How to conflate consecutive gsubs in ruby - ruby

I have the following
address.gsub(/^\d*/, "").gsub(/\d*-?\d*$/, "").gsub(/\# ?\d*/,"")
Can this be done in one gsub? I would like to pass a list of patterns rather then just one pattern - they are all being replaced by the same thing.

You could combine them with an alternation operator (|):
address = '6 66-666 #99 11-23'
address.gsub(/^\d*|\d*-?\d*$|\# ?\d*/, "")
# " 66-666 "
address = 'pancakes 6 66-666 # pancakes #99 11-23'
address.gsub(/^\d*|\d*-?\d*$|\# ?\d*/,"")
# "pancakes 6 66-666 pancakes "
You might want to add little more whitespace cleanup. And you might want to switch to one of:
/\A\d*|\d*-?\d*\z|\# ?\d*/
/\A\d*|\d*-?\d*\Z|\# ?\d*/
depending on what your data really looks like and how you need to handle newlines.

Combining the regexes is a good idea--and relatively simple--but I'd like to recommend some additional changes. To wit:
address.gsub(/^\d+|\d+(?:-\d+)?$|\# *\d+/, "")
Of your original regexes, ^\d* and \d*-?\d*$ will always match, because they don't have to consume any characters. So you're guaranteed to perform two replacements on every line, even if that's just replacing empty strings with empty strings. Of my regexes, ^\d+ doesn't bother to match unless there's at least one digit at the beginning of the line, and \d+(?:-\d+)?$ matches what looks like an integer-or-range expression at the end of the line.
Your third regex, \# ?\d*, will match any # character, and if the # is followed by a space and some digits, it'll take those as well. Judging by your other regexes and my experience with other questions, I suspect you meant to match a # only if it's followed by one or more digits, with optional spaces intervening. That's what my third regex does.
If any of my guesses are wrong, please describe what you were trying to do, and I'll do my best to come up with the right regex. But I really don't think those first two regexes, at least, are what you want.
EDIT (in answer to the comment): When working with regexes, you should always be aware of the distinction between a regex the matches nothing and a regex that doesn't match. You say you're applying the regexes to street addresses. If an address doesn't happen to start with a house number, ^\d* will match nothing--that is, it will report a successful match, said match consisting of the empty string preceding the first character in the address.
That doesn't matter to you, you're just replacing it with another empty string anyway. But why bother doing the replacement at all? If you change the regex to ^\d+, it will report a failed match and no replacement will be performed. The result is the same either way, but the "matches noting" scenario (^\d*) results in a lot of extra work that the "doesn't match" scenario avoids. In a high-throughput situation, that could be a life-saver.
The other two regexes bring additional complications: \d*-?\d*$ could match a hyphen at the end of the string (e.g. "123-", or even "-"); and \# ?\d* could match a hash symbol anywhere in string, not just as part of an apartment/office number. You know your data, so you probably know neither of those problems will ever arise; I'm just making sure you're aware of them. My regex \d+(?:-\d+)?$ deals with the trailing-hyphen issue, and \# *\d+ at least makes sure there are digits after the hash symbol.

I think that if you combine them together in a single gsub() regex, as an alternation,
it changes the context of the starting search position.
Example, each of these lines start at the beginning of the result of the previous
regex substitution.
s/^\d*//g
s/\d*-?\d*$//g
s/\# ?\d*//g
and this
s/^\d*|\d*-?\d*$|\# ?\d*//g
resumes search/replace where the last match left off and could potentially produce a different overall output, especially since a lot of the subexpressions search for similar
if not the same characters, distinguished only by line anchors.
I think your regex's are unique enough in this case, and of course changing the order
changes the result.

Related

Slow Ruby Regex Becomes Fast with Odd Change

I've been debugging a site to find the source of long page loading times, and I've narrowed it down to a regex that's used to extract URLs from text:
/(?:([\w+.-]+):\/\/|(?:www\.))[^\s<]+/g
This takes about 3 seconds to run on a large block of text. I found out that if I add the inverse of the first clause to the start of the regex ((?:[^\w+.-]|^)), it runs almost instantly:
/(?:[^\w+.-]|^)(?:([\w+.-]++):\/\/|(?:www\.))[^\s<]+/gx
It seems to me like the added clause shouldn't affect the regex at all, since nothing could cause that clause to fail (as those characters would be matched by the "[\w+.-]++" clause). Why does this make the regex run so much faster?
Edit
Some people have asked for an example of what I'm trying to do. To simplify things and to address the concerns people had in the comments, I'll be using the following two regexes:
# slow one
/(?:([\w+.-]+):\/\/|(?:www\.))[^\s<]+/g
# fast one
/[^\w+.-](?:([\w+.-]+):\/\/|(?:www\.))[^\s<]+/g
Fire up IRB/Pry and throw some text in a variable (this is a scrubbed version of what is actually searched against):
text = <<END_OF_TEXT
Unable to deliver message to email#example.com. Error message: request: <soap:Envelope xmlns:soap=";http://schemas.xmlsoap.org/soap/envelope/" xmlns:t=";http://schemas.microsoft.com/exchange/services/year/types" xmlns:m=";http://schemas.microsoft.com/exchange/services/year/messages"><soap:Header><t:RequestServerVersion Version="ExchangeYear"/></soap:Header><soap:Body><m:CreateItem MessageDisposition="SendAndSaveCopy"><m:SavedItemFolderId><t:DistinguishedFolderId Id="stuff"/></m:SavedItemFolderId><m:Items><t:Message><t:MimeContent>RGF0ZTogRnJpLCAwMyBBcHIgMjAxNSAxNDo0MzozMCArMDMwMA0KRnJvbTogPT91dGYtOD9RPz1EMD05ND1EMD1BMT1EMD1BMl89M4j5Ba0fQrvz8atXqDIHQS4xT5dBOrGbeSsUfHFTfj6eP8blEZKl16Pgp4iA0AcFvJtCeC6s3Iq5GJbVXivtrpyKa5n3yB0f6xUQdFc95hTUleo12k0MH3rRwi0RX8wxyRaWUH81yjiXRmcjeTWAhtOCoDVb7oxOmIZAXNVQAMh05JitBFSUwVvZQuXPOo7BfGsIog4rjacpj743JsmuHxuYSl7WZQj7hV9wxvVSpE78Ey6uLAAL3yCBQ41EOSG5alLJeUOb7LVTlPQL6cauwRDUERZ5UYlJzYXj26hfrpzIVL15RlzQyLwt0cFFLcOsKNBwVXoyRyB784mqhJ7Ks9pFngzk9GZQ23M9ivSD5tDvc2083K7DPgfNThy9ev64jKZ7Ktex2ljsBovyDK9zr9RLWTViuoRjpltzZ8efRu6cBMppofm5DxbQbowvP5nRXSdS9ay9gfZ6Z2Sl3mO5W4LQh6xOE2uCqLNCeQSVWqUzf7dHyLp1RE6br76Rok1rhE8xi7NomNWViQb3ZA45gbUsY0UqvhrsgVfGZ5z5XuyzezQ9u8sHxSOGoK4XgfoZbOboOgxtB07JNx0CtGupENtOCH3Et4lGoNmJ1Mb7DaUAVNEf3m90bHm1M2d8QX2Bik6fvk9TguIKWH6syPFKJMKQrR5zIouNEyqqERYjZIJtRl6AQ4DZQd2iKt1ENZm8XZJXQhtNoE9h3DhWLDsN26cipUd6Y0abkZQX9ObR4J8ULscFmZvkh0MDS0Grpx8zwxn0Mg9bDGqbbJ97iGCb0DkhiU1TsqEZSfZzRB9c8PRba8QrlZ4FapbE1tRswDe2MPSEjJCLUJIdnHDNmBfA807NMVfwYS8FF5fG63XIruKACsXjxiKq8KF4ciXpEuM2jJcp2fCqOD0t4OUXCnGvodu7for9xKA8JWU9tJYZEAnNUKrWK8yh18pXltvElyVRNfnYXkaqFWA7Py6AmdoCoKPL3zBJh9AkoK8QpZfRgQeG5XQ4WzQlG2Zhsz7lcA9v3uyv2g4kh8HAzzZ1c6fyKP4M32yS09tN2N91aMyWTvBEic60FHZbZsnUowoSgi1kBeSE4IV3BWp6wly2Z149sUshIuBxC3IdVGA2cHHpk0aQgdIPJkqniWATqiMpNhsTtvqZAxlhTY4ELxJWuOBgfEkh5nGG3MfRcGirPRqLLFGiOn0i9HnUzsKZ4hc9jNVKUQfrQgUEbH7Y6Zck7gCgxP72JgBulHZYUPwJMWSDdlUl2LYROVFbGphx6CwCCKG0yiD1ImNu1JLr4J9fZRFLHlaDorSNCCNf6ERCBUlOIVYe2NLxQrUwMFnE6WDuNJI8WTO2jhm5PugypaQHBuUwcIvz5bhQD3PRcmJJieDTw4tbakH8NKl2KYJ63Yvsi2TP1AEuCm6EW5AVlxaDr2HqEjUdisK1TuOv2Y3vOpHjxwQGwnDAi61K2leqkNkCB4La7y2OHQVrVcEjALKF9cdR0tcfrTWXqoTPWevti8QPxkZDdBlImvMLaN1JH1XVv0XQoE5Qbvvv4RyxhGmFQV36VsdwE1s794QHwUl3dBxIZAYe5jqXc6VK90wRgvU8rDByY5WB3F0s2Bi7UeuLZnzHddTTBMiMU0yTXCQTBfx2OKM5PoIZdDbCCALMGbMwFRldlt8Z61vZEKZDjiJOkXCphAyNoY1K0vZJIGVDZjzNPRMy9fvQvOliREksdaKGYhJrpUsXGsDJLv5w7DcFygeOZPAkuacXCtLwYExbRd9SUqgOsCKRUbw7ZA4ysEVL1D8rpRbJeKKYKYIyOd9W2BEf5uGQ10YRRSzl8l87n28XApT5d8vYIznXp1zxs2jU0uQKd0NgvslVVUGRo3o17xGOnNBJM5QvyYnEG0FZnhXbIExq2zr0H1Km0OgEU1W7pFYyUE0spZwVtTazYD6TZPXUfj4jYS2vgnGRnHYfVAEH6Ufyl7VfcGbqsF8C5wTBLCSB854DBOI65NWEfJPmypwTUU5dkpk34DY9PEtb0w1LnLPAYlG35wlKPx63QExGVJgBu9rPRYX33NH8lPVeuHIXxdCZdvthOly2hVs6PsDU5WJxyIhIhvIauwY7nBx2BkGNfpoDX7Qb21MOUwWXGmwGBXIThZpP5oiUJTkVq1p3QsMl9cIlFzmvJvGMFHIca4ZZGZq4ukbFXOZJkJ5UWP0CYccv0HQPZjhpDJfnJNSctArpNmYGDAlFgkgrb24deZj0pNE1qfByF1H092bb9ZNIiBwp3d3av1S2thX6sKycCWibrF0MhqaEPGP016E018I4GUCk4IkuQ32ZMEAwzLVpjd9eT0pWMC6eeGy7EVobYs9OdZazxJQUOYc2JXGbdBJ1WK0BNrFANa3MzPUZBpw7tG98Bz3htPIAYRURwPqWFMAfwz0TvJZrLrVQUoQFBDl2mmdI1Fw0CoBnhC6w7XtjNKxfYWroixWIM6knPS1XcEDZoxSEUQGoUIzO2fK3RU2z0h4dbqUNfXCM7tLmIj6xqLlpbWZTy8XEAWq0bmABYy1VFv90yF0HeEF4laiKmYhQ5TyMJzS4XX77xIrLQNzDO03zWr1JMyucczShje0tZptKMGawoqWUyPFmbgzxTyjWjiLSWO6vxFl27SKbiERw74bqnjZ0hUWXsHHAnlCwl6nCfFvY52q6skalWZGBdiG7O4NbG8WUZxpcvtEu7xI9qYkECV8ThoicSudB0LV7T5VUKZvAwsOFcQ6L5kGJGxCS4dIwARllkvXmdKUyAYXGxk7IPoSJWcb4kjoxrlhoIvs8TlM4LfKBBYjOkfuz5XKCNEWnfDGDeWkjVagatxpbiDmDl8OhHppg6VB7LapvLIHolfqEmgAelTjhrTNBMHVypFk1945p9gDH6szpHkW5AADAy5o0rmGlUisiOG9zzEaFqMhCYIhW7Iqjd1SxBRrCPXxpe08kH6cYKObmHo1cerTBVml5BMUbmaxVG3X6VVKjFRpZD6mHOiFXvt0zwr69RntM9YvaUk31cIXOjF8rZ0VAxsnvYXD1QWtjhtY55L1DEzcSFhjiQChmBK4vUEaWksCbxYCeN8lVvCGaZ7wxHRNMdwrG7d0QHrw0C39LPZHGSjKYzbgx1JpM88dmQu2yNkrOuXJUYSJS6LBYGrIHCzJzebmmAMVjWIiCb6B5jccssUgn0Yl14PaP3LxG8QBsRlWjxfyz9b3aP4nvg4Db39hIB9cBRoqdooaa9FAv9HiVPEfiIA2N6q2DzaJFQglEcLVWXOVTuT3EAmc0Q2OqJE6WNlHFwVPXylalY4IDjEquQH4TZLjFwrUcNx3lTgSymASFmrUipau4QkL1PCrXY3AfqusoU1WRczs2ZRZhBkTu6SUGyQuyohomIXvD6AjRx6eKQwzd4VdfauUads6v7CsryyU2tJim4IQge9wLjJd5HbD2BeRjbUH918fL4BreR7Kv2wMNXydJkS7URtW3CH3VImZqUMwJCsGtD158GcDrST7A81MdjezzrBFpH43eQIXfVnKYiv7zBHLvtaJ2NaoSGC7FhzfpCjsbZFMlZkiaQykCZp5pUfH1izWvC5fpJ9Cwkc4lEMcKGLPpFq6vugPYpktDLNaAvyDZfVK8XixTzpR3DAQ5ehWsd98lAmUElUu4SlB7EuB2QglcstnnXZRCqA2jfYpGoKsMPRIYOswHEqJbiBQdvr6i8LNcyhlCQEcqufQJDSampQQTFTYlqn4XI80n9h2U3eAS5xIqCELMJaBKJIjDFBH8bTXB1RzGUL3OnIZ39tkJH1Uf2ygSlJKHTlpCSgcLxCnSFoYKzNEybkHIW6teq3lGtE0Asdsbb7ys3ictlJ7omJET0iJrSoZf9S4KCJUgBbRn3FDHTp75XWofO7kw6WpYHl3LZOAOvVabmUu9jAdtxwbsx0y5SnmtFsp40cM3uWAsIM7j6Nx3144hgKQD72VuHpeFCCj2CrtERhVxkDyAV2EmroGmhom3rlkdeyjS44eee36KR5xB6q4nxl7qdXvlchQKoWb24Q5DnDzdmIGWh6EeDHse8MLlvtlKZhsRAH3TiTdqKHN1uLDCvS9PUz7i7PzbmFC3sWVxeG2FtRzQEw6BzOlQizXBClak69r5oJ5t7Hcx1Rlv9ktHX3A1rwM8S3eTmzGuZIxXSCZRddtrbdMxAyiYuH7lhJRGbC3x5AZgcqgYHSOJa9mmh5ouVgMoxj7Pt5qHSlIJ8E4YWnLGNmQyRVou06G6Dtu3EYmtUcZ1VgnMeCdwkBBPe0bkFAbCiTRfYTgC3oyftSxW4HF5WhN5yORlTfg4rtrWOC5rWsJZiuZSvV0l9IwdkPA04n1f0ryz0Eo7EtHf5EQEIHc66340SBjKQrChypJIw77QRCBvT8bJHRHjnZytfj1clmK20A1cAJaEncUrm0FusmiQSAkZgO86abE1tmgGh27p0O71EpQ1jo13MONtsltNrsec99X2qKWec3BqalQZzss93iJYgRzKbOgf4xkOCT9xM44p55JtFA3n4AXI12yJvplL6QixN045qeqC6ssMhJE2Y8H2EhHRIYBfNpLZ3xzEXH6aeywGF3optfPN5STtwlPXFdwlMwMXgp7Av5zuhaE7SBjgb5yL9FsX1XyffxeTtXQp00Er5JJvOkeP6H1N97GX0oOj1pfC2mexPVbbgDmoY6gyTx3fw2kYFqS0laELEtium2Jy5G1QIyisvaXAUjkLS3zo1wnJPzM48VApY2OqTsZlwWZAZgk8BKMh4U7XKij7cRWJsnKAR0yIFmMWwkUmao0X8AMc4Ki114cNx1HIeGuvpIZvedCHazFBpCzwjg6DZXHFYCB0yMGILd7R5D7LHcaVtlCq4ezPCULVpD2ZsB7bSnnTj8boYmzAWaoTJwUM9h1sEuiP4klUAj4YjHj0gdBYSgGInkMC9v64iago5lxNHKsF1rIy5tWvXmEbRbcbTPmYfuy3z101KCzAfGZkWNVbWVnV0gAbMf4405gU1HYDgJFXWZgaeHdRYyhcEXkDwEBHetGF97e9GcbvMgV35n9kmWUmtAEVAmk3mNEP1dPBiuQmKVQdaJem6aOMskQEMfC8rH9ILNshh9wYqLCtpvSFlrUODHdE1dkJJUdZVfF9DJZwOZx47VFfIak4NZSaP9iGT56aY6OEqKGC4zqxDxMVWHhdE1QWpGjcEoZj0Tfn1cCZ6iTl4UHqDWK3o0MDuS16OkU0tTn7qYuBdokaVAWcdTFtoWdLeFK87ZUjax99jFeBKNEdubnWHohy4kRovMIcRZ2tq55Ix5Dmakg1juNBBlyCJ1QccOjPWIXgzsnbcgTKYuh2EwkWDoaFD3WjZMPkMLQZxr5L7z1OBDtcOfwmxp6MOGemt9lBGpDwK5LZlmpHB0jF8q1Iovdfbv3Nkg44AAjqV3oqHE41QBd34xUVlNVpNzDAyeU9reNmTE7y6A2GqUNPjerMPFp2Rj6ksqDs8JMuz4pSX4r72NlNGyOcE0dRLysM2AQwV1hI7xNPc6Jx60tqIaDeStJ9f8rLb0TjymgmsDKOFIT2SQK6R1nbORU2vhgyunLpnaw9oX41qYNYV8cttRNqtTwmlBf6Bt6jv9rJI2HBajBuBwaDpuSrsLEoWARJMImuo4djeKMm8tJHv3aj4k9qe68umdbSxSTBpffb1846CbNWnvUIki4VDEYP85c9CrRat6sk2oWH1w5NGMe5AYsR5schIVEIpf4OfHpaWHPT316ip1r3dgsKD95KZ25FzmPdtRZajIL25f5ZMzgpXZliwrThurFBDPRZVpiiZB1uEPWIktHU3e8u1B7Ug8qg3IQkEeXk73ir1Npe2ZpI4JYKkNkksrQjjchMJOWLkHzHoAQfuXhPfdVVUDfvVteBgXV2KB2XJKe73pSPqIeQhL8ozu7VjpBr9qoXW2UhtWzTCSDUjokLNta7KnEmqEZbcVyaQMfS0cb0GpM1B0JGXimkCiiQm22P4Hj4dsVJenXUnjqpLHBvFFgRspNqsMLaIqBdE1dLqcREtGPhy3dFta6OppJ8q4IhmsEqkLLu43LMzDH1p9e1xatH5iSiUNn8S1jhEIKEe1LGAO5VcYvds0WcJS0JchSDLvlIwQsb5xTAvocdWFICvIfCWpnmCkoCKl777LZ74G78STTjPubAaME3x9cliLzMIVXuGqZZ8zwpM2D71TIAgBy49IFvqrTMm7Rw50I5hZOwEMmCna4lzEKAdIMYiSrD0XHOA9XdGj6xj91zch0qR05HRLfJeIZzuiLR80B7QjxI84OgD7nLZrVuWxjVoOCvx8sR8vQcGClXUmMpB3RZfamBEswBsvaUKVPiHDTp0QpMKUtMeX9LzNLSrq7WgNugolPz2MpsGSNKYKREvhvTFAcxBc7ZjpflosHH4OvaQ0DUzgxp3mbZpY7eeHLeLT2DMODiYBD8QPaLusJXTvRovJviw8v0DG7A7s0qTfhidyiFVoWJvnZ4n3QSOh79XDlx5fAL1oZjQdEHEOpzGtuhXqCnJhvhhPN3vybKfyIvyJzIOu0NNSPe7P8jFOyLzOKiHMMSR0QG4vZhp3winzD6yCuq8tFo5p0jktwjvArc1OME09KdXyEgIY1JNANsHJiSTmnvRkXg0UyoZX48SdjAnDxlKLzRfT5128hIMRQXpi8RDI4SraijcX91If4NX7nm4K2AruWqbLnUTFiaXzcLBPitp9Ij5KyH3sxspAnykxHFTLfqPDv2Q6QBAyMvDw2TkDMB4dsJAmbiDelw8B01xbdm0j8f4Kemcqy8mjJlEX6cb9lSdqJnYeDisEXEsbqgVnS1ZejTomV0sjFYV3BGZ7oFwtiZa7MjnLhcYQAaaacw3lpSiRqM4yFvPrbV2ZAMl1vpd3YULaO36WZHRvUi8qe1Xwwmj4CHBDeX2moaIdlKxDlksKwvLi9C0hvOXdEBQiBWLA3AUO3pXGs9qIYY0BHolqWQCnXDMUcJBHgGaiT1CRXLydzNk0A3i8QXINindQsCuive0xjpb7YJYzpu7zlXYgmctprr6szyhLBIditlsuTAgu832tLUrnnKc1W4JHh5i9892V0FoD8ct9DOKUlB804IH9douZ97giyttRaIQXPr4DsQyYS25sDsC1h6bFsCqPIqXXbVHHims4hrrWz8f9kPlkBoEeIs5wFDCdmSnGE1hZI95NIH0JYnoBIsTRKLA3pwOlp6M1hvsXr3MIUONrmoZbHUdGyGhuUqeCDC6WM9bfqakuSVEfmf5nO9ayGrrPH5jfnVcbhMapBWAqp59gjAMbpPgYyD5pqD7apEEM66gEhwTLGWIUmrNL2SRTxmkA5BjBPiwmAjMeQFxdi1fU3CONJAR5vqL7mmOCs3nNjNDrMJrUztVBfcydUz5QKW0S045Qs2f8oskGtIolrChroR4zLkvFkW0EJOTNMw5H3ntK6QRDgJDFyfBFOx7r80oYpzPBT3kUi1E7glttb986fOE5nlEeUoK1a23u3gAuCVLfj8eeovwPUgIzvWMvzfKWHPoNoJ41I0FJgr6M59sskx93wX0Olvcm2Jg9Vn5kWIUvQ7A1OYx9p1iLa4UHtiS71l4SYEyiLJWayxixuUGqrnR43eFezXLwf9N0b6LwsPf1b0xkgtFKFF8WR9V1k5VsoQDSxPkn0bXOksiQuvbRdLIMLGSefKY4sUUGYD3I01KicMj8R0yU3hpmZJyqX5meQzZjGNvkTMQfTPTY5jWkPFdRTAR8Y0WGYbw2LSjQU1yH0cE02IhOoRbjrdvq6gVuHx1my8BVHbSNSlp3IfzV6KAfqZQ9OgmXgnndfQ1IE0vdhQUsY5OkAhxlqdEUSL9tA5m8RP3qsgOwiQcu6CKWlS26lK2AetDh2r1njq13KOWL4rKikQaP0qxpS1z8oWSNwCURLEUzeESLuIiuv9drIn5HvjfrmgVFdhfi03MmuI2LLA69UbMsA8GhFki07Ssx4W0WBgYuhYSgh84SZMRyd9n3R5mjqdIW4fUORe6Ql3P0JFYjJTRKeakoqupL6DaYVYGmaxDY77bepszXnDJnbhPi18NiGt11vygNPvw8ppijWSaXxP3pb94IdjATK4f5886oyTSkhhYidWK6qQfXwsDuf8hr3Zhv5Vd5IC7hjnK82XYFkMu0slr2LyqsVnvPvdLFvnxdazJMtwBG1f3ddCDWOgGEtXDLps3dQ6HOxJGSrT9WIGSiuii3ypKAUc1uesbVte228SDOZcAfVMut395Ulw4X8VRw3szjRKKmlOvRgTrC5yYONhXiLC0VLv74wTkLG3QTEPuqKGXJszO0mTjbUmIcGlX4q7sLxNwrZnwDOJPJXh12cwCYJBsqToxoL9tstwxB3x99QzOQMuCAR8BdywJcO6wmc1n0fwVnK7tBalXMiTv8Fns0qURWzagMEOiN488KS0Qj54TRG6AJxWULfa9kfCbXxZycud5yPbmUcE6IQFnNTaKmj7m0U6t9mA5fPveDDtyUqrstxyr4WMtw4FiBwjpNpraKWnzBfi4OBK4iYaCJdPJKRrpaAQyGSJyGedQ9AgFHYh9EZopKZgH5pcBnf2oHfhuBTq0NJGmrKusb4nC1PGjV1jFGpF3r1RgYtWMQte6KUQNCDSW0XGegmU2VVrboOaeAaMWM23WXRxa92e6zMsYxzLgMUpAmXnonfIr9ZPAjzwx0UXLqnWZP99s6Da9DewN2EKXEXQgzllbLdr61pNasr0KeyOq1sRWLuQzXrvergG5q4GKUopJBH02sAFfTUcaxgbTvRUxwqTbvQksLz7KwsirrtzuaxTk5WpL8yg51mjPrvyLUhCGFv7IvQible3seUkmqea9eKwDfvc9ZJNzOzWTkIL5VygG7onS1dlkp7bYFeLl6n2Iy9XKAVDrzSH5zzCEPoihK2NftnXrPwf4YoEstg1zl93WCMJC3mingiyZ3ILTq7hEDvJWzDdtKP5OIlMFHlrexwg2ej5aoa6YO7oi9PgzjfSVlGmGbqv0IggxHhe0FP43CcaqJUfTzYekLHOmhk4to5Lf7ttISxAda3bQOSkxYR4gS7z9GCCgsArwzfgfmw42YyGwydDTMQuSrnLvJXLXvaO8Yn22gkQ3XZ22axJhQaqcAb4lw3oDTeQwSxFDxly8J4U4Vm71rKMWxAyfzDYkRMQMMehpw5bCPLuYUOBYTBIWdQtr4HXze3FNHRDdWAud7EorALu9Q4IwNrvf0Fy0nPivrrLEjE5wBJDH1usLMMTizZSCvpKscVN6NBk2ll8PmEQG01D9lCTOUIXpbbOatipjSTSHgR3lHt30rkmskRXxz6aVYzYaLmBDucf5vhv9IWORxRsP0KfkgqzfoZi9dJ3RZoPaVJ2WoRCwGsFIx8cVPsF6L67kSTNuci9B0TbFUeuaCS1bauz4IUaWB4UZnZOY0hMtDYxc1zOSBM2h8x1QVeOxAbI74Sr6d768RWzx6sSShJ0RIS36zlLFmJ106ogFEqfA81dhSVJflBuFcSHMPwyvkD9YNiIWJCkP8kdoHASwdde7hdnom1OVKZSvjJxibdAJhKGwYdSy4YUsBPGXCtemsMp8Zn0xoQc5nhI2fPkrLPwFMftO4J2IO0sj7rQvtlYylTZFMHzaG5VDzrZrFMRPEnnjAkoKDFhfiXY9iMAK8busZaHjhANoQ5l0ewEkDCqxaU5ej8EffvmEruywI3luXyGkEUpef3qKev3w4Wf5umX5mYQncTAfqmxp0kn1iedSIfJFVu7Tm0IBAuir0T3XakyRgCEyVvytFNwiuvuVDw2HCmfgAnB7NtRvG8045XyirFBpLbgefOVkYh4IK1svdL86Dlh5Jo5mRhBTNf1nEmHcylgMJUWVB0RaVa8d4KwR2Y7cag7BSlC6IXl2Bxh1TZau4TUpSnikx7JtC42nkCSYFJbq1FIHMu2xrNhlrjgvNSjjipLOyv7uOzHUrgoCTcYYFik77ncAbCbFSxC4sjYAWR7rIQBC6Ghyw8eBdCdQyVwznjeeUFWpcWMiJC0C8ZywQllwj2eU0gsZjFHxPsMlU9v5yHJ5un2HlqDMHknrlXWGKctXt0xwcVQx0agFVJh7uRVNiYU5eATpDUPj8MBHekFD9m65mVTbNFOcpxKHliJqjglUmz0TCqCTlrRyjiNM7csOq6BWDt2jyhp0JTpZPTL161cmwgQWfcVPqv0lyNKWeSb8zVr86H9jxBTRu4CfOW7KorFEtkIVqDzynx3c33ruKPapMe83M4rNeXc8enDEMJ34z7urZDCmqXhgghwV8jzG959csv6J2kvfBLoTCH4lm0RRpWVkkx1oGVPTA9UiqDjv10qNXYCF0RUn6vsqGcz213KSfC4vG3X2pSnmk0Au8dEjA0mzhILy0z72zHLStcIuH6ShW3R1xQYr6bdGnsGn34aiz5ztJaVcwszOg31QXUJ4nRCMrVmkdkC5LuhpQcl3vKnzXxPEDHF6jscBfSYCEVNRmV1x1eXtNePKJMfSTvn4NUCitvqYrXVhrlfEIdANYxy5Z8wTaZh2fn3G4jKj4356Ar5bmpRjgcWyGvGjEILm0mknGSNMD2498vzP2wQO9rnM1tTbcVBckAgZCOzW3eYs0tJ25u7uhbLxxJLK3Z5laGpYL3QSUxiaPX1Che7fnMIL20jC9cJ3kUfzuILxSaFXdTuPxz2xox4JZ4yfdvaGDozG4DsTA0o0ZYSQQ8i2l7zNYQ136wputv5lfVrDGZ2bniRuAx99qKFrdTaYy4RuGdBDqS1g9OBwS6Wol0TgA291cWuxgINnACTQT5jcGQ0Z1ovcCkXjYR3Uk2vSz5a7pWxT27ZOSyGZ4s7g48aBaQCQIX9W5P235Aksw3AF0t2FTzYaVLwe5gYnZEtmdeh8CZOH8ZoDh3hcmEKbAH1kxHYqUzileGXWtGU8sR171Wf5Q6CXVnVL3gKJwUyLjESokumSA3vAJXysiuowShTVu8YBj5qqMzq1Jkuc6pg8xAOxfSrQOmDp6ul2uCtQWk5GcGQxzIxwH8RFhWj5p9zFbjHwkgZYDQoBpaZjXGbLYQUbWm3eCp5OTayu5FBljTodojLXszR789I87EadRyK72h4sSaXP5xvOY55puL3JowcjGdR2WdUT2fFIi0Rnr9uvXhzIuLgvpThUXpwHerVwJY5fTKE8ousbnMbUOCIbMjgJXwfey7ukYiTpm7TiRKGdeX3VukYQzKnOnt68IGljXFSJdg6xFMCfMG1pMXIKVc2BSoRgv0mQwljkgd1kNNUzzxHL1qiiH3ZtTD28uRvkUqcFFuKRogN7wtx4TRSePhK0kktAkVPdR1NhpJ3XZvHdpvvPsv16E86p6jIPwlZtPTmJCXUO0CjMIofAmRG2pmcXzxbKwGqn8yIvVy1QkXGc4f81Cd3sKlQIPYIO9HpkVqX8VdilJYyDQNNxqTiU6OOjigP7yF6ND2wXZScCdpsIS7eMNwoZRKJb3ccoioR15fCuHE8WuxuRR0hTC4D2cgPaFhRDKSBNm4EreCCQMC7Y8Bz7w8lLkE2fu3dmgcS3lC0a9XlnprVL9cpKP2mq8BWrGnWz05fyu41iCwGLseWcnqL8wD7zYwymlO1ptmWIOXVFbD6bgfGclFb5mtGsytRzBccdNE2gKIWTShnXPzsCYWsGAyxTPY1k5LPXZLEAayzmxJExoORuG82I5Aqy1yzcr7ew7mUeejyeJfrWPqL2zQCi6c6AMmaVN8BkLrviWw9DYp2slT5QCzNdcJDgC8pV6epUc7QxBTttuU8zfjwQ4ORYNnpA27xngdO8yIYxCand8ajx5kXpcpBPAELg4LJcPDLZ4HqGSUnEE4cUxrEuSnO1dXWOaTlxaiKjiScTM3SpYZrlOm7yhdce4xxvReEVFkHw6ykbfgo1TEk8wDgmIHBtPOoFOvQFCgrRmi0zAYyYRFiRGX3OyHKGs1qAoEWt4cOG6UJZpSGK8jz9BYag57lTE1yck9r29Y8UbsvLvI1NSLhJQLNk9gmLHRr0iGV7QRpYCkdcTz7eWO6VrmfFq42ngWid4gKSBqi0ts7dGYiv361JyHOKA3soVgjJ51dyJ64zdSpuJoa7HpKeUFfmhRA7uq6Ztsg1vmoVBjRdZe6SOLCtux2Cw4HbxDSEJBlVVLr99atQ2POJjzC3p6H5bpJK2HJBFWQJgtHF1WorwFNeL855c3LdIbfS5gU3EGxrfqowdYcC3UdaoLrRBFIjOFlzHXohh7Bo0IWHrFZpSt9QjD5eIvHXoLH4EZCrfNLLzHpBP7IIrKNGpVkDjAJ9soXmcmIJ5xt1hyriyho5X3N8hbuandC8cGRhGH4ba182PxBEbnvIVbZ9jX9hKjjRgABwr3GSPSUvQGbm0aj9myAnieCLALeVmNNGH92sO9FBY2whV3rcJehz9Q0onTQi2ABBXxQYVJMS7xF62g9gTIYHKZAHfu3MlNTqBaYz2N8zVwWsC1hgJnjHcACjMDENgZaCa373ZbPYLPTHqCecOYTGDTOH1cxYsxyjbsJUBvh2OYGZ7ZmBonymiDV6qiaoKDU1RED6gJTKStyGQ8xdZafxDMxPJx1djx4QzpmJEXODrwRR05UpwxCkWH4nG0RqIOE4keNNRx18Xcx9e8DDWnzNeNOW9fQ6klmcLbZRIXsy7Tg7nGdONu8TJkgojnHFbZ3mIBrkmg5HXRRTRIVLKHmNV3JsfEAqMo3eu4d5f8EL1IbAl5sdbbcf9zLbCjJoS0uRxuAXBsEPqlMYiN5krG4dvUtgNzjBoddnPXhAl3OTx04KA2K2W5wtrfcuYD4uthnWbr9fchyvE99UkfthE8dsAuOIX4yiJyrJ3JjLZndVrYhjfb5HrgEXkLgpzywOGzGqzCRwyN1Nmnkpj8zZwxwhtSZkiyafemzBx7pspb0Hr1l2eEjXucPnvccxtAYzTK7fFHDGE3VAe3HawVUikXXPArgK0YfRZWUo3uwJYRe9UspKHswg2pCQgPOJeVryJWgwRfooZdwTzmJO2noRdVLBFrRUQweyOzU4lgVBxVx72fvr4Dj35kd9mXqUq9fzvRBmNBrsTAiOhGc1Xq5z4C0NUvZEOSJa9AEkvCoiMyvj4Q77mJjr8Y0SXAbujXFyL4pQPfiVk3pTLHNSy0UEj3NHdtCmDmn2k5AimwL3VaXXack396CsdgMqTYfeRlNrqyaz8cRAjBKBH3vfrzlxvLs2A7Hk1lMVxCI71YccSW3R6W9uAuWUREXTJpOtCgN4xtLTjQx7CrO4AiIB8XsHROooTmWHaRQZ254NO17hbtgfvUZNlHnRzF6hreYDkUSaKb9AWWQkxYCNKeayjJgrXplfvXQfH6B7jXVXdvhjgOajJsbRCmx5POMmqQKrecNPRcPE9TMOAPLEyHIEd2qp9z576s91Jkiw3xg1RqlkKoY4L5yv8TdKe3BuN4SFNxmbI7KeAM2O9AVInsH37Hlw5cBgFRCoxrOfs9bv7TrjcusBQsSu5JWJ8xAlN4cJt66SHol1j7QHHXHRHZCkdNqGpIG0uwC8jNKVQN32UZxKwNBXJhGkopXu1z4JoWh5fh19ojUVoDVnTGaLqv7cSfofOTBEII4FdfEy04LAzEOMT8Hp1ZkBpHjwJ8IdJ2fX3XZ9b6tcCK2Fv37vAxijBFYaMgUW1Ll4GEgcft599wtnaU1ICeWMJM2tvjQwWUMw0JvtdV06wvBTmlnN35IhWn8wUUDGtwt62ItvhPqSgNHkKR8zaPKvB5Dclnfpw10zaHrQhwdtsxucTqrtdgCe4d5UZNCbZZvMIdgQscG6I0o72ksErRemzSMwW4i2Zejzuwr1N5Ow6jR1BI8EIRRWoDJOQRbMb41ETfiObhOAUOeMafT7NmNHbDncm2VelfwV56pJa1FuAjD9Y7rYvGoE7iJ7wDKLSbgBQN94r1gnRjjixsXr7RCEVz7BZ1YNxpD5BdKvfT4KsJcfh9gYYsLzAc1Hk5ZpBCpZO1QBl2LLeS7HKmWEaZhxVxB1B3tTJz2YGdYtLTByvZeiv3lffi5FTFoUmB1Re9j29FcgWGITRdOcdVG9hbVyZUVQOYKJUtfwRugsoKGsuQx3dvr5VgpAyYXO6ybEqtjgT2YxtsasAXToO5XViTRy3oVkUZvjfSYBdoUbPT2UYr0P4L42tFw4pWi2FEwIU0cKUC7LJSl1TjJB85ZL41J8qUFlwl8MCw1gDMpMnVIdW38R3XqtqUNbRbOvgayTWGiBO1kWDi40Mr8jzRIKxDKJAur0YySwaVocY37ZRelZftCeziaRHX3D3LBY31DiVVwHxHwU0ZLFBohb5KYA0s0W6zdxp7pDUg8KvVRB7l6RqbJnILOH2mUTrSUHBTTLkGh45LtBRwh9pH78Ay4ztrEqetR33Cv0jMy9lVibFxM7PMPPdu9m0HOJVm33Uh0NSV7yVobcp525djoX6vFdmKIJDh8N447bd1DCO28TXxYgfg7sjcVGbzHJNgsM1VHTl5PzYlZzWxxNVGTKK3I70GKY6b7SsksarR1Zk3oo8Qtzr3fq2gxQpF9lDO62IxwfJqyeQplNH7yTeVvgFpnCSLx00P74GwGsr4rmc76lYXpiacpMEjgYHNcKry03zGIc6zVtbtyVsOGFZiwQezl4U2h18iwLRVswJlFhED2cqeUX7cGfv5G15iL3xYBtsSE4dCqzikh8eupJBuZLPuRY4kcSbzLFJufOusgSvb7WRfyN2IhWA8mIPiQseUywNbxi3QXXFdAmPwMC1i9JQ8Hx2tWzyeM0MleFXLs0kYCJgrKqLuSIwhA3oc4uXzbSz58oGIMTW4aE25zZXLUwXCcSRf2NMjI6xOkoycrZ8NGiV6PATiSQkGq7MxW5qc7SqEsrDSJRviAf2q1mVegXqKBRxOY3zR3SMalTGPaeM9P9HJQISqlPzOX3hOwNi6vR5cypj91hRoVkUBbZaG9yAdzkfQLrnt9NXHl2E8j0mPAH39tQSlBIirKMcmc29GSHoTAsfA3XxQz4i5X5l45Oxn9tdhFtFnPDwfAh6kFWMpXpKCyguqQ9N4w7W2en9305aKhYkzn5yWPtOt6LnDh7wHupLrDP9chweXsqqtxr46XuORLctrWlwIYVLnOG80RYOLghr4F2dyfAer9aMBaSPpybx1JFgOOICmPCRG8SiQQpX3sPNmT3Cj36vTi2OC6hM0RxgWOFqrMmwAMm4wBB0ukft22DLX7QbKVXkiNdoVDq6Q0BIF9U8gV4E40kvqqnwM56loEfBuYiFePURX1aw9iR3rRhaeY0CHwfV7BEyqKNUFDDzjXzCSV2dtxcv0MJd6mu1XhkICEt1z288tjPrVv2j1qfe6U9vHrO9jGJIFCAuwJe7ouLXAycZDqZ9iWvJETOU4sYGWJFFzFJeHsA63xfX96Q0E4WJTkhKE8OGm0WrhglV5ZAnwbNQBDZ52fuw3Y3rQXiU87KCZTJoWs8GP3QQKVMSR6sFtAGyEJ3dOIk8tMMYxhcZPj8cDQ3BIA4qIBRywGTmpiOZ7sYS7zO5Df55IAeNDUvmETy5QQku6kQjfeseFqgrGmvdE17mD6zCcDmspf6IFZWEBC2pb55VhOIfX3Q5tfnfQBmisyirJZKy9QTTNwl09MomyBKw8XeBBgoc7pd2CRh17QT194OyAlwYNDM4KBOAqOAPkTmUhipiFzDemBPUDN3mVuVNVx7ZaJpOJF6aEvolnT9PiFMLRbOkFgiZAsQRIEyqdlTLt4fDpD0U9SNfYDmm092bwmLhKSvfQNmnXaHUz21ooTAkFcIVPatIhayhRO5MCFPjEf3Fwdp2brMVMI6C4ic4Win5qw9WiEBn5NqNAS4HSmX7GnFYvhs1OpJ3wZIEyT0CDj0woaBen5j4aAqXdpzFNWvxDL2UrhRSIFiJ5ELoER2nWqFEK8fOd5mFSXcqJlcejevLOqmubhuYdVMqtQ2WlRDjUNJVgAQ5JxE5c49B9R3aLy1hNyedOS1ApHn0RJ6iAxWMLFOsiajlhu4vCP1uNe8EMbAnu0pmaRAs0e5OpPpJkS91DTcZQ822fZ5tjkY7ATkxJcLDDt5pVKLTIs6HnAlrzVFjnUEvMrQSIo9xbDptTNOMqQ4shGSYe8QiAW4vLLoOvjJkXrghwWUnvsYcLKvwAQ0cTNE7g1xX6KOBDdBT8rvGDrAW1803702BohvPMX3ES5elx5B4NkL3OUoAP2b9jdzzodGhl7IdyEUPtA9QqwLVV1rGMFpNbxow5E5jVAgJWvOnjoe12JQCMCXoSWWAPZDsE4mxD3HxshEChzpgKulSsr5eKwmLMAKaYz5GCzIXdfTP9r628oezuYzxSvevAx1K6k5JqGgiKcZ7kFDXfNrr7UnpzgMN0kpgmdjgnKMJvViedVmlwJ2VX5CtZWCg7VthFpQYkxj2xca1IfTUrb8rk01x9q2BO7j0FliN4fY09cTfuCzl9E49HKFpkLKznUa4itV7KUIx1KMpxI0Ya7pX0ahwXG3imxmOYxBN0PtilhKeQ97N7QwdQdmSvapAp4auFBSyfSWsVqDg0JRRODf6VRsLkkM7iiB94X2lIYiLA1EnNqAloGAHOltdg1F2FMfKRLh518xhJBdBegSfzAQbBGZ7f88mYi4Ei55FQW8p5bdGbcubd8M7sdWLcjavWNgtEfr1wr2SwV5FFRWZVu313BQtPrZ2ODBepRy3Tu0HZPE1GCsNJvZMiKIWpLSa5PJRl5HAPfJVbwCLFNrRpFyT1Ks8G6knrdjURUPLPfYITjIPH49yz7NTViCmiWkDc7GFSn6PRd1hh22c8GmWzIiYIORcIGzZrkwYu3L2ECIFhmH4CWMlrTztubS5UgFYdF9jREkAkjfLp76QPEqf4TABPSHtK7uucZw5rkjuoFQNdhauUWvJcleChUAsGlliLcxDajTkzvYBUunt7GCHuRPYanIIbSZiOLl5GtbxnspE5QYf582X4yWFz6ohCNFhBwfXUOTqKWhFMH6Z7QN2YqWpFkktii51bj4eDXXK7bstq9zoPKB7FW7KZtPGEAAr7VV5ALuKmkFkW60rcG6xHsmxiv1ZQp3ejvz5NquIzSLoCiGK08BIBVN8yTqJLRZM3aX9U4EcNPLHXXtC3pOdgwUa99n4fwYx1ddOIADFhQDVLHQy31RWFPipqRUWSQR2AYDlNdjmdyTqJBe5CO91cswO60hk7FAHjGlu48zZgco4oDD7tLn9BSafwh9uxhNjhTXsWbeMO1t4DJ8dAZd6BGThjcfLCPFawfBfSvTNt73Cq6AkmRMSRdxnwPjAYbL3Cm4wPRJ2sKK5raRuC1MNY126QD7GzDugGoOYgF0cTckbeu6VaofNMkqyDqBdOVpQPXHZX68wbqTKoKsv3x95vxWAXVN4TyjtsWySFPKIlbQhojHJ3c975jlCo3rhyCquVnm9FiYnCY80aRqG0ABcSAlqUHQljbHPRqzVaIKXWCheEps4cSdb4RNRHyyrf84380almWd9DmTqfCOtJE3KI8dcuptL7KEtJe87Ggfls04N1syrYEY0ZOg6l4EQBc2J3aM5jquilOc2yeGtoPdb2dyv8mScjtE4msoH9GNrjZOMHDX3i9okVVwqnyqJhADSg5EzK5EpEfG7yxKgcYjrs9pOAnNs5OzhWlf6YcZ4VhflXm4amuY5Tf7AbhuxOjxiFglR1oxPLRMOBqEOlYwTe1Hb7u4f3pm4fX5w0GczNdojb7IffhYwZ2zju8gQEidySAoxgWQAiZmSxeJ21WCE4YcDulyL7NeqSeHN3tdmNfMQ9nwkjm8geu40n3YZBeNJZkuLlNvrxx0Ah8lVBuAC6BfWPkcKWsUQYX8rShiWIbHJJrYzO0D27TGWPZE1rbL8z4zuqebzAh5ZDy2JtQ217FvlFOTol0kJVjB6QE9Sm7P4jEKG4RNSdKO8Ixb6dAETYOKSoC3iFvjHyykZjovvDCACkUneTLgVhrAL8Cminu4Vsbsmz8SMHtVv3MTE6TlWJMksOT591LeJqLzdwc7gWZYRczzbY5btLbVyCUKkCShiiz8NU5xlLNtl0bXfxPrxyskz4ZzMZEFNM5ryjJUasT3pSnuYjcwdEK5ri6FaIArc24MWcmWJivb8NyLyabrksePJORoLbHRRnMbMmYM49JZPcUa2Hf7Jc4zIn0Mf4emMXWpKJPuR9qkhIIMaA8cWM9T3mgprc8Unb4LGqhDXptyr1dmEYKPZRSZv0ILKZSeSWZVYTZ1HWoSlVZFg5EiKj9QFBtthcCZdrz3sc8ugcdRboHXGEH5SSbfZVM9cy9JOtL2nO2ZDmMUx3dSZm8zXIBL5Upom8Z1PHkGIvXa8qgh4bJDzSTIyrLL9TCHSCiltWW2MzDkcZu0eBKyKrpJ9jiqnvLgBN6tsuDkhtBKk1IYi9MYEYE6YjiRSQhZubtUVYKopCpRM4igc8StqsjSRvZShI4ei2cYCW0yKQmhKq6QeiJFECrUHXrZK0fE3eAuXNunXrPcXK8daorknhmyOIXO2xa1CtEwCwAd4cfDx8sJ3RZIdSwnKTLqMQN38ovShWkiIGpFMpTi4LUYl32DMKwjodXGHslYJaSxv02qTo2kheqhcfqlQrEQQJ5tvdmLKGaoCKYiwAoVHgDS6QD6q21YTGzRzAYcdNR7RwVwY0LBH6Jd7hHRriexAG8uvEgLRdKEvVoAsowVVsgfaKNSQBQgV6bAHgVZYobCPbsY3OCbVxSyjcbWCtJ4u5dtpFrRE05hulVBaXXw24tsoT1139nWeiDllBxqFCOlWphpb77PhzUPegsI7YDPKiXFqQB7PsAvhHVNm9X04FN4PPHTRchrRmc8BQ1xfP36mVCMTN1W5zJovdFyvd5EG4kymc456KMefh7oOCZZP0JVDc4WiNmK1pdN492zBOTY1Jbsi5HQXSs5lpYHlH56AdvaAbeLSt1izQ2Lbk5V6UgiBL5AwgZmHRkdhAcZYW0elh5CjdKT1cg1ngJMbSHKl756Pyioc73ZQvdXOuwHK7ClMQ6VuNdJnoy0sExffYE1AKO4ORHJnbXwjqZnmNJuYP6FR3vzCv4OXgzg6sh24oy9ofUYX6VMdi90UabMOcA9YIzfTKCtA9dxgvVHnUigz97dkthRKk71br0wJTsv01Sk9KjD6CdNSoWaB1tm3T6ADV3dA9DKj2oX1YsFovUgcDtmkhjmC7hdKi6Up4PeIYlfvg8B3cZtncNy9bhWHHtOw1PtKLTcgPpJyW2a8SjsyNxnLLtJosf6gJLrPyYAA55q87bDTYS6iUHriTnrjlRTPGNqWRMsPWLRxKboaHKnCC8RBPAFOgiJhNROJ2rGDWrKSWnaedxVczwoCswxbBmcCwr6YysIgDih5ewdgZvCWaR4gakVHyyMcVsFhOaR6UZRV4cXcREanMAbMPNnyrZXCybbVua5kgXMKbYehmM8qZZi8rhkbcjquAFQnEUjWYhL4vZk2PR8wk0TIMkRx0NWSAR8PeJkRx03JAj8aSsgMWtxCfX1yMR02IXYT5kEMKws1Cq8bUG1NMYfkzgcgKJeHpvZzWPmhhqSKUOZnqvng5RgkUjygToobecX80JbjD7rwezbeZaLy4Irl82fX1FUyrSu5xEwVTRpnkGG6BMLKqDdUhuTu7ZcmztjDuxP0w4MaE2yrbbkctbNsaHTEtIzjFbKdocRZvQjJlW2bn3uYKiGXoVo806B49oRmZToPgsUJ8i3wBXRDnfscilqCMfjsOcXo8i2PjLvXJbUZSlJbWeDAVzyBUrYQamdcZlKM1Aqnte2hwqus2J9fq4PbIxhXgDt2z6pEqhPHiiAdzoesKxW38g22DFSrnYwryekslCqlQhVkdAkoDULSlR5gz4SQyVobvWalGpAo2MEwmLaT70qItgCHv0TVGvmQRyTzK201LGrd8slwwmHl9yYiQgu2nrNC3WvetveHdAP7UlhnY1CtNG9tQFHzmefW6ohg9v0
END_OF_TEXT
Use the slow regex on it and note how slow it is:
text.gsub(/(?:([\w+.-]+):\/\/|(?:www\.))[^\s<]+/).to_a
Use the fast regex and note how fast it is:
text.gsub(/[^\w+.-](?:([\w+.-]+):\/\/|(?:www\.))[^\s<]+/).to_a
I figured out that this problem is specific to the type of data I used in the example (not a lot of spaces). If you run it against RFC 3986, which is much longer, both versions are equally fast.
The first pattern is slow because it starts with an alternation and the first branch of the alternation is very permissive since it allows any number of words characters or dots or hyphens. Consequence, this alternation takes a lot of time/steps before failing.
The second pattern is faster because (?:[^\w+.-]|^) (that is an alternation too) works like a kind of anchor. Indeed, even it is an alternation, it is quickly tested because the first branch matches only one character and the second is a zero-width assertion. So it takes less time/steps to fail. (in particular because it must be followed by a word character or a dot or an hypĥen, that is a binding condition)
But you can write this pattern in a better way. Since your are looking for urls, you can be more precise for the begining: the url can begin with, lets say, "http", "ftp", "sftp", "gopher", "www" (feel free to add other schemes if needed).
So you can describe the start with:
(?:https?:\/\/|ftp:\/\/|sftp:\/\/|gopher:\/\/|www\.)
To limit the cost of the alternation (5 branches to test at each positions in the string) you can use two tricks:
you can use a word boundary to quickly skip positions that are not the start or the end of a word:
\b(?:https?:\/\/|ftp:\/\/|sftp:\/\/|gopher:\/\/|www\.)
you can add a lookahead with the first letter of each branches, to quickly avoid uneeded positions in the string without to test the five branches:
\b(?=[fghsw])(?:https?:\/\/|ftp:\/\/|sftp:\/\/|gopher:\/\/|www\.)
So you can write a more efficient pattern like this:
/\b(?=[fghsw])(?:https?:\/\/|ftp:\/\/|sftp:\/\/|gopher:\/\/|www\.)[^\s<]+/
In short: a pattern is efficient when it fail fast at bad positions in the string.
An other possible design that uses more memory and needs to check if the capture group exists for each match, but that is faster:
/[^ghsfw]*+(?:\B[ghsfw][^ghsfw]*)*+|\b((?:https?:\/\/|ftp:\/\/|sftp:\/\/|gopher:\/\/|www\.)[^\s<"&]+)/
(the idea is to divide the pattern in two main branches, the first one describes all that you want to avoid, and the second describes the urls. The effect is quick jumps to key positions in the string)
Note: when patterns begin to be long, you can use the free-spacing mode (or comment mode...) for readability and maintainability:
/(?x)
\b (?=[fghsw])
(?:
https?:\/\/ |
ftp:\/\/ |
sftp:\/\/ |
gopher:\/\/ |
www\.
)
[^\s<]+/
or you can use a formatted string and a join as suggested by Cary Swoveland in comments.

Regex for matching everything before trailing slash, or first question mark?

I'm trying to come up with a regex that will elegantly match everything in an URL AFTER the domain name, and before the first ?, the last slash, or the end of the URL, if neither of the 2 exist.
This is what I came up with but it seems to be failing in some cases:
regex = /[http|https]:\/\/.+?\/(.+)[?|\/|]$/
In summary:
http://nytimes.com/2013/07/31/a-new-health-care-approach-dont-hide-the-price/ should return
2013/07/31/a-new-health-care-approach-dont-hide-the-price
http://nytimes.com/2013/07/31/a-new-health-care-approach-dont-hide-the-price?id=2 should return
2013/07/31/a-new-health-care-approach-dont-hide-the-price
http://nytimes.com/2013/07/31/a-new-health-care-approach-dont-hide-the-price should return
2013/07/31/a-new-health-care-approach-dont-hide-the-price
Please don't use Regex for this. Use the URI library:
require 'uri'
str_you_want = URI("http://nytimes.com/2013/07/31/a-new-health-care-approach-dont-hide-the-price").path
Why?
See everything about this famous question for a good discussion of why these kinds of things are a bad idea.
Also, this XKCD really says why:
In short, Regexes are an incredibly powerful tools, but when you're dealing with things that are made from hundred page convoluted standards when there is already a library for doing it faster, easier, and more correctly, why reinvent this wheel?
If lookaheads are allowed
((2[0-9][0-9][0-9].*)(?=\?\w+)|(2[0-9][0-9][0-9].*)(?=/\s+)|(2[0-9][0-9][0-9].*).*\w)
Copy + Paste this in http://regexpal.com/
See here with ruby regex tester: http://rubular.com/r/uoLLvTwkaz
Image using javascript regex, but it works out the same
(?=) is just a a lookahead
I basically set up three matches from 2XXX up to (in this order):
(?=\?\w+) # lookahead for a question mark followed by one or more word characters
(?=/\s+) # lookahead for a slash followed by one or more whitespace characters
.*\w # match up to the last word character
I'm pretty sure that some parentheses were not needed but I just copy pasted.
There are essentially two OR | expressions in the (A|B|C) expression. The order matters since it's like a (ifthen|elseif|else) type deal.
You can probably fix out the prefix, I just assumed that you wanted 2XXX where X is a digit to match.
Also, save the pitchforks everyone, regular expressions are not always the best but it's there for you when you need it.
Also, there is xkcd (https://xkcd.com/208/) for everything:

Multi-Line Regex: Find A where B is absent

I have been looking through a lot on Regex lately and have seen a lot of answers involving the matching of one word, where a second word is absent. I have seen a lot of Regex Examples where I can have a Regex search for a given word (or any more complex regex in its place) and find where a word is missing.
It seems like the works very well on a line by line basis, but after including the multi-line mode it still doesn't seem to match properly.
Example: Match an entire file string where the word foo is included, but the word bar is absent from the file. What I have so far is (?m)^(?=.*?(foo))((?!bar).)*$ which is based off the example link. I have been testing with a Ruby Regex tester, but I think it is a open ended regex problem/question. It seems to match smaller pieces, I would like to have it either match/not match on the entire string as one big chunk.
In the provided example above, matches are found on a line by line basis it seems. What changes need to be made to the regex so it applies over the ENTIRE string?
EDIT: I know there are other more efficient ways to solve this problem that doesn't involve using a regex. I am not looking for a solution to the problem using other means, I am asking from a theoretical regex point of view. It has a multi-line mode (which looks to "work"), it has negative/positive searching which can be combined on a line by line basis, how come combining these two principals doesn't yield the expected result?
Sawa's answer can be simplified, all that's needed is a positive lookahead, a negative lookahead, and since you're in multiline mode, .* takes care of the rest:
/(?=.*foo)(?!.*bar).*/m
Multiline means that . matches \n also, and matches are greedy. So the whole string will match without the need for anchors.
Update
#Sawa makes a good point for the \A being necessary but not the \Z.
Actually, looking at it again, the positive lookahead seems unnecessary:
/\A(?!.*bar).*foo.*/m
A regex that matches an entire string that does not include foo is:
/\A(?!.*foo.*).*\z/m
and a regex that matches from the beginning of an entire string that includes bar is:
/\A.*bar/m
Since you want to satisfy both of these, take a conjunction of these by putting one of them in a lookahead:
/\A(?=.*bar)(?!.*foo.*).*\z/m

Ruby (on Rails) Regex: removing thousands comma from numbers

This seems like a simple one, but I am missing something.
I have a number of inputs coming in from a variety of sources and in different formats.
Number inputs
123
123.45
123,45 (note the comma used here to denote decimals)
1,234
1,234.56
12,345.67
12,345,67 (note the comma used here to denote decimals)
Additional info on the inputs
Numbers will always be less than 1 million
EDIT: These are prices, so will either be whole integers or go to the hundredths place
I am trying to write a regex and use gsub to strip out the thousands comma. How do I do this?
I wrote a regex: myregex = /\d+(,)\d{3}/
When I test it in Rubular, it shows that it captures the comma only in the test cases that I want.
But when I run gsub, I get an empty string: inputstr.gsub(myregex,"")
It looks like gsub is capturing everything, not just the comma in (). Where am I going wrong?
result = inputstr.gsub(/,(?=\d{3}\b)/, '')
removes commas only if exactly three digits follow.
(?=...) is a lookahead assertion: It needs to be possible to be matched at the current position, but it's not becoming part of the text that is actually matched (and subsequently replaced).
You are confusing "match" with "capture": to "capture" means to save something so you can refer to it later. You want to capture not the comma, but everything else, and then use the captured portions to build your substitution string.
Try
myregex = /(\d+),(\d{3})/
inputstr.gsub(myregex,'\1\2')
In your example, it is possible to tell from the number of digits after the last separator (either , or .) that it is a decimal point, since there are 2 lone digits. For most cases, if the last group of digits does not have 3 digits then you can assume that the separator in front is decimal point. Another sign is the multiple appearance of a separator in big numbers allows us to differentiate between decimal point and separators.
However, I can give a string 123,456 or 123.456 without any sort of context. It is impossible to tell whether they are "123 thousand 456" or "123 point 456".
You need to scan the document to look for clue whether , is used for thousand separator or decimal point, and vice versa for .. With the context provided, then you can safely apply the same method to remove the thousand separators.
You may also want to check out this article on Wikipedia on the less common ways to specify separators or decimal points. Knowing and deciding not to support is better than assuming things will work.

Regex Tag-Within-Tag

I have a fairly simple regex problem for a little personal experiment that I haven't quite figured out.
In a string, I might have several <tag>[some characters here] that I need to match. The obvious way to do it would be with a /<tag>\[.*?\]/ regex, to match any characters after the <tag>[ and before the ].
I'd like to be able to have <tag>s within <tag>s, however. This causes a problem. If I had the following:
<tag>[some characters <tag>[in here] to match]
the regex would stop matching as soon as it reached the first closing-bracket, and completely fail to match the last part of the statement. I've tried to solve the problem by telling the regex to ignore any internal <tag>s, so I can do a match on the stripped contents later. I haven't quite gotten it working. The closest I've come is:
/<tag>\[(.*?(?:<tag>\[.*?\])*?.*?)\]/
which doesn't quite work. I would hope that it would match any number of characters, and any inner tags if they exist. It still has trouble with that first closing bracket, however.
Maybe somebody who's better at regular expressions knows a good solution to this.
Though you should probably drop regex and do this manually if the mini-language becomes more complex, you can use recursive regex.
Your regex would look something like this:
/(?<reg>(\w+\[([^\]\[]|\g<reg>)*\]))/
You can see it in action here: http://rubular.com/r/9F7isgZpj9
Here is the regex broken down to its parts:
(?<reg>( # start a regex named "reg"
\w+ # the tag name
\[ # open bracket
( # which can contain
[^\]\[] # non-bracket characters
| # or
\g<reg> # sub-tags (this is where the magic happens)
)* # zero or more times
\] # close the tag
)
)

Resources