Random disk writes - disk

I need to perform random updates in-place to a file. Let's I need to update a file at offset k1, k2, ...., kn. From a performance perspective does it matter if I write in any order or does the performance improve if I write in increasing order of offsets? More specifically I am going to buffer of bunch of updates in RAM and then update. So when I ready to flush the updates to disk I know the offset I need to write to.

Moving the head of a hard drive from one cylinder to another is the largest performance killer when dealing with large files on rotating disks. The further the head has to move, the larger the impact.
Do the writes in order. That will cause (statistically speaking at least) all sectors on a cylinder to be written together (no head move), then the head to move to an adjacent cylinder (shortest possible head move).
Note that if you are dealing with a logical disk that has multiple backing physical disks (e.g. RAID, NAS) the head seek issue is somewhat mitigated by having more disks, but unless you have specific knowledge of the mapping from logical sector to physical storage, doing the updates in sector order is still most likely to minimize head moves.

Unless you know how your offsets translate into specific cylinders/heads/sectors, I wouldn't worry about it. Your disk controller may re-order requests for efficiency on its own, and if your disk gets fragmented you don't know whether the file's logical blocks are sequential or not anyway.

Related

Disadvantage of Using Linked Lists in Memory Management

I'm kinda confused as to what the primary disadvantage of using a linked list would be in maintaining a list of free disk blocks. My professor said that using a bit map would help solve said problem. Why does using a bit map solve this problem?
To narrow down my questions:
What is the primary disadvantage of using a linked list in maintaining a list of free disk blocks?
Why does using a bit map solve this problem/disadvantage?
Hi,
What is the primary disadvantage of using a linked list in maintaining a list of free disk blocks?
This scheme is not very efficient since to traverse the list, we must read each block requiring substantial time.
The second disadvantage is additional memory requirement for maintaining linked list of all free disk blocks.
Why does using a bit map solve this problem/disadvantage?
Most often the list of free disk spaces is implemented as a bit map or bit vector. Each block is represented by a single bit. 0(zero) is marked as a free block whereas 1 is for allocated block. So, no need of extra extra memory to store free disk space.
Fast random access allocation check: Checking if a sector is free is as simple as checking the corresponding bit. so traversal is faster than LinkedList.
Other Advantage of using Bit Map:
Fast deletion: Data need not be overwritten on delete, flipping the corresponding bit is sufficient
May this helps you. Fill free for further clarification.
Regards,
Bhavik
The correct solution was given by #FullDecent in the comments to the other answer (he deserves your bounty). To elaborate:
Assuming that the disk drive in question is of the older, conventional type, with a spinning storage surface and a read/write head that physically moves radially across the surface...
In general it is good for files to be stored as contiguously on disk as possible, so that multiple blocks can be read sequentially. If a file is "fragmented" (its blocks are scattered in different places on the disk), the drive head will need to be repositioned several times to read the entire file. Repositioning of the head is one of the most time-consuming operation involved in a disk read (second only to starting the disk spinning after it has been stopped). Hence the procedure known as "defragmentation" or "defragging", which rearranges the used blocks on a disk to make all files contiguous.
With a linked list of free blocks, allocation involves taking blocks from the front of the list, and deallocation involves adding freed blocks to the front of the list. Hence the list can get messy, with blocks that are not adjacent on the disk frequently being adjacent in the list. To find a contiguous stretch of free blocks large enough for a large file, it may be necessary to scan a significant fraction of the list.
With a bitmap, it will still be necessary to scan for a large contiguous free block section, but this is easier since 8, 16, 32, or 64 bits (depending on the hardware's word size) can be checked in a single operation.

Constant Write Speed to Disk

I'm writing real-time data to an empty spinning disk sequentially. (EDIT: It doesn't have to be sequential, as long as I can read it back as if it was sequential.) The data arrives at a rate of 100 MB/s and the disks have an average write speed of 120 MB/s.
Sometimes (especially as free space starts to decrease) the disk speed goes under 100 MB/s depending on where on the platter the disk is writing, and I have to drop vital data.
Is there any way to write to disk in a pattern (or some other way) to ensure a constant write speed close to the average rate? Regardless of how much data there currently is on the disk.
EDIT:
Some notes on why I think this should be possible.
When usually writing to the disk, it starts in the fast portion of the platter and then writes towards the slower parts. However, if I could write half the data to the fast part and half the data to the slow part (i.e. for 1 second it could write 50MB to the fast part and 50MB to the slow part), they should meet in the middle. I could possibly achieve a constant rate?
As a programmer, I am not sure how I can decide where on the platter the data is written or even if the OS can achieve something similar.
If I had to do this on a regular Windows system, I would use a device with a higher average write speed to give me more headroom. Expecting 100MB/s average write speed over the entire disk that is rated for 120MB/s is going to cause you trouble. Spinning hard disks don't have a constant write speed over the whole disk.
The usual solution to this problem is to buffer in RAM to cover up infrequent slow downs. The more RAM you use as a buffer, the longer the span of slowness you can handle. These are tradeoffs you have to make. If your problem is the known slowdown on the inside sectors of a rotating disk, then your device just isn't fast enough.
Another thing that might help is to access the disk as directly as possible and ensure it isn't being shared by other parts of the system. Use a separate physical device, don't format it with a filesystem, write directly to the partitioned space. Yes, you'll have to deal with some of the issues a filesystem solves for you, but you also skip a bunch of code you can't control. Even then, your app could run into scheduling issues with Windows. Windows is not a RTOS, there are not guarantees as far as timing. Again this would help more with temporary slowdowns from filesystem cleanup, flushing dirty pages, etc. It probably won't help much with the "last 100GB writes at 80MB/s" problem.
If you really are stuck with a disk that goes from 120MB/s -> 80MB/s outside-to-inside (you should test with your own code and not trust the specs from the manufacture so you know what you're dealing with), then you're going to have to play partitioning games like others have suggested. On a mechanical disk, that will introduce some serious head seeking, which may eat up your improvement. To minimize seeks, it would be even more important to ensure it's a dedicated disk the OS isn't using for anything else. Also, use large buffers and write many megabytes at a time before seeking to the end of the disk. Instead of partitioning, you could write directly to the block device and control which blocks you write to. I don't know how to do this in Windows.
To solve this on Linux, I would be tempted to test mdadm's raid0 across two partitions on the same drive and see if that works. If so, then the work is done and you don't have to write and test some complicated write mechanism.
Partition the disk into two equally sized partitions. Write a few seconds worth of data alternating between the partitions. That way you get almost all of the usual sequential speed, nicely averaged. One disk seek every few seconds eats up almost no time. One seek per second reduces the usable time from 1000ms to ~990ms which is a ~1% reduction in throughput. The more RAM you can dedicate to buffering the less you have to seek.
Use more partitions to increase the averaging effect.
I fear this may be more difficult than you realize:
If your average 120 MB/s write speed is the manufacturer's value then it is most likely "optimistic" at best.
Even a benchmarked write speed is usually done on a non-partitioned/formatted drive and will be higher than what you'd typically see in actual use (how much higher is a good question).
A more important value is the drive's minimum write speed. For example, from Tom's Hardware 2013 HDD Benchmarks a drive with a 120 MB/s average has a 76 MB/s minimum.
A drive that is being used by other applications at the same time (e.g., Windows) will have a much lower write speed.
An even more important value is the drives actual measured performance. I would make a simple application similar to your use case that writes data to the drive as fast as possible until it fills the drive. Do this a few (dozen) times to get a more realistic average/minimum/maximum write speed value...it will likely be lower than you'd expect.
As you noted, even if your "real" average write speed is higher than 100 MB/s you run into issues if you run into slow write speeds just before the disk fills up, assuming you don't have somewhere else to write the data to. Using a buffer doesn't help in this case.
I'm not sure if you can actually specify a physical location to write to on the hard drive these days without getting into the drive's firmware. Even if you could this would be my last choice for a solution.
A few specific things I would look at to solve your problem:
Measure the "real" write performance of the drive to see if its fast enough. This gives you an idea of how far behind you actually are.
Put the OS on a separate drive to ensure the data drive is not being used by anything other than your application.
Get faster drives (either HDD or SDD). It is fine to use the manufacturer's write speeds as an initial guide but test them thoroughly as well.
Get more drives and put them into a RAID0 (or similar) configuration for faster write access. You'll again want to actually test this to confirm it works for you.
You could implement the strategy of alternating writes bewteen the inside and the outside by directly controlling the disk write locations. Under Windows you can open a disk like "\.\PhysicalDriveX" and control where it writes. For more info see
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
First of all, I hope you are using raw disks and not a filesystem. If you're using a filesystem, you must:
Create an empty, non-sparse file that's as large as the filesystem will fit.
Obtain a mapping from the logical file positions to disk blocks.
Reverse this mapping, so that you can map from disk blocks to logical file positions. Of course some blocks are unavailable due to filesystem's own use.
At this point, the disk looks like a raw disk that you access by disk block. It's a valid assumption that this block addressing is mostly monotonous to the physical cylinder number. IOW if you increase the disk block number, the cylinder number will never decrease (or never increase -- depending on the drive's LBA to physical mapping order).
Also, note that a disk's average write speed may be given per cylinder or per unit of storage. How would you know? You need the latter number, and the only sure way to get it is to benchmark it yourself. You need to fill the entire disk with data, by repeatedly writing a zero page to the disk, going block by block, and divide the total amount of data written by the amount it took. You need to be accessing the disk or the file in the direct mode. This should disable the OS buffering for the file data, and not for the filesystem metadata (if not using a raw disk).
At this point, all you need to do is to write data blocks of sensible sizes at the two extremes of the block numbers: you need to fill the disk from both ends inwards. The size of the data blocks depends on the bandwidth wastage you can allow for seeks. You should also assume that the hard drive might seek once in a while to update its housekeeping data. Assuming a worst-case seek taking 15ms, you waste 1.5% of per-second bandwidth for each seek. Assuming you can spare no more than 5% of bandwidth, with 1 seek/s on average for the drive itself, you can seek twice per second. Thus your block size needs to be your_bandwith_per_second/2. This bandwidth is not the disk bandwidth, but the bandwidth of your data source.
Alas, if only things where this easy. It generally turns out that the bandwidth at the middle of the disk is not the average bandwidth. During your benchmark you must also take a note of write speed over smaller sections of the disk, say every 1% of the disk. This way, when writing into each section of the disk, you can figure out how to split the data between the "low" and the "high" section that you're writing to. Suppose that you're starting out at 0% and 99% positions on the disk, and the low position has a bandwidth of mean*1.5, and the high position has a bandwidth of mean*0.8, where mean is your desired mean bandwidth. You'll then need to write 100% * 1.5/(0.8+1.5) of the data into the low position, and the remainder (100% * 0.8/(0.8+1.5)) into the slower high position.
The size of your buffer needs to be larger than just the block size, since you must assume some worst-case latency for the hard drive if it hits bad blocks and needs to relocate data, etc. I'd say a 3 second buffer may be reasonable. Optionally it can grow by itself if latencies you measure while your software runs turn out higher. This buffer must be locked ("pinned") to physical memory so that it's not subject to swapping.
Another possible option is to destroke (or short stroke) a hard drive. If you start with a 4TB or larger drive and destroke it to 2TB, only the outer portions of the platters will be used, resulting in a faster throughput rate. The issue would be getting the software that issues vendor unique commands to a hard drive to destroke it.

five minutes rules - the price of one access of disc I/O

This is very interesting topic, they use following formula to compute access interval time:
BreakEvenIntervalinSeconds = (PagesPerMBofRAM / AccessesPerSecondPerDisk) × (PricePerDiskDrive / PricePerMBofRAM).
It is derived using formulas for the cost of RAM to hold a page in the buffer pool and the cost of a (fractional) disk to perform I/O every time a page is needed, equating these two costs, and solving the equation for the interval between accesses.
so the cost of disc I/O per access is PricePerDiskDrive / AccessesPerSecondPerDisk, My question is why disc I/O cost per access is computed like this?
The underlying assumption is that the limit to the life of a disk is how many disk seeks there are, while RAM has a fixed cost for its size, and a fixed lifetime regardless of how often it is accessed. This is reasonable because seeking to disk causes physical wear and tear, and when the disk goes, you lose the whole disk. By contrast RAM has no physical moving parts, and so does not wear out with use.
With that assumption, the cost of keeping data on disk depends on the frequency of access and the cost of the disk. The cost of keeping data in RAM depends on how much RAM you're using. What they are trying to find is the break even point between where it is cheaper to keep data on disk or in RAM.
However the equation as given is incomplete. While that equation identifies relevant factors, there is an important constant of proportionality missing. How many accesses can the average hard drive sustain? How long does RAM last on average? Those enter into the costs for keeping data on hard drives and RAM, and without them you are comparing apples and oranges.
This is indicative of my impression of the whole paper. It says a lot at great length, about an important topic, but the analysis is sloppy. They are slopping and leave critical things out, and don't do enough to help people understand what they are thinking and when their analysis is appropriate what you are doing. For instance if you are trying to maintain a low latency system, you have to keep all of your data in RAM. Period. If you're processing large data sets and don't want to pay to keep it all in RAM, then you will be streaming data to/from disk. If you're keeping data in a redundant format, for instance RAID, you are doing more seeks per read than they admit.

Data structure and algorithm for representing/allocating free space in a file

I have a file with "holes" in it and want to fill them with data; I also need to be able to free "used" space and make free space.
I was thinking of using a bi-map that maps offset and length. However, I am not sure if that is the best approach if there are really tiny gaps in the file. A bitmap would work but I don't know how that can be easily switched to dynamically for certain regions of space. Perhaps some sort of radix tree is the way to go?
For what it's worth, I am up to speed on modern file system design (ZFS, HFS+, NTFS, XFS, ext...) and I find their solutions woefully inadequate.
My goals are to have pretty good space savings (hence the concern about small fragments). If I didn't care about that, I would just go for two splay trees... One sorted by offset and the other sorted by length with ties broken by offset. Note that this gives you amortized log(n) for all operations with a working set time of log(m)... Pretty darn good... But, as previously mentioned, does not handle issues concerning high fragmentation.
I have shipped commercial software that does just that. In the latest iteration, we ended up sorting blocks of the file into "type" and "index," so you could read or write "the third block of type foo." The file ended up being structured as:
1) File header. Points at master type list.
2) Data. Each block has a header with type, index, logical size, and padded size.
3) Arrays of (offset, size) tuples for each given type.
4) Array of (type, offset, count) that keeps track of the types.
We defined it so that each block was an atomic unit. You started writing a new block, and finished writing that before starting anything else. You could also "set" the contents of a block. Starting a new block always appended at the end of the file, so you could append as much as you wanted without fragmenting the block. "Setting" a block could re-use an empty block.
When you opened the file, we loaded all the indices into RAM. When you flushed or closed a file, we re-wrote each index that changed, at the end of the file, then re-wrote the index index at the end of the file, then updated the header at the front. This means that changes to the file were all atomic -- either you commit to the point where the header is updated, or you don't. (Some systems use two copies of the header 8 kB apart to preserve headers even if a disk sector goes bad; we didn't take it that far)
One of the block "types" was "free block." When re-writing changed indices, and when replacing the contents of a block, the old space on disk was merged into the free list kept in the array of free blocks. Adjacent free blocks were merged into a single bigger block. Free blocks were re-used when you "set content" or for updated type block indices, but not for the index index, which always was written last.
Because the indices were always kept in memory, working with an open file was really fast -- typically just a single read to get the data of a single block (or get a handle to a block for streaming). Opening and closing was a little more complex, as it needed to load and flush the indices. If it becomes a problem, we could load the secondary type index on demand rather than up-front to amortize that cost, but it never was a problem for us.
Top priority for persistent (on disk) storage: Robustness! Do not lose data even if the computer loses power while you're working with the file!
Second priority for on-disk storage: Do not do more I/O than necessary! Seeks are expensive. On Flash drives, each individual I/O is expensive, and writes are doubly so. Try to align and batch I/O. Using something like malloc() for on-disk storage is generally not great, because it does too many seeks. This is also a reason I don't like memory mapped files much -- people tend to treat them like RAM, and then the I/O pattern becomes very expensive.
For memory management I am a fan of the BiBOP* approach, which is normally efficient at managing fragmentation.
The idea is to segregate data based on their size. This, way, within a "bag" you only have "pages" of small blocks with identical sizes:
no need to store the size explicitly, it's known depending on the bag you're in
no "real" fragmentation within a bag
The bag keeps a simple free-list of the available pages. Each page keeps a free-list of available storage units in an overlay over those units.
You need an index to map size to its corresponding bag.
You also need a special treatment for "out-of-norm" requests (ie requests that ask for allocation greater than the page size).
This storage is extremely space efficient, especially for small objects, because the overhead is not per-object, however there is one drawback: you can end-up with "almost empty" pages that still contain one or two occupied storage units.
This can be alleviated if you have the ability to "move" existing objects. Which effectively allows to merge pages.
(*) BiBOP: Big Bag Of Pages
I would recommend making customized file-system (might contain one file of course), based on FUSE. There are a lot of available solutions for FUSE you can base on - I recommend choosing not related but simplest projects, in order to learn easily.
What algorithm and data-structure to choose, it highly deepens on your needs. It can be : map, list or file split into chunks with on-the-fly compression/decompression.
Data structures proposed by you are good ideas. As you clearly see there is a trade-off: fragmentation vs compaction.
On one side - best compaction, highest fragmentation - splay and many other kinds of trees.
On another side - lowest fragmentation, worst compaction - linked list.
In between there are B-Trees and others.
As you I understand, you stated as priority: space-saving - while taking care about performance.
I would recommend you mixed data-structure in order to achieve all requirements.
a kind of list of contiguous blocks of data
a kind of tree for current "add/remove" operation
when data are required on demand, allocate from tree. When deleted, keep track what's "deleted" using tree as well.
mixing -> during each operation (or on idle moments) do "step by step" de-fragmentation, and apply changes kept in tree to contiguous blocks, while moving them slowly.
This solution gives you fast response on demand, while "optimising" stuff while it's is used, (For example "each read of 10MB of data -> defragmantation of 1MB) or in idle moments.
The most simple solution is a free list: keep a linked list of free blocks, reusing the free space to store the address of the next block in the list.

Optimizing locations of on-disk data for sequential access

I need to store large amounts of data on-disk in approximately 1k blocks. I will be accessing these objects in a way that is hard to predict, but where patterns probably exist.
Is there an algorithm or heuristic I can use that will rearrange the objects on disk based on my access patterns to try to maximize sequential access, and thus minimize disk seek time?
On modern OSes (Windows, Linux, etc) there is absolutely nothing you can do to optimise seek times! Here's why:
You are in a pre-emptive multitasking system. Your application and all it's data can be flushed to disk at any time - user switches task, screen saver kicks in, battery runs out of charge, etc.
You cannot guarantee that the file is contiguous on disk. Doing Aaron's first bullet point will not ensure an unfragmented file. When you start writing the file, the OS doesn't know how big the file is going to be so it could put it in a small space, fragmenting it as you write more data to it.
Memory mapping the file only works as long as the file size is less than the available address range in your application. On Win32, the amount of address space available is about 2Gb - memory used by application. Mapping larger files usually involves un-mapping and re-mapping portions of the file, which won't be the best of things to do.
Putting data in the centre of the file is no help as, for all you know, the central portion of the file could be the most fragmented bit.
To paraphrase Raymond Chen, if you have to ask about OS limits, you're probably doing something wrong. Treat your filesystem as an immutable black box, it just is what it is (I know, you can use RAID and so on to help).
The first step you must take (and must be taken whenever you're optimising) is to measure what you've currently got. Never assume anything. Verify everything with hard data.
From your post, it sounds like you haven't actually written any code yet, or, if you have, there is no performance problem at the moment.
The only real solution is to look at the bigger picture and develop methods to get data off the disk without stalling the application. This would usually be through asynchronous access and speculative loading. If your application is always accessing the disk and doing work with small subsets of the data, you may want to consider reorganising the data to put all the useful stuff in one place and the other data elsewhere. Without knowing the full problem domain it's not possible to to be really helpful.
Depending on what you mean by "hard to predict", I can think of a few options:
If you always seek based on the same block field/property, store the records on disk sorted by that field. This lets you use binary search for O(log n) efficiency.
If you seek on different block fields, consider storing an external index for each field. A b-tree gives you O(log n) efficiency. When you seek, grab the appropriate index, search it for your block's data file address and jump to it.
Better yet, if your blocks are homogeneous, consider breaking them down into database records. A database gives you optimized storage, indexing, and the ability to perform advanced queries for free.
Use memory-mapped file access rather than the usual open-seek-read/write pattern. This technique works on Windows and Unix platforms.
In this way the operating system's virtual memory system will handle the caching for you. Accesses of blocks that are already in memory will result in no disk seek or read time. Writes from memory back to disk are handled automatically and efficiently and without blocking your application.
Aaron's notes are good too as they will affect initial-load time for a chunk that's not in memory. Combine that with the memory-mapped technique -- after all it's easier to reorder chunks using memcpy() than by reading/writing from disk and attempting swapouts etc.
The most simple way to solve this is to use an OS which solves that for you under the hood, like Linux. Give it enough RAM to hold 10% of the objects in RAM and it will try to keep as many of them in the cache as possible reducing the load time to 0. The recent server versions of Windows might work, too (some of them didn't for me, that's why I'm mentioning this).
If this is a no go, try this algorithm:
Create a very big file on the harddisk. It is very important that you write this in one go so the OS will allocate a continuous space on disk.
Write all your objects into that file. Make sure that each object is the same size (or give each the same space in the file and note the length in the first few bytes of of each chunk). Use an empty harddisk or a disk which has just been defragmented.
In a data structure, keep the offsets of each data chunk and how often it is accessed. When it is accessed very often, swap its position in the file with a chunk that is closer to the start of the file and which has a lesser access count.
[EDIT] Access this file with the memory-mapped API of your OS to allow the OS to effectively cache the most used parts to get best performance until you can optimize the file layout next time.
Over time, heavily accessed chunks will bubble to the top. Note that you can collect the access patterns over some time, analyze them and do the reorder over night when there is little load on your machine. Or you can do the reorder on a completely different machine and swap the file (and the offset table) when that's done.
That said, you should really rely on a modern OS where a lot of clever people have thought long and hard to solve these issues for you.
That's an interesting challenge. Unfortunately, I don't know how to solve this out of the box, either. Corbin's approach sounds reasonable to me.
Here's a little optimization suggestion, at least: Place the most-accessed items at the center of your disk (or unfragmented file), not at the start of end. That way, seeking to lesser-used data will be closer by average. Err, that's pretty obvious, though.
Please let us know if you figure out a solution yourself.

Resources