The cell-sum puzzle is defined as follows:
Given two sets of non-negative integers X = {x1, x2,...,xm} and Y = {y1, y2,...,yn}, fill each cell in a grid of m rows and n columns with a single non-negative integer such that xi is the sum of the cells in the ith row for every i ≤ m and such that yj is the sum of the cells in the jth column for every j ≤ n.
For example, if X = {7, 13} and Y = {8, 9, 3}, then your goal would be to replace the question marks in the following grid:
? + ? + ? = 7
+ + +
? + ? + ? = 13
= = =
8 9 3
and a valid solution would be:
3 + 1 + 3 = 7
+ + +
5 + 8 + 0 = 13
= = =
8 9 3
How do you solve this puzzle for arbitrarily large m and n? Also, for your method of choice, do you know the time complexity, and can you tell whether it is the most efficient algorithm possible?
Here's a linear-time algorithm (O(m + n) assuming we can output a sparse matrix, which is asymptotically optimal because we have to read the whole input; otherwise O(m n), which is optimal because we have to write the whole output).
Fill in the upper-left question mark with the min of the first row sum and the first column sum. If the first row sum equals the min, put zeros in the rest of the row. If the first column sum equals the min, put zeros in the rest of the column. Extract the subproblem by subtracting the new value from the first row/column if they remain and recurse.
On your example:
? + ? + ? = 7
+ + +
? + ? + ? = 13
= = =
8 9 3
Min of 7 and 8 is 7.
7 + 0 + 0 = 7
+ + +
? + ? + ? = 13
= = =
8 9 3
Extract the subproblem.
? + ? + ? = 13
= = =
1 9 3
Min of 13 and 1 is 1.
1 + ? + ? = 13
= = =
1 9 3
Extract the subproblem.
? + ? = 12
= =
9 3
Keep going until we get the final solution.
7 + 0 + 0 = 7
+ + +
1 + 9 + 3 = 13
= = =
8 9 3
Edit: the problem is not NP-hard. The algorithm in David Eisenstat's answer is provably correct for finding a solution. However, I'll leave this answer here since it gives a way to find all solutions, which might be of interest to some.
For what it's worth, my "method of choice" is constraint programming; it's easy to model this as a constraint satisfaction problem, and then a wide range of well-developed algorithms can be applied. The code below is in Python, using the python-constraint library.
x_sums = [7, 13]
y_sums = [8, 9, 3]
from constraint import *
problem = Problem()
x_n, y_n = len(x_sums), len(y_sums)
max_num = max(x_sums + y_sums)
problem.addVariables(range(x_n * y_n), range(max_num + 1))
for i, x in enumerate(x_sums):
v = [ i + x_n * j for j in range(y_n) ]
problem.addConstraint(ExactSumConstraint(x), v)
for j, y in enumerate(y_sums):
v = [ i + x_n * j for i in range(x_n) ]
problem.addConstraint(ExactSumConstraint(y), v)
solution = problem.getSolution()
for i in range(x_n):
print(*( solution[i + x_n * j] for j in range(y_n) ))
Output: it finds a different solution to yours. Alternatively, you could search for all solutions; there are 26 of them.
4 0 3
4 9 0
The time complexity of this is hard to pin down exactly; as a very weak upper bound we can say it's definitely at most O(max_num ** (x_n * y_n)) since that's the size of the search space. In practice it is much better than that, but the algorithm this library uses is rather complicated and difficult to analyse precisely. It's a backtracking search, but with some clever ways of using the constraints to eliminate the vast majority of branches from the search tree.
For some idea of how deep this rabbit hole goes, the Handbook of Constraint Programming gives a lot of details about techniques that constraint-solving algorithms can use to improve efficiency.
I am trying to do this using recursion with memoization ,I have identified the following base cases .
I) when n==k there is only one group with all the balls.
II) when k>n then no groups can have atleast k balls,hence zero.
I am unable to move forward from here.How can this be done?
As an illustration when n=6 ,k=2
(2,2,2)
(4,2)
(3,3)
(6)
That is 4 different groupings can be formed.
This can be represented by the two dimensional recursive formula described below:
T(0, k) = 1
T(n, k) = 0 n < k, n != 0
T(n, k) = T(n-k, k) + T(n, k + 1)
^ ^
There is a box with k balls, No box with k balls, advance to next k
put them
In the above, T(n,k) is the number of distributions of n balls such that each box gets at least k.
And the trick is to think of k as the lowest possible number of balls, and seperate the problem to two scenarios: Is there a box with exactly k balls (if so, place them and recurse with n-k balls), or not (and then, recurse with minimal value of k+1, and same number of balls).
Example, to calculate your example: T(6,2) (6 balls, minimum 2 per box):
T(6,2) = T(4,2) + T(6,3)
T(4,2) = T(2,2) + T(4,3) = T(0,2) + T(2,3) + T(1,3) + T(4,4) =
= T(0,2) + T(2,3) + T(1,3) + T(0,4) + T(4,5) =
= 1 + 0 + 0 + 1 + 0
= 2
T(6,3) = T(3,3) + T(6,4) = T(0,3) + T(3,4) + T(2,4) + T(6,5)
= T(0,3) + T(3,4) + T(2,4) + T(1,5) + T(6,6) =
= T(0,3) + T(3,4) + T(2,4) + T(1,5) + T(0,6) + T(6,7) =
= 1 + 0 + 0 + 0 + 1 + 0
= 2
T(6,2) = T(4,2) + T(6,3) = 2 + 2 = 4
Using Dynamic Programming, it can be calculated in O(n^2) time.
This case can be solved pretty simple:
Number of buckets
The maximum-number of buckets b can be determined as follows:
b = roundDown(n / k)
Each valid distribution can use at most b buckets.
Number of distributions with x buckets
For a given number of buckets the number of distribution can be found pretty simple:
Distribute k balls to each bucket. Find the number of ways to distribute the remaining balls (r = n - k * x) to x buckets:
total_distributions(x) = bincoefficient(x , n - k * x)
EDIT: this will onyl work, if order matters. Since it doesn't for the question, we can use a few tricks here:
Each distribution can be mapped to a sequence of numbers. E.g.: d = {d1 , d2 , ... , dx}. We can easily generate all of these sequences starting with the "first" sequence {r , 0 , ... , 0} and subsequently moving 1s from the left to the right. So the next sequence would look like this: {r - 1 , 1 , ... , 0}. If only sequences matching d1 >= d2 >= ... >= dx are generated, no duplicates will be generated. This constraint can easily be used to optimize this search a bit: We can only move a 1 from da to db (with a = b - 1), if da - 1 >= db + 1 is given, since otherwise the constraint that the array is sorted is violated. The 1s to move are always the rightmost that can be moved. Another way to think of this would be to view r as a unary number and simply split that string into groups such that each group is atleast as long as it's successor.
countSequences(x)
sequence[]
sequence[0] = r
sequenceCount = 1
while true
int i = findRightmostMoveable(sequence)
if i == -1
return sequenceCount
sequence[i] -= 1
sequence[i + 1] -= 1
sequenceCount
findRightmostMoveable(sequence)
for i in [length(sequence) - 1 , 0)
if sequence[i - 1] > sequence[i] + 1
return i - 1
return -1
Actually findRightmostMoveable could be optimized a bit, if we look at the structure-transitions of the sequence (to be more precise the difference between two elements of the sequence). But to be honest I'm by far too lazy to optimize this further.
Putting the pieces together
range(1 , roundDown(n / k)).map(b -> countSequences(b)).sum()
I would like to know, how to convert fractional values (say, -.06), into negadecimal or a negative base. I know -.06 is .14 in negadecimal, because I can do it the other way around, but the regular algorithm used for converting fractions into other bases doesn't work with a negative base. Dont give a code example, just explain the steps required.
The regular algorithm works like this:
You times the value by the base you're converting into. Record whole numbers, then keep going with the remaining fraction part until there is no more fraction:
0.337 in binary:
0.337*2 = 0.674 "0"
0.674*2 = 1.348 "1"
0.348*2 = 0.696 "0"
0.696*2 = 1.392 "1"
0.392*2 = 0.784 "0"
0.784*2 = 1.568 "1"
0.568*2 = 1.136 "1"
Approximately .0101011
I have a two-step algorithm for doing the conversion. I'm not sure if this is the optimal algorithm, but it works pretty well.
The basic idea is to start off by getting a decimal representation of the number, then converting that decimal representation into a negadecimal representation by handling the even powers and odd powers separately.
Here's an example that motivates the idea behind the algorithm. This is going to go into a lot of detail, but ultimately will arrive at the algorithm and at the same time show where it comes from.
Suppose we want to convert the number 0.523598734 to negadecimal (notice that I'm presupposing you can convert to decimal). Notice that
0.523598734 = 5 * 10^-1
+ 2 * 10^-2
+ 3 * 10^-3
+ 5 * 10^-4
+ 9 * 10^-5
+ 8 * 10^-6
+ 7 * 10^-7
+ 3 * 10^-8
+ 4 * 10^-9
Since 10^-n = (-10)^-n when n is even, we can rewrite this as
0.523598734 = 5 * 10^-1
+ 2 * (-10)^-2
+ 3 * 10^-3
+ 5 * (-10)^-4
+ 9 * 10^-5
+ 8 * (-10)^-6
+ 7 * 10^-7
+ 3 * (-10)^-8
+ 4 * 10^-9
Rearranging and regrouping terms gives us this:
0.523598734 = 2 * (-10)^-2
+ 5 * (-10)^-4
+ 8 * (-10)^-6
+ 3 * (-10)^-8
+ 5 * 10^-1
+ 3 * 10^-3
+ 9 * 10^-5
+ 7 * 10^-7
+ 4 * 10^-9
If we could rewrite those negative terms as powers of -10 rather than powers of 10, we'd be done. Fortunately, we can make a nice observation: if d is a nonzero digit (1, 2, ..., or 9), then
d * 10^-n + (10 - d) * 10^-n
= 10^-n (d + 10 - d)
= 10^-n (10)
= 10^{-n+1}
Restated in a different way:
d * 10^-n + (10 - d) * 10^-n = 10^{-n+1}
Therefore, we get this useful fact:
d * 10^-n = 10^{-n+1} - (10 - d) * 10^-n
If we assume that n is odd, then -10^-n = (-10)^-n and 10^{-n+1} = (-10)^{-n+1}. Therefore, for odd n, we see that
d * 10^-n = 10^{-n+1} - (10 - d) * 10^-n
= (-10)^{-n+1} + (10 - d) * (-10)^-n
Think about what this means in a negadecimal setting. We've turned a power of ten into a sum of two powers of minus ten.
Applying this to our summation gives this:
0.523598734 = 2 * (-10)^-2
+ 5 * (-10)^-4
+ 8 * (-10)^-6
+ 3 * (-10)^-8
+ 5 * 10^-1
+ 3 * 10^-3
+ 9 * 10^-5
+ 7 * 10^-7
+ 4 * 10^-9
= 2 * (-10)^-2
+ 5 * (-10)^-4
+ 8 * (-10)^-6
+ 3 * (-10)^-8
+ (-10)^0 + 5 * (-10)^-1
+ (-10)^-2 + 7 * (-10)^-3
+ (-10)^-4 + 1 * (-10)^-5
+ (-10)^-6 + 3 * (-10)^-7
+ (-10)^-8 + 6 * (-10)^-9
Regrouping gives this:
0.523598734 = (-10)^0
+ 5 * (-10)^-1
+ 2 * (-10)^-2 + (-10)^-2
+ 7 * (-10)^-3
+ 5 * (-10)^-4 + (-10)^-4
+ 1 * (-10)^-5
+ 8 * (-10)^-6 + (-10)^-6
+ 3 * (-10)^-7
+ 3 * (-10)^-8 + (-10)^-8
+ 6 * (-10)^-9
Overall, this gives a negadecimal representation of 1.537619346ND
Now, let's think about this at a negadigit level. Notice that
Digits in even-numbered positions are mostly preserved.
Digits in odd-numbered positions are flipped: any nonzero, odd-numbered digit is replaced by 10 minus that digit.
Each time an odd-numbered digit is flipped, the preceding digit is incremented.
Let's look at 0.523598734 and apply this algorithm directly. We start by flipping all of the odd-numbered digits to give their 10's complement:
0.523598734 --> 0.527518336
Next, we increment the even-numbered digits preceding all flipped odd-numbered digits:
0.523598734 --> 0.527518336 --> 1.537619346ND
This matches our earlier number, so it looks like we have the makings of an algorithm!
Things get a bit trickier, unfortunately, when we start working with decimal values involving the number 9. For example, let's take the number 0.999. Applying our algorithm, we start by flipping all the odd-numbered digits:
0.999 --> 0.191
Now, we increment all the even-numbered digits preceding a column that had a value flipped:
0.999 --> 0.191 --> 1.1(10)1
Here, the (10) indicates that the column containing a 9 overflowed to a 10. Clearly this isn't allowed, so we have to fix it.
To figure out how to fix this, it's instructive to look at how to count in negabinary. Here's how to count from 0 to 110:
000
001
002
003
...
008
009
190
191
192
193
194
...
198
199
180
181
...
188
189
170
...
118
119
100
101
102
...
108
109
290
Fortunately, there's a really nice pattern here. The basic mechanism works like normal base-10 incrementing: increment the last digit, and if it overflows, carry a 1 into the next column, continuing to carry until everything stabilizes. The difference here is that the odd-numbered columns work in reverse. If you increment the -10s digit, for example, you actually subtract one rather than adding one, since increasing the value in that column by 10 corresponds to having one fewer -10 included in your sum. If that number underflows at 0, you reset it back to 9 (subtracting 90), then increment the next column (adding 100). In other words, the general algorithm for incrementing a negadecimal number works like this:
Start at the 1's column.
If the current column is at an even-numbered position:
Add one.
If the value reaches 10, set it to zero, then apply this procedure to the preceding column.
If the current column is at an odd-numbered position:
Subtract one.
If the values reaches -1, set it to 9, then apply this procedure to the preceding column.
You can confirm that this math works by generalizing the above reasoning about -10s digits and 100s digits and realizing that overflowing an even-numbered column corresponding to 10k means that you need to add in 10k+1, which means that you need to decrement the previous column by one, and that underflowing an odd-numbered column works by subtracting out 9 · 10k, then adding in 10k+1.
Let's go back to our example at hand. We're trying to convert 0.999 into negadecimal, and we've gotten to
0.999 --> 0.191 --> 1.1(10)1
To fix this, we'll take the 10's column and reset it back to 0, then carry the 1 into the previous column. That's an odd-numbered column, so we decrement it. This gives the final result:
0.999 --> 0.191 --> 1.1(10)1 --> 1.001ND
Overall, for positive numbers, we have the following algorithm for doing the conversion:
Processing digits from left to right:
If you're at an odd-numbered digit that isn't zero:
Replace the digit d with the digit 10 - d.
Using the standard negadecimal addition algorithm, increment the value in the previous column.
Of course, negative numbers are a whole other story. With negative numbers, the odd columns are correct and the even columns need to be flipped, since the parity of the (-10)k terms in the summation flip. Consequently, for negative numbers, you apply the above algorithm, but preserve the odd columns and flip the even columns. Similarly, instead of incrementing the preceding digit when doing a flip, you decrement the preceding digit.
As an example, suppose we want to convert -0.523598734 into negadecimal. Applying the algorithm gives this:
-0.523598734 --> 0.583592774 --> 0.6845(10)2874 --> 0.684402874ND
This is indeed the correct representation.
Hope this helps!
For your question i thought about this object-oriented code. I am not sure although. This class takes two negadecimals numbers with an operator and creates an equation, then converts those numbers to decimals.
public class NegadecimalNumber {
private int number1;
private char operator;
private int number2;
public NegadecimalNumber(int a, char op, int b) {
this.number1 = a;
this.operator = op;
this.number2 = b;
}
public int ConvertNumber1(int a) {
int i = 1;
int nega, temp;
temp = a;
int n = a & (-10);
while (n > 0) {
temp = a / (-10);
n = temp % (-10);
n = n * i;
i = i * 10;
}
nega = n;
return nega;
}
public int ConvertNumber2(int b) {
int i = 1;
int negb, temp;
temp = b;
int n = b & (-10);
while (n > 0) {
temp = b / (-10);
n = temp % (-10);
n = n * i;
i = i * 10;
}
negb = n;
return negb;
}
public double Equation() {
double ans = 0;
if (this.operator == '+') {
ans = this.number1 + this.number2;
} else if (this.operator == '-') {
ans = this.number1 - this.number2;
} else if (this.operator == '*') {
ans = this.number1 * this.number2;
} else if (this.operator == '/') {
ans = this.number1 / this.number2;
}
return ans;
}
}
Note that https://en.wikipedia.org/wiki/Negative_base#To_Negative_Base tells you how to convert whole numbers to a negative base. So one way to solve the problem is simply to multiply the fraction by a high enough power of 100 to turn it into a whole number, convert, and then divide again: -0.06 = -6 / 100 => 14/100 = 0.14.
Another way is to realise that you are trying to create a sum of the form -a/10 + b/100 -c/1000 + d/10000... to approximate the target number so you want to reduce the error as much as possible at each stage, but you need to leave an error in the direction that you can correct at the next stage. Note that this also means that a fraction might not start with 0. when converted. 0.5 => 1.5 = 1 - 5/10.
So to convert -0.06. This is negative and the first digit after the decimal point is in the range [0.0, -0.1 .. -0.9] so we start with 0. to leave us -0.06 to convert. Now if the first digit after the decimal point is 0 then I have -0.06 left, which is in the wrong direction to convert with 0.0d so I need to chose the first digit after the decimal point to produce an approximation below my target -0.06. So I chose 0.1, which is actually -0.1 and leaves me with an error of 0.04, which I can convert exactly leaving me the conversion of 0.14.
So at each point output the digit which gives you either
1) The exact result, in which case you are finished
2) An approximation which is slightly larger than the target number, if the next digit will be negative.
3) An approximation which is slightly smaller than the target number, if the next digit will be positive.
And if you start off trying to approximate a number in the range (-1.0, 0.0] at each point you can choose a digit which keeps the remaining error small enough and in the right direction, so this always works.
I was wondering if there is an algorithm that checks wether a given number is factorable into a set of prime numbers and if no give out the nearest number.
The problem comes always up when I use the FFT.
Thanks a lot for your help guys.
In general this looks like a hard problem, particularly finding the next largest integer that factors into your set of primes. However, if your set of primes isn't too big, one approach would be to turn this into an integer optimization problem by taking the logs. Here is how to find the smallest number > n that factors into a set of primes p_1...p_k
choose integers x_1,...,x_k to minimize (x_1 log p_1 + ... + x_k log p_k - log n)
Subject to:
x_1 log p_1 + ... + x_k log p_k >= log n
x_i >= 0 for all i
The x_i will give you the exponents for the primes. Here is an implementation in R using lpSolve:
minfact<-function(x,p){
sol<-lp("min",log(p),t(log(p)),">=",log(x),all.int=T)
prod(p^sol$solution)
}
> p<-c(2,3,13,31)
> x<-124363183
> y<-minfact(x,p)
> y
[1] 124730112
> factorize(y)
Big Integer ('bigz') object of length 13:
[1] 2 2 2 2 2 2 2 2 3 13 13 31 31
> y-x
[1] 366929
>
Using big integers, this works pretty well even for large numbers:
> p<-c(2,3,13,31,53,79)
> x<-as.bigz("1243631831278461278641361")
> y<-minfact(x,p)
y
>
Big Integer ('bigz') :
[1] 1243634072805560436129792
> factorize(y)
Big Integer ('bigz') object of length 45:
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[26] 2 2 2 2 2 2 2 2 3 3 3 3 13 31 31 31 31 53 53 53
>
Your question is about well-known factorization problem - which could not be resolved with 'fast' (polynomial) time. Lenstra's elliptic algorithm is the most efficient (known) way in common case, but it requires strong knowledge of numbers theory - and it's also sub-exponential (but not polynomial).
Other algorithms are listed in the page by first link in my post, but such things as direct try (brute force) are much more slower, of cause.
Please, note, that under "could not be resolved with polynomial time" - I mean that there's no way to do this now - but not that such way does not exist (at least now, number theory can not provide such solution for this problem)
Here is a brute force method in C++. It returns the factorization of the nearest factorable number. If N has two equidistant factorable neighbours, it returns the smallest one.
GCC 4.7.3: g++ -Wall -Wextra -std=c++0x factorable-neighbour.cpp
#include <iostream>
#include <vector>
using ints = std::vector<int>;
ints factor(int n, const ints& primes) {
ints f(primes.size(), 0);
for (int i = 0; i < primes.size(); ++i) {
while (0< n && !(n % primes[i])) {
n /= primes[i];
++f[i]; } }
// append the "remainder"
f.push_back(n);
return f;
}
ints closest_factorable(int n, const ints& primes) {
int d = 0;
ints r;
while (true) {
r = factor(n + d, primes);
if (r[r.size() - 1] == 1) { break; }
++d;
r = factor(n - d, primes);
if (r[r.size() - 1] == 1) { break; }
}
r.pop_back();
return r; }
int main() {
for (int i = 0; i < 30; ++i) {
for (const auto& f : closest_factorable(i, {2, 3, 5, 7, 11})) {
std::cout << f << " "; }
std::cout << "\n"; }
}
I suppose that you have a (small) set of prime numbers S and an integer n and you want to know is n factors only using number in S. The easiest way seems to be the following:
P <- product of s in S
while P != 1 do
P <- GCD(P, n)
n <- n/P
return n == 1
You compute the GCD using Euclid's algorithm.
The idea is the following: Suppose that S = {p1, p2, ... ,pk}. You can write n uniquely as
n = p1^n1 p2^n2 ... pk^nk * R
where R is coprime wrt the pi. You want to know whether R=1.
Then
GCD(n, P) = prod ( pi such that ni <> 0 ).
Therefore n/p decrease all those non zeros ni by 1 so that they eventually become 0. At the end only R remains.
For example: S = {2,3,5}, n = 5600 = 2^5*5^2*7. Then P = 2*3*5 = 30. One gets GCD(n, p)=10=2*5. And therefore n/GCD(n,p) = 560 = 2^4*5*7.
You are now back to the same problem: You want to know if 560 can be factored using S = {2,5} hence the loop. So the next steps are
GCD(560, 10) = 10. 560/GCD = 56 = 2^3 * 7.
GCD(56, 10) = 2. 56/2 = 28 = 2^2 * 7
GCD(28, 2) = 2. 28/2 = 14 = 2 * 7
GCD(14, 2) = 2. 14/2 = 7
GCD(7, 2) = 1 so that R = 7 ! Your answer if FALSE.
kissfft has a function
int kiss_fft_next_fast_size(int n)
that returns the next largest N that is an aggregate of 2,3,5.
Also related is a kf_factor function that factorizes a number n, pulling out the "nice" FFT primes first (e.g. 4's are pulled out before 2's)
Numbers whose only prime factors are 2, 3, or 5 are called ugly numbers.
Example:
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ...
1 can be considered as 2^0.
I am working on finding nth ugly number. Note that these numbers are extremely sparsely distributed as n gets large.
I wrote a trivial program that computes if a given number is ugly or not. For n > 500 - it became super slow. I tried using memoization - observation: ugly_number * 2, ugly_number * 3, ugly_number * 5 are all ugly. Even with that it is slow. I tried using some properties of log - since that will reduce this problem from multiplication to addition - but, not much luck yet. Thought of sharing this with you all. Any interesting ideas?
Using a concept similar to Sieve of Eratosthenes (thanks Anon)
for (int i(2), uglyCount(0); ; i++) {
if (i % 2 == 0)
continue;
if (i % 3 == 0)
continue;
if (i % 5 == 0)
continue;
uglyCount++;
if (uglyCount == n - 1)
break;
}
i is the nth ugly number.
Even this is pretty slow. I am trying to find the 1500th ugly number.
A simple fast solution in Java. Uses approach described by Anon..
Here TreeSet is just a container capable of returning smallest element in it. (No duplicates stored.)
int n = 20;
SortedSet<Long> next = new TreeSet<Long>();
next.add((long) 1);
long cur = 0;
for (int i = 0; i < n; ++i) {
cur = next.first();
System.out.println("number " + (i + 1) + ": " + cur);
next.add(cur * 2);
next.add(cur * 3);
next.add(cur * 5);
next.remove(cur);
}
Since 1000th ugly number is 51200000, storing them in bool[] isn't really an option.
edit
As a recreation from work (debugging stupid Hibernate), here's completely linear solution. Thanks to marcog for idea!
int n = 1000;
int last2 = 0;
int last3 = 0;
int last5 = 0;
long[] result = new long[n];
result[0] = 1;
for (int i = 1; i < n; ++i) {
long prev = result[i - 1];
while (result[last2] * 2 <= prev) {
++last2;
}
while (result[last3] * 3 <= prev) {
++last3;
}
while (result[last5] * 5 <= prev) {
++last5;
}
long candidate1 = result[last2] * 2;
long candidate2 = result[last3] * 3;
long candidate3 = result[last5] * 5;
result[i] = Math.min(candidate1, Math.min(candidate2, candidate3));
}
System.out.println(result[n - 1]);
The idea is that to calculate a[i], we can use a[j]*2 for some j < i. But we also need to make sure that 1) a[j]*2 > a[i - 1] and 2) j is smallest possible.
Then, a[i] = min(a[j]*2, a[k]*3, a[t]*5).
I am working on finding nth ugly number. Note that these numbers are extremely sparsely distributed as n gets large.
I wrote a trivial program that computes if a given number is ugly or not.
This looks like the wrong approach for the problem you're trying to solve - it's a bit of a shlemiel algorithm.
Are you familiar with the Sieve of Eratosthenes algorithm for finding primes? Something similar (exploiting the knowledge that every ugly number is 2, 3 or 5 times another ugly number) would probably work better for solving this.
With the comparison to the Sieve I don't mean "keep an array of bools and eliminate possibilities as you go up". I am more referring to the general method of generating solutions based on previous results. Where the Sieve gets a number and then removes all multiples of it from the candidate set, a good algorithm for this problem would start with an empty set and then add the correct multiples of each ugly number to that.
My answer refers to the correct answer given by Nikita Rybak.
So that one could see a transition from the idea of the first approach to that of the second.
from collections import deque
def hamming():
h=1;next2,next3,next5=deque([]),deque([]),deque([])
while True:
yield h
next2.append(2*h)
next3.append(3*h)
next5.append(5*h)
h=min(next2[0],next3[0],next5[0])
if h == next2[0]: next2.popleft()
if h == next3[0]: next3.popleft()
if h == next5[0]: next5.popleft()
What's changed from Nikita Rybak's 1st approach is that, instead of adding next candidates into single data structure, i.e. Tree set, one can add each of them separately into 3 FIFO lists. This way, each list will be kept sorted all the time, and the next least candidate must always be at the head of one ore more of these lists.
If we eliminate the use of the three lists above, we arrive at the second implementation in Nikita Rybak' answer. This is done by evaluating those candidates (to be contained in three lists) only when needed, so that there is no need to store them.
Simply put:
In the first approach, we put every new candidate into single data structure, and that's bad because too many things get mixed up unwisely. This poor strategy inevitably entails O(log(tree size)) time complexity every time we make a query to the structure. By putting them into separate queues, however, you will see that each query takes only O(1) and that's why the overall performance reduces to O(n)!!! This is because each of the three lists is already sorted, by itself.
I believe you can solve this problem in sub-linear time, probably O(n^{2/3}).
To give you the idea, if you simplify the problem to allow factors of just 2 and 3, you can achieve O(n^{1/2}) time starting by searching for the smallest power of two that is at least as large as the nth ugly number, and then generating a list of O(n^{1/2}) candidates. This code should give you an idea how to do it. It relies on the fact that the nth number containing only powers of 2 and 3 has a prime factorization whose sum of exponents is O(n^{1/2}).
def foo(n):
p2 = 1 # current power of 2
p3 = 1 # current power of 3
e3 = 0 # exponent of current power of 3
t = 1 # number less than or equal to the current power of 2
while t < n:
p2 *= 2
if p3 * 3 < p2:
p3 *= 3
e3 += 1
t += 1 + e3
candidates = [p2]
c = p2
for i in range(e3):
c /= 2
c *= 3
if c > p2: c /= 2
candidates.append(c)
return sorted(candidates)[n - (t - len(candidates))]
The same idea should work for three allowed factors, but the code gets more complex. The sum of the powers of the factorization drops to O(n^{1/3}), but you need to consider more candidates, O(n^{2/3}) to be more precise.
A lot of good answers here, but I was having trouble understanding those, specifically how any of these answers, including the accepted one, maintained the axiom 2 in Dijkstra's original paper:
Axiom 2. If x is in the sequence, so is 2 * x, 3 * x, and 5 * x.
After some whiteboarding, it became clear that the axiom 2 is not an invariant at each iteration of the algorithm, but actually the goal of the algorithm itself. At each iteration, we try to restore the condition in axiom 2. If last is the last value in the result sequence S, axiom 2 can simply be rephrased as:
For some x in S, the next value in S is the minimum of 2x,
3x, and 5x, that is greater than last. Let's call this axiom 2'.
Thus, if we can find x, we can compute the minimum of 2x, 3x, and 5x in constant time, and add it to S.
But how do we find x? One approach is, we don't; instead, whenever we add a new element e to S, we compute 2e, 3e, and 5e, and add them to a minimum priority queue. Since this operations guarantees e is in S, simply extracting the top element of the PQ satisfies axiom 2'.
This approach works, but the problem is that we generate a bunch of numbers we may not end up using. See this answer for an example; if the user wants the 5th element in S (5), the PQ at that moment holds 6 6 8 9 10 10 12 15 15 20 25. Can we not waste this space?
Turns out, we can do better. Instead of storing all these numbers, we simply maintain three counters for each of the multiples, namely, 2i, 3j, and 5k. These are candidates for the next number in S. When we pick one of them, we increment only the corresponding counter, and not the other two. By doing so, we are not eagerly generating all the multiples, thus solving the space problem with the first approach.
Let's see a dry run for n = 8, i.e. the number 9. We start with 1, as stated by axiom 1 in Dijkstra's paper.
+---------+---+---+---+----+----+----+-------------------+
| # | i | j | k | 2i | 3j | 5k | S |
+---------+---+---+---+----+----+----+-------------------+
| initial | 1 | 1 | 1 | 2 | 3 | 5 | {1} |
+---------+---+---+---+----+----+----+-------------------+
| 1 | 1 | 1 | 1 | 2 | 3 | 5 | {1,2} |
+---------+---+---+---+----+----+----+-------------------+
| 2 | 2 | 1 | 1 | 4 | 3 | 5 | {1,2,3} |
+---------+---+---+---+----+----+----+-------------------+
| 3 | 2 | 2 | 1 | 4 | 6 | 5 | {1,2,3,4} |
+---------+---+---+---+----+----+----+-------------------+
| 4 | 3 | 2 | 1 | 6 | 6 | 5 | {1,2,3,4,5} |
+---------+---+---+---+----+----+----+-------------------+
| 5 | 3 | 2 | 2 | 6 | 6 | 10 | {1,2,3,4,5,6} |
+---------+---+---+---+----+----+----+-------------------+
| 6 | 4 | 2 | 2 | 8 | 6 | 10 | {1,2,3,4,5,6} |
+---------+---+---+---+----+----+----+-------------------+
| 7 | 4 | 3 | 2 | 8 | 9 | 10 | {1,2,3,4,5,6,8} |
+---------+---+---+---+----+----+----+-------------------+
| 8 | 5 | 3 | 2 | 10 | 9 | 10 | {1,2,3,4,5,6,8,9} |
+---------+---+---+---+----+----+----+-------------------+
Notice that S didn't grow at iteration 6, because the minimum candidate 6 had already been added previously. To avoid this problem of having to remember all of the previous elements, we amend our algorithm to increment all the counters whenever the corresponding multiples are equal to the minimum candidate. That brings us to the following Scala implementation.
def hamming(n: Int): Seq[BigInt] = {
#tailrec
def next(x: Int, factor: Int, xs: IndexedSeq[BigInt]): Int = {
val leq = factor * xs(x) <= xs.last
if (leq) next(x + 1, factor, xs)
else x
}
#tailrec
def loop(i: Int, j: Int, k: Int, xs: IndexedSeq[BigInt]): IndexedSeq[BigInt] = {
if (xs.size < n) {
val a = next(i, 2, xs)
val b = next(j, 3, xs)
val c = next(k, 5, xs)
val m = Seq(2 * xs(a), 3 * xs(b), 5 * xs(c)).min
val x = a + (if (2 * xs(a) == m) 1 else 0)
val y = b + (if (3 * xs(b) == m) 1 else 0)
val z = c + (if (5 * xs(c) == m) 1 else 0)
loop(x, y, z, xs :+ m)
} else xs
}
loop(0, 0, 0, IndexedSeq(BigInt(1)))
}
Basicly the search could be made O(n):
Consider that you keep a partial history of ugly numbers. Now, at each step you have to find the next one. It should be equal to a number from the history multiplied by 2, 3 or 5. Chose the smallest of them, add it to history, and drop some numbers from it so that the smallest from the list multiplied by 5 would be larger than the largest.
It will be fast, because the search of the next number will be simple:
min(largest * 2, smallest * 5, one from the middle * 3),
that is larger than the largest number in the list. If they are scarse, the list will always contain few numbers, so the search of the number that have to be multiplied by 3 will be fast.
Here is a correct solution in ML. The function ugly() will return a stream (lazy list) of hamming numbers. The function nth can be used on this stream.
This uses the Sieve method, the next elements are only calculated when needed.
datatype stream = Item of int * (unit->stream);
fun cons (x,xs) = Item(x, xs);
fun head (Item(i,xf)) = i;
fun tail (Item(i,xf)) = xf();
fun maps f xs = cons(f (head xs), fn()=> maps f (tail xs));
fun nth(s,1)=head(s)
| nth(s,n)=nth(tail(s),n-1);
fun merge(xs,ys)=if (head xs=head ys) then
cons(head xs,fn()=>merge(tail xs,tail ys))
else if (head xs<head ys) then
cons(head xs,fn()=>merge(tail xs,ys))
else
cons(head ys,fn()=>merge(xs,tail ys));
fun double n=n*2;
fun triple n=n*3;
fun ij()=
cons(1,fn()=>
merge(maps double (ij()),maps triple (ij())));
fun quint n=n*5;
fun ugly()=
cons(1,fn()=>
merge((tail (ij())),maps quint (ugly())));
This was first year CS work :-)
To find the n-th ugly number in O (n^(2/3)), jonderry's algorithm will work just fine. Note that the numbers involved are huge so any algorithm trying to check whether a number is ugly or not has no chance.
Finding all of the n smallest ugly numbers in ascending order is done easily by using a priority queue in O (n log n) time and O (n) space: Create a priority queue of numbers with the smallest numbers first, initially including just the number 1. Then repeat n times: Remove the smallest number x from the priority queue. If x hasn't been removed before, then x is the next larger ugly number, and we add 2x, 3x and 5x to the priority queue. (If anyone doesn't know the term priority queue, it's like the heap in the heapsort algorithm). Here's the start of the algorithm:
1 -> 2 3 5
1 2 -> 3 4 5 6 10
1 2 3 -> 4 5 6 6 9 10 15
1 2 3 4 -> 5 6 6 8 9 10 12 15 20
1 2 3 4 5 -> 6 6 8 9 10 10 12 15 15 20 25
1 2 3 4 5 6 -> 6 8 9 10 10 12 12 15 15 18 20 25 30
1 2 3 4 5 6 -> 8 9 10 10 12 12 15 15 18 20 25 30
1 2 3 4 5 6 8 -> 9 10 10 12 12 15 15 16 18 20 24 25 30 40
Proof of execution time: We extract an ugly number from the queue n times. We initially have one element in the queue, and after extracting an ugly number we add three elements, increasing the number by 2. So after n ugly numbers are found we have at most 2n + 1 elements in the queue. Extracting an element can be done in logarithmic time. We extract more numbers than just the ugly numbers but at most n ugly numbers plus 2n - 1 other numbers (those that could have been in the sieve after n-1 steps). So the total time is less than 3n item removals in logarithmic time = O (n log n), and the total space is at most 2n + 1 elements = O (n).
I guess we can use Dynamic Programming (DP) and compute nth Ugly Number. Complete explanation can be found at http://www.geeksforgeeks.org/ugly-numbers/
#include <iostream>
#define MAX 1000
using namespace std;
// Find Minimum among three numbers
long int min(long int x, long int y, long int z) {
if(x<=y) {
if(x<=z) {
return x;
} else {
return z;
}
} else {
if(y<=z) {
return y;
} else {
return z;
}
}
}
// Actual Method that computes all Ugly Numbers till the required range
long int uglyNumber(int count) {
long int arr[MAX], val;
// index of last multiple of 2 --> i2
// index of last multiple of 3 --> i3
// index of last multiple of 5 --> i5
int i2, i3, i5, lastIndex;
arr[0] = 1;
i2 = i3 = i5 = 0;
lastIndex = 1;
while(lastIndex<=count-1) {
val = min(2*arr[i2], 3*arr[i3], 5*arr[i5]);
arr[lastIndex] = val;
lastIndex++;
if(val == 2*arr[i2]) {
i2++;
}
if(val == 3*arr[i3]) {
i3++;
}
if(val == 5*arr[i5]) {
i5++;
}
}
return arr[lastIndex-1];
}
// Starting point of program
int main() {
long int num;
int count;
cout<<"Which Ugly Number : ";
cin>>count;
num = uglyNumber(count);
cout<<endl<<num;
return 0;
}
We can see that its quite fast, just change the value of MAX to compute higher Ugly Number
Using 3 generators in parallel and selecting the smallest at each iteration, here is a C program to compute all ugly numbers below 2128 in less than 1 second:
#include <limits.h>
#include <stdio.h>
#if 0
typedef unsigned long long ugly_t;
#define UGLY_MAX (~(ugly_t)0)
#else
typedef __uint128_t ugly_t;
#define UGLY_MAX (~(ugly_t)0)
#endif
int print_ugly(int i, ugly_t u) {
char buf[64], *p = buf + sizeof(buf);
*--p = '\0';
do { *--p = '0' + u % 10; } while ((u /= 10) != 0);
return printf("%d: %s\n", i, p);
}
int main() {
int i = 0, n2 = 0, n3 = 0, n5 = 0;
ugly_t u, ug2 = 1, ug3 = 1, ug5 = 1;
#define UGLY_COUNT 110000
ugly_t ugly[UGLY_COUNT];
while (i < UGLY_COUNT) {
u = ug2;
if (u > ug3) u = ug3;
if (u > ug5) u = ug5;
if (u == UGLY_MAX)
break;
ugly[i++] = u;
print_ugly(i, u);
if (u == ug2) {
if (ugly[n2] <= UGLY_MAX / 2)
ug2 = 2 * ugly[n2++];
else
ug2 = UGLY_MAX;
}
if (u == ug3) {
if (ugly[n3] <= UGLY_MAX / 3)
ug3 = 3 * ugly[n3++];
else
ug3 = UGLY_MAX;
}
if (u == ug5) {
if (ugly[n5] <= UGLY_MAX / 5)
ug5 = 5 * ugly[n5++];
else
ug5 = UGLY_MAX;
}
}
return 0;
}
Here are the last 10 lines of output:
100517: 338915443777200000000000000000000000000
100518: 339129266201729628114355465608000000000
100519: 339186548067800934969350553600000000000
100520: 339298130282929870605468750000000000000
100521: 339467078447341918945312500000000000000
100522: 339569540691046437734055936000000000000
100523: 339738624000000000000000000000000000000
100524: 339952965770562084651663360000000000000
100525: 340010386766614455386112000000000000000
100526: 340122240000000000000000000000000000000
Here is a version in Javascript usable with QuickJS:
import * as std from "std";
function main() {
var i = 0, n2 = 0, n3 = 0, n5 = 0;
var u, ug2 = 1n, ug3 = 1n, ug5 = 1n;
var ugly = [];
for (;;) {
u = ug2;
if (u > ug3) u = ug3;
if (u > ug5) u = ug5;
ugly[i++] = u;
std.printf("%d: %s\n", i, String(u));
if (u >= 0x100000000000000000000000000000000n)
break;
if (u == ug2)
ug2 = 2n * ugly[n2++];
if (u == ug3)
ug3 = 3n * ugly[n3++];
if (u == ug5)
ug5 = 5n * ugly[n5++];
}
return 0;
}
main();
here is my code , the idea is to divide the number by 2 (till it gives remainder 0) then 3 and 5 . If at last the number becomes one it's a ugly number.
you can count and even print all ugly numbers till n.
int count = 0;
for (int i = 2; i <= n; i++) {
int temp = i;
while (temp % 2 == 0) temp=temp / 2;
while (temp % 3 == 0) temp=temp / 3;
while (temp % 5 == 0) temp=temp / 5;
if (temp == 1) {
cout << i << endl;
count++;
}
}
This problem can be done in O(1).
If we remove 1 and look at numbers between 2 through 30, we will notice that there are 22 numbers.
Now, for any number x in the 22 numbers above, there will be a number x + 30 in between 31 and 60 that is also ugly. Thus, we can find at least 22 numbers between 31 and 60. Now for every ugly number between 31 and 60, we can write it as s + 30. So s will be ugly too, since s + 30 is divisible by 2, 3, or 5. Thus, there will be exactly 22 numbers between 31 and 60. This logic can be repeated for every block of 30 numbers after that.
Thus, there will be 23 numbers in the first 30 numbers, and 22 for every 30 after that. That is, first 23 uglies will occur between 1 and 30, 45 uglies will occur between 1 and 60, 67 uglies will occur between 1 and 30 etc.
Now, if I am given n, say 137, I can see that 137/22 = 6.22. The answer will lie between 6*30 and 7*30 or between 180 and 210. By 180, I will have 6*22 + 1 = 133rd ugly number at 180. I will have 154th ugly number at 210. So I am looking for 4th ugly number (since 137 = 133 + 4)in the interval [2, 30], which is 5. The 137th ugly number is then 180 + 5 = 185.
Another example: if I want the 1500th ugly number, I count 1500/22 = 68 blocks. Thus, I will have 22*68 + 1 = 1497th ugly at 30*68 = 2040. The next three uglies in the [2, 30] block are 2, 3, and 4. So our required ugly is at 2040 + 4 = 2044.
The point it that I can simply build a list of ugly numbers between [2, 30] and simply find the answer by doing look ups in O(1).
Here is another O(n) approach (Python solution) based on the idea of merging three sorted lists. The challenge is to find the next ugly number in increasing order. For example, we know the first seven ugly numbers are [1,2,3,4,5,6,8]. The ugly numbers are actually from the following three lists:
list 1: 1*2, 2*2, 3*2, 4*2, 5*2, 6*2, 8*2 ... ( multiply each ugly number by 2 )
list 2: 1*3, 2*3, 3*3, 4*3, 5*3, 6*3, 8*3 ... ( multiply each ugly number by 3 )
list 3: 1*5, 2*5, 3*5, 4*5, 5*5, 6*5, 8*5 ... ( multiply each ugly number by 5 )
So the nth ugly number is the nth number of the list merged from the three lists above:
1, 1*2, 1*3, 2*2, 1*5, 2*3 ...
def nthuglynumber(n):
p2, p3, p5 = 0,0,0
uglynumber = [1]
while len(uglynumber) < n:
ugly2, ugly3, ugly5 = uglynumber[p2]*2, uglynumber[p3]*3, uglynumber[p5]*5
next = min(ugly2, ugly3, ugly5)
if next == ugly2: p2 += 1 # multiply each number
if next == ugly3: p3 += 1 # only once by each
if next == ugly5: p5 += 1 # of the three factors
uglynumber += [next]
return uglynumber[-1]
STEP I: computing three next possible ugly numbers from the three lists
ugly2, ugly3, ugly5 = uglynumber[p2]*2, uglynumber[p3]*3, uglynumber[p5]*5
STEP II, find the one next ugly number as the smallest of the three above:
next = min(ugly2, ugly3, ugly5)
STEP III: moving the pointer forward if its ugly number was the next ugly number
if next == ugly2: p2+=1
if next == ugly3: p3+=1
if next == ugly5: p5+=1
note: not using if with elif nor else
STEP IV: adding the next ugly number into the merged list uglynumber
uglynumber += [next]