy description, getting a list of all thingies (or all users). Selecting from the single table can make it harding to work with.
Maintenance and manipulation is easier. In the case that a user or a thingy is updated (name change, email address update, etc), you only need to update 1 record in their table instead of writing update statements "where user_id=?".
Enforceable database constraints. What if a thingy is not owned by anyone? Is the user column now nillable? It would have to be in the single table case, so you could not enforce a simple "not nillable" username, for example.
There are a lot of reasons of course. If you are using a relational database, you should make use of the one to many by separating your objects (users and thingies) as separate tables. Considering your limitation on number of records and that the size of your dataset is small (under 10,000), you shouldn't feel the down side of normalized data.
The short truth is that there are benefits of both. You could, for example, get faster read times from the single table approach because you don't need complicated joins.
Here is a good reference with the pros/cons of both (normalized is the multiple table approach and denormalized is the single table approach).
http://www.ovaistariq.net/199/databases-normalization-or-denormalization-which-is-the-better-technique/
Besides the benefits other mentioned, there is also one thing about standards. If you are working on this app alone, then that's not a problem, but if someone else would want to change something, then the nightmare starts.
It may take this guy a lot of time to understand how it works alone. And modifing something like this will take even more time. This way, some simple improvement may be really time consuming. And at some point, you will be working with other people. So always code like the guy who works with your code at the end is the brutal psychopath who knows where you live.

Rails 4: Modifying an existing model column

When I have a column named "fullname" in the existing model, I want to set a limit of 50 characters to store in that column. What is the best method to achieve this? Use rails migrate? or code something in app/models to do syntax checking?
You should really do both. You want your database to enforce your data restrictions as this prevents any bugs in your application code from allowing invalid data. Create a rails migration to alter the data type of your column. For example...
change_table :table_name do |t|
t.change :column_name, :string, :limit => 50
end
You should also ensure the data is less than 50 characters in your application code, otherwise you will get an error if you try to insert a value greater than 50 characters. The rails way to do this would be an Active Record Validation in your model. See this link for info on Active Record validations

Should I extract functionality from this model class into a form class? (ActiveRecord Pattern)

I am in the midst of designing an application following the mvc paradigm. I'm using the sqlalchemy expression language (not the orm), and pyramid if anyone was curious.
So, for a user class, that represents a user on the system, I have several accessor methods for various pieces of data like the avatar_url, name, about, etc. I have a method called getuser which looks up a user in the db(by name or id), retrieves the users row, and encapsulates it with the user class.
However, should I have to make this look-up every-time I create a user class? What if a user is viewing her control panel and wants to change avatars, and sends an xhr; isn't it a waste to have to create a user object, and look up the users row when they wont even be using the data retrieved; but simply want to make a change to subset of the columns? I doubt this lookup is negligible despite indexing because of waiting for i/o correct?
More generally, isn't it inefficient to have to query a database and load all a model class's data to make any change (even small ones)?
I'm thinking I should just create a seperate form class (since every change made is via some form), and have specific form classes inherit them, where these setter methods will be implemented. What do you think?
EX: Class: Form <- Class: Change_password_form <- function: change_usr_pass
I'd really appreciate some advice on creating a proper design;thanks.
SQLAlchemy ORM has some facilities which would simplify your task. It looks like you're having to re-invent quite some wheels already present in the ORM layer: "I have a method called getuser which looks up a user in the db(by name or id), retrieves the users row, and encapsulates it with the user class" - this is what ORM does.
With ORM, you have a Session, which, apart from other things, serves as a cache for ORM objects, so you can avoid loading the same model more than once per transaction. You'll find that you need to load User object to authenticate the request anyway, so not querying the table at all is probably not an option.
You can also configure some attributes to be lazily loaded, so some rarely-needed or bulky properties are only loaded when you access them
You can also configure relationships to be eagerly loaded in a single query, which may save you from doing hundreds of small separate queries. I mean, in your current design, how many queries would the below code initiate:
for user in get_all_users():
print user.get_avatar_uri()
print user.get_name()
print user.get_about()
from your description it sounds like it may require 1 + (num_users*3) queries. With SQLAlchemy ORM you could load everything in a single query.
The conclusion is: fetching a single object from a database by its primary key is a reasonably cheap operation, you should not worry about that unless you're building something the size of facebook. What you should worry about is making hundreds of small separate queries where one larger query would suffice. This is the area where SQLAlchemy ORM is very-very good.
Now, regarding "isn't it a waste to have to create a user object, and look up the users row when they wont even be using the data retrieved; but simply want to make a change to subset of the columns" - I understand you're thinking about something like
class ChangePasswordForm(...):
def _change_password(self, user_id, new_password):
session.execute("UPDATE users ...", user_id, new_password)
def save(self, request):
self._change_password(request['user_id'], request['password'])
versus
class ChangePasswordForm(...):
def save(self, request):
user = getuser(request['user_id'])
user.change_password(request['password'])
The former example will issue just one query, the latter will have to issue a SELECT and build User object, and then to issue an UPDATE. The latter may seem to be "twice more efficient", but in a real application the difference may be negligible. Moreover, often you will need to fetch the object from the database anyway, either to do validation (new password can not be the same as old password), permissions checks (is user Molly allowed to edit the description of Photo #12343?) or logging.
If you think that the difference of doing the extra query is going to be important (millions of users constantly editing their profile pictures) then you probably need to do some profiling and see where the bottlenecks are.
Read up on the SOLID principle, paying particular attention to the S as it answers your question.
Create a single class to perform user existence check, and inject it into any class that requires that functionality.
Also, you need to create a data persistence class to store the user's data, so that the database doesn't have to be queried every time.

Generate models from existing tables using Rails 3

Using Rails 3.2.2 and ruby 1.9.3dev and mysql
I am new to ruby and rails. We have an existing database with a couple hundred tables. We would like to try out rails to see if it would be a positive change from PHP & ZendFramework.
Migrating data into another database is not an option for us because we have several other applications currently using this database. We wanted to "attach" a rails project to the existing database.
The part I am struggling is generating all the models from our existing database.
I seen a couple of older posts talking about some automated techniques including Magic Model Generator. While others talked about there is no way to do this, or you just have create them all manually.
I was not successful in generating models using Magic Model Generator (perhaps rails 2 only?)
Long ago, when we switched to ZendFramework, I wrote a quick script to analyze the database and generate all the model files for us. It would seem this would be a somewhat common scenario.
Note: We use ID instead of id and many have many foreign_key relationships.
So I wanted to ask the community what is the best (way/practice) to handle this?
It's not that difficult, just takes a bit more configuration. Here's a basic template for a model:
class YourIdealModelName < ActiveRecord::Base
self.table_name = `actual_table_name`
self.primary_key = `ID`
belongs_to :other_ideal_model,
:foreign_key => 'foreign_key_on_other_table'
has_many :some_other_ideal_models,
:foreign_key => 'foreign_key_on_this_table',
:primary_key => 'primary_key_on_other_table'
end
I am no expert and even had researched about this.
Without thinking to much first solution in my mind is to make the models and migrations according to the rails way so you don't have any problem, for example key and foreign key naming. If you have already some data you should migrate it to the rails db.
One reason to do this is that models are suppose not to be only data accessors but also contain the business logic

Are ActiveRecord dynamic attribute-based finders thread-safe?

according to this (older) post these Rails 3 finders have race conditions. Something like
User.find_or_create_by_username(:username => 'uuu', :password => 'xxx')
could possibly create two records under some conditions according to the post.
Is this still relevant for Rails 3.0+ ? Thanks
Yes, it is. In the amount of time the first statement is executed and the object created, a second statement can be executed in parallel.
There's no exclusive lock.
The best way to prevent this is to add an unique validation in your model and an unique index in your database. In this way, the database will raise an error if you try to create two records with the same fields.

Resources