I recently came across the following interview question:
Given an input string and a dictionary of words, implement a method that breaks up the input string into a space-separated string of dictionary words that a search engine might use for "Did you mean?" For example, an input of "applepie" should yield an output of "apple pie".
I can't seem to get an optimal solution as far as complexity is concerned. Does anyone have any suggestions on how to do this efficiently?
Looks like the question is exactly my interview problem, down to the example I used in the post at The Noisy Channel. Glad you liked the solution. Am quite sure you can't beat the O(n^2) dynamic programming / memoization solution I describe for worst-case performance.
You can do better in practice if your dictionary and input aren't pathological. For example, if you can identify in linear time the substrings of the input string are in the dictionary (e.g., with a trie) and if the number of such substrings is constant, then the overall time will be linear. Of course, that's a lot of assumptions, but real data is often much nicer than a pathological worst case.
There are also fun variations of the problem to make it harder, such as enumerating all valid segmentations, outputting a best segmentation based on some definition of best, handling a dictionary too large to fit in memory, and handling inexact segmentations (e.g., correcting spelling mistakes). Feel free to comment on my blog or otherwise contact me to follow up.
This link describes this problem as a perfect interview question and provides several methods to solve it. Essentially it involves recursive backtracking. At this level it would produce an O(2^n) complexity. An efficient solution using memoization could bring this problem down to O(n^2).
Using python, we can write two function, the first one segment returns the first segmentation of a piece of contiguous text into words given a dictionary or None if no such segmentation is found. Another function segment_all returns a list of all segmentations found. Worst case complexity is O(n**2) where n is the input string length in chars.
The solution presented here can be extended to include spelling corrections and bigram analysis to determine the most likely segmentation.
def memo(func):
'''
Applies simple memoization to a function
'''
cache = {}
def closure(*args):
if args in cache:
v = cache[args]
else:
v = func(*args)
cache[args] = v
return v
return closure
def segment(text, words):
'''
Return the first match that is the segmentation of 'text' into words
'''
#memo
def _segment(text):
if text in words: return text
for i in xrange(1, len(text)):
prefix, suffix = text[:i], text[i:]
segmented_suffix = _segment(suffix)
if prefix in words and segmented_suffix:
return '%s %s' % (prefix, segmented_suffix)
return None
return _segment(text)
def segment_all(text, words):
'''
Return a full list of matches that are the segmentation of 'text' into words
'''
#memo
def _segment(text):
matches = []
if text in words:
matches.append(text)
for i in xrange(1, len(text)):
prefix, suffix = text[:i], text[i:]
segmented_suffix_matches = _segment(suffix)
if prefix in words and len(segmented_suffix_matches):
for match in segmented_suffix_matches:
matches.append('%s %s' % (prefix, match))
return matches
return _segment(text)
if __name__ == "__main__":
string = 'cargocultscience'
words = set('car cargo go cult science'.split())
print segment(string, words)
# >>> car go cult science
print segment_all(string, words)
# >>> ['car go cult science', 'cargo cult science']
One option would be to store all valid English words in a trie. Once you've done this, you could start walking the trie from the root downward, following the letters in the string. Whenever you find a node that's marked as a word, you have two options:
Break the input at this point, or
Continue extending the word.
You can claim that you've found a match once you have broken the input up into a set of words that are all legal and have no remaining characters left. Since at each letter you either have one forced option (either you are building a word that isn't valid and should stop -or- you can keep extending the word) or two options (split or keep going), you could implement this function using exhaustive recursion:
PartitionWords(lettersLeft, wordSoFar, wordBreaks, trieNode):
// If you walked off the trie, this path fails.
if trieNode is null, return.
// If this trie node is a word, consider what happens if you split
// the word here.
if trieNode.isWord:
// If there is no input left, you're done and have a partition.
if lettersLeft is empty, output wordBreaks + wordSoFar and return
// Otherwise, try splitting here.
PartitinWords(lettersLeft, "", wordBreaks + wordSoFar, trie root)
// Otherwise, consume the next letter and continue:
PartitionWords(lettersLeft.substring(1), wordSoFar + lettersLeft[0],
wordBreaks, trieNode.child[lettersLeft[0])
In the pathologically worst case this will list all partitions of the string, which can t exponentially long. However, this only occurs if you can partition the string in a huge number of ways that all start with valid English words, and is unlikely to occur in practice. If the string has many partitions, we might spend a lot of time finding them, though. For example, consider the string "dotheredo." We can split this many ways:
do the redo
do the red o
doth ere do
dot here do
dot he red o
dot he redo
To avoid this, you might want to institute a limit of the number of answers you report, perhaps two or three.
Since we cut off the recursion when we walk off the trie, if we ever try a split that doesn't leave the remainder of the string valid, we will detect this pretty quickly.
Hope this helps!
import java.util.*;
class Position {
int indexTest,no;
Position(int indexTest,int no)
{
this.indexTest=indexTest;
this.no=no;
} } class RandomWordCombo {
static boolean isCombo(String[] dict,String test)
{
HashMap<String,ArrayList<String>> dic=new HashMap<String,ArrayList<String>>();
Stack<Position> pos=new Stack<Position>();
for(String each:dict)
{
if(dic.containsKey(""+each.charAt(0)))
{
//System.out.println("=========it is here");
ArrayList<String> temp=dic.get(""+each.charAt(0));
temp.add(each);
dic.put(""+each.charAt(0),temp);
}
else
{
ArrayList<String> temp=new ArrayList<String>();
temp.add(each);
dic.put(""+each.charAt(0),temp);
}
}
Iterator it = dic.entrySet().iterator();
while (it.hasNext()) {
Map.Entry pair = (Map.Entry)it.next();
System.out.println("key: "+pair.getKey());
for(String str:(ArrayList<String>)pair.getValue())
{
System.out.print(str);
}
}
pos.push(new Position(0,0));
while(!pos.isEmpty())
{
Position position=pos.pop();
System.out.println("position index: "+position.indexTest+" no: "+position.no);
if(dic.containsKey(""+test.charAt(position.indexTest)))
{
ArrayList<String> strings=dic.get(""+test.charAt(position.indexTest));
if(strings.size()>1&&position.no<strings.size()-1)
pos.push(new Position(position.indexTest,position.no+1));
String str=strings.get(position.no);
if(position.indexTest+str.length()==test.length())
return true;
pos.push(new Position(position.indexTest+str.length(),0));
}
}
return false;
}
public static void main(String[] st)
{
String[] dic={"world","hello","super","hell"};
System.out.println("is 'hellworld' a combo: "+isCombo(dic,"superman"));
} }
I have done similar problem. This solution gives true or false if given string is combination of dictionary words. It can be easily converted to get space-separated string. Its average complexity is O(n), where n: no of dictionary words in given string.
Related
What is the right way to split a string into words ?
(string doesn't contain any spaces or punctuation marks)
For example: "stringintowords" -> "String Into Words"
Could you please advise what algorithm should be used here ?
! Update: For those who think this question is just for curiosity. This algorithm could be used to camеlcase domain names ("sportandfishing .com" -> "SportAndFishing .com") and this algo is currently used by aboutus dot org to do this conversion dynamically.
Let's assume that you have a function isWord(w), which checks if w is a word using a dictionary. Let's for simplicity also assume for now that you only want to know whether for some word w such a splitting is possible. This can be easily done with dynamic programming.
Let S[1..length(w)] be a table with Boolean entries. S[i] is true if the word w[1..i] can be split. Then set S[1] = isWord(w[1]) and for i=2 to length(w) calculate
S[i] = (isWord[w[1..i] or for any j in {2..i}: S[j-1] and isWord[j..i]).
This takes O(length(w)^2) time, if dictionary queries are constant time. To actually find the splitting, just store the winning split in each S[i] that is set to true. This can also be adapted to enumerate all solution by storing all such splits.
As mentioned by many people here, this is a standard, easy dynamic programming problem: the best solution is given by Falk Hüffner. Additional info though:
(a) you should consider implementing isWord with a trie, which will save you a lot of time if you use properly (that is by incrementally testing for words).
(b) typing "segmentation dynamic programming" yields a score of more detail answers, from university level lectures with pseudo-code algorithm, such as this lecture at Duke's (which even goes so far as to provide a simple probabilistic approach to deal with what to do when you have words that won't be contained in any dictionary).
There should be a fair bit in the academic literature on this. The key words you want to search for are word segmentation. This paper looks promising, for example.
In general, you'll probably want to learn about markov models and the viterbi algorithm. The latter is a dynamic programming algorithm that may allow you to find plausible segmentations for a string without exhaustively testing every possible segmentation. The essential insight here is that if you have n possible segmentations for the first m characters, and you only want to find the most likely segmentation, you don't need to evaluate every one of these against subsequent characters - you only need to continue evaluating the most likely one.
If you want to ensure that you get this right, you'll have to use a dictionary based approach and it'll be horrendously inefficient. You'll also have to expect to receive multiple results from your algorithm.
For example: windowsteamblog (of http://windowsteamblog.com/ fame)
windows team blog
window steam blog
Consider the sheer number of possible splittings for a given string. If you have n characters in the string, there are n-1 possible places to split. For example, for the string cat, you can split before the a and you can split before the t. This results in 4 possible splittings.
You could look at this problem as choosing where you need to split the string. You also need to choose how many splits there will be. So there are Sum(i = 0 to n - 1, n - 1 choose i) possible splittings. By the Binomial Coefficient Theorem, with x and y both being 1, this is equal to pow(2, n-1).
Granted, a lot of this computation rests on common subproblems, so Dynamic Programming might speed up your algorithm. Off the top of my head, computing a boolean matrix M such M[i,j] is true if and only if the substring of your given string from i to j is a word would help out quite a bit. You still have an exponential number of possible segmentations, but you would quickly be able to eliminate a segmentation if an early split did not form a word. A solution would then be a sequence of integers (i0, j0, i1, j1, ...) with the condition that j sub k = i sub (k + 1).
If your goal is correctly camel case URL's, I would sidestep the problem and go for something a little more direct: Get the homepage for the URL, remove any spaces and capitalization from the source HTML, and search for your string. If there is a match, find that section in the original HTML and return it. You'd need an array of NumSpaces that declares how much whitespace occurs in the original string like so:
Needle: isashort
Haystack: This is a short phrase
Preprocessed: thisisashortphrase
NumSpaces : 000011233333444444
And your answer would come from:
location = prepocessed.Search(Needle)
locationInOriginal = location + NumSpaces[location]
originalLength = Needle.length() + NumSpaces[location + needle.length()] - NumSpaces[location]
Haystack.substring(locationInOriginal, originalLength)
Of course, this would break if madduckets.com did not have "Mad Duckets" somewhere on the home page. Alas, that is the price you pay for avoiding an exponential problem.
This can be actually done (to a certain degree) without dictionary. Essentially, this is an unsupervised word segmentation problem. You need to collect a large list of domain names, apply an unsupervised segmentation learning algorithm (e.g. Morfessor) and apply the learned model for new domain names. I'm not sure how well it would work, though (but it would be interesting).
This is basically a variation of a knapsack problem, so what you need is a comprehensive list of words and any of the solutions covered in Wiki.
With fairly-sized dictionary this is going to be insanely resource-intensive and lengthy operation, and you cannot even be sure that this problem will be solved.
Create a list of possible words, sort it from long words to short words.
Check if each entry in the list against the first part of the string. If it equals, remove this and append it at your sentence with a space. Repeat this.
A simple Java solution which has O(n^2) running time.
public class Solution {
// should contain the list of all words, or you can use any other data structure (e.g. a Trie)
private HashSet<String> dictionary;
public String parse(String s) {
return parse(s, new HashMap<String, String>());
}
public String parse(String s, HashMap<String, String> map) {
if (map.containsKey(s)) {
return map.get(s);
}
if (dictionary.contains(s)) {
return s;
}
for (int left = 1; left < s.length(); left++) {
String leftSub = s.substring(0, left);
if (!dictionary.contains(leftSub)) {
continue;
}
String rightSub = s.substring(left);
String rightParsed = parse(rightSub, map);
if (rightParsed != null) {
String parsed = leftSub + " " + rightParsed;
map.put(s, parsed);
return parsed;
}
}
map.put(s, null);
return null;
}
}
I was looking at the problem and thought maybe I could share how I did it.
It's a little too hard to explain my algorithm in words so maybe I could share my optimized solution in pseudocode:
string mainword = "stringintowords";
array substrings = get_all_substrings(mainword);
/** this way, one does not check the dictionary to check for word validity
* on every substring; It would only be queried once and for all,
* eliminating multiple travels to the data storage
*/
string query = "select word from dictionary where word in " + substrings;
array validwords = execute(query).getArray();
validwords = validwords.sort(length, desc);
array segments = [];
while(mainword != ""){
for(x = 0; x < validwords.length; x++){
if(mainword.startswith(validwords[x])) {
segments.push(validwords[x]);
mainword = mainword.remove(v);
x = 0;
}
}
/**
* remove the first character if any of valid words do not match, then start again
* you may need to add the first character to the result if you want to
*/
mainword = mainword.substring(1);
}
string result = segments.join(" ");
I have a string, and another text file which contains a list of strings.
We call 2 strings "brotherhood strings" when they're exactly the same after sorting alphabetically.
For example, "abc" and "cba" will be sorted into "abc" and "abc", so the original two are brotherhood. But "abc" and "aaa" are not.
So, is there an efficient way to pick out all brotherhood strings from the text file, according to the one string provided?
For example, we have "abc" and a text file which writes like this:
abc
cba
acb
lalala
then "abc", "cba", "acb" are the answers.
Of course, "sort & compare" is a nice try, but by "efficient", i mean if there is a way, we can determine a candidate string is or not brotherhood of the original one after one pass processing.
This is the most efficient way, i think. After all, you can not tell out the answer without even reading candidate strings. For sorting, most of the time, we need to do more than 1 pass to the candidate string. So, hash table might be a good solution, but i've no idea what hash function to choose.
Most efficient algorithm I can think of:
Set up a hash table for the original string. Let each letter be the key, and the number of times the letter appears in the string be the value. Call this hash table inputStringTable
Parse the input string, and each time you see a character, increment the value of the hash entry by one
for each string in the file
create a new hash table. Call this one brotherStringTable.
for each character in the string, add one to a new hash table. If brotherStringTable[character] > inputStringTable[character], this string is not a brother (one character shows up too many times)
once string is parsed, compare each inputStringTable value with the corresponding brotherStringTable value. If one is different, then this string is not a brother string. If all match, then the string is a brother string.
This will be O(nk), where n is the length of the input string (any strings longer than the input string can be discarded immediately) and k is the number of strings in the file. Any sort based algorithm will be O(nk lg n), so in certain cases, this algorithm is faster than a sort based algorithm.
Sorting each string, then comparing it, works out to something like O(N*(k+log S)), where N is the number of strings, k is the search key length, and S is the average string length.
It seems like counting the occurrences of each character might be a possible way to go here (assuming the strings are of a reasonable length). That gives you O(k+N*S). Whether that's actually faster than the sort & compare is obviously going to depend on the values of k, N, and S.
I think that in practice, the cache-thrashing effect of re-writing all the strings in the sorting case will kill performance, compared to any algorithm that doesn't modify the strings...
iterate, sort, compare. that shouldn't be too hard, right?
Let's assume your alphabet is from 'a' to 'z' and you can index an array based on the characters. Then, for each element in a 26 element array, you store the number of times that letter appears in the input string.
Then you go through the set of strings you're searching, and iterate through the characters in each string. You can decrement the count associated with each letter in (a copy of) the array of counts from the key string.
If you finish your loop through the candidate string without having to stop, and you have seen the same number of characters as there were in the input string, it's a match.
This allows you to skip the sorts in favor of a constant-time array copy and a single iteration through each string.
EDIT: Upon further reflection, this is effectively sorting the characters of the first string using a bucket sort.
I think what will help you is the test if two strings are anagrams. Here is how you can do it. I am assuming the string can contain 256 ascii characters for now.
#define NUM_ALPHABETS 256
int alphabets[NUM_ALPHABETS];
bool isAnagram(char *src, char *dest) {
len1 = strlen(src);
len2 = strlen(dest);
if (len1 != len2)
return false;
memset(alphabets, 0, sizeof(alphabets));
for (i = 0; i < len1; i++)
alphabets[src[i]]++;
for (i = 0; i < len2; i++) {
alphabets[dest[i]]--;
if (alphabets[dest[i]] < 0)
return false;
}
return true;
}
This will run in O(mn) if you have 'm' strings in the file of average length 'n'
Sort your query string
Iterate through the Collection, doing the following:
Sort current string
Compare against query string
If it matches, this is a "brotherhood" match, save it/index/whatever you want
That's pretty much it. If you're doing lots of searching, presorting all of your collection will make the routine a lot faster (at the cost of extra memory). If you are doing this even more, you could pre-sort and save a dictionary (or some hashed collection) based off the first character, etc, to find matches much faster.
It's fairly obvious that each brotherhood string will have the same histogram of letters as the original. It is trivial to construct such a histogram, and fairly efficient to test whether the input string has the same histogram as the test string ( you have to increment or decrement counters for twice the length of the input string ).
The steps would be:
construct histogram of test string ( zero an array int histogram[128] and increment position for each character in test string )
for each input string
for each character in input string c, test whether histogram[c] is zero. If it is, it is a non-match and restore the histogram.
decrement histogram[c]
to restore the histogram, traverse the input string back to its start incrementing rather than decrementing
At most, it requires two increments/decrements of an array for each character in the input.
The most efficient answer will depend on the contents of the file. Any algorithm we come up with will have complexity proportional to N (number of words in file) and L (average length of the strings) and possibly V (variety in the length of strings)
If this were a real world situation, I would start with KISS and not try to overcomplicate it. Checking the length of the target string is simple but could help avoid lots of nlogn sort operations.
target = sort_characters("target string")
count = 0
foreach (word in inputfile){
if target.len == word.len && target == sort_characters(word){
count++
}
}
I would recommend:
for each string in text file :
compare size with "source string" (size of brotherhood strings should be equal)
compare hashes (CRC or default framework hash should be good)
in case of equity, do a finer compare with string sorted.
It's not the fastest algorithm but it will work for any alphabet/encoding.
Here's another method, which works if you have a relatively small set of possible "letters" in the strings, or good support for large integers. Basically consists of writing a position-independent hash function...
Assign a different prime number for each letter:
prime['a']=2;
prime['b']=3;
prime['c']=5;
Write a function that runs through a string, repeatedly multiplying the prime associated with each letter into a running product
long long key(char *string)
{
long long product=1;
while (*string++) {
product *= prime[*string];
}
return product;
}
This function will return a guaranteed-unique integer for any set of letters, independent of the order that they appear in the string. Once you've got the value for the "key", you can go through the list of strings to match, and perform the same operation.
Time complexity of this is O(N), of course. You can even re-generate the (sorted) search string by factoring the key. The disadvantage, of course, is that the keys do get large pretty quickly if you have a large alphabet.
Here's an implementation. It creates a dict of the letters of the master, and a string version of the same as string comparisons will be done at C++ speed. When creating a dict of the letters in a trial string, it checks against the master dict in order to fail at the first possible moment - if it finds a letter not in the original, or more of that letter than the original, it will fail. You could replace the strings with integer-based hashes (as per one answer regarding base 26) if that proves quicker. Currently the hash for comparison looks like a3c2b1 for abacca.
This should work out O(N log( min(M,K) )) for N strings of length M and a reference string of length K, and requires the minimum number of lookups of the trial string.
master = "abc"
wordset = "def cba accb aepojpaohge abd bac ajghe aegage abc".split()
def dictmaster(str):
charmap = {}
for char in str:
if char not in charmap:
charmap[char]=1
else:
charmap[char] += 1
return charmap
def dicttrial(str,mastermap):
trialmap = {}
for char in str:
if char in mastermap:
# check if this means there are more incidences
# than in the master
if char not in trialmap:
trialmap[char]=1
else:
trialmap[char] += 1
else:
return False
return trialmap
def dicttostring(hash):
if hash==False:
return False
str = ""
for char in hash:
str += char + `hash[char]`
return str
def testtrial(str,master,mastermap,masterhashstring):
if len(master) != len(str):
return False
trialhashstring=dicttostring(dicttrial(str,mastermap))
if (trialhashstring==False) or (trialhashstring != masterhashstring):
return False
else:
return True
mastermap = dictmaster(master)
masterhashstring = dicttostring(mastermap)
for word in wordset:
if testtrial(word,master,mastermap,masterhashstring):
print word+"\n"
Given a set of strings, for example:
EFgreen
EFgrey
EntireS1
EntireS2
J27RedP1
J27GreenP1
J27RedP2
J27GreenP2
JournalP1Black
JournalP1Blue
JournalP1Green
JournalP1Red
JournalP2Black
JournalP2Blue
JournalP2Green
I want to be able to detect that these are three sets of files:
EntireS[1,2]
J27[Red,Green]P[1,2]
JournalP[1,2][Red,Green,Blue]
Are there any known ways of approaching this problem - any published papers I can read on this?
The approach I am considering is for each string look at all other strings and find the common characters and where differing characters are, trying to find sets of strings that have the most in common, but I fear that this is not very efficient and may give false positives.
Note that this is not the same as 'How do I detect groups of common strings in filenames' because that assumes that a string will always have a series of digits following it.
I would start here: http://en.wikipedia.org/wiki/Longest_common_substring_problem
There are links to supplemental information in the external links, including Perl implementations of the two algorithms explained in the article.
Edited to add:
Based on the discussion, I still think Longest Common Substring could be at the heart of this problem. Even in the Journal example you reference in your comment, the defining characteristic of that set is the substring 'Journal'.
I would first consider what defines a set as separate from the other sets. That gives you your partition to divide up the data, and then the problem is in measuring how much commonality exists within a set. If the defining characteristic is a common substring, then Longest Common Substring would be a logical starting point.
To automate the process of set detection, in general, you will need a pairwise measure of commonality which you can use to measure the 'difference' between all possible pairs. Then you need an algorithm to compute the partition that results in the overall lowest total difference. If the difference measure is not Longest Common Substring, that's fine, but then you need to determine what it will be. Obviously it needs to be something concrete that you can measure.
Bear in mind also that the properties of your difference measurement will bear on the algorithms that can be used to make the partition. For example, assume diff(X,Y) gives the measure of difference between X and Y. Then it would probably be useful if your measure of distance was such that diff(A,C) <= diff(A,B) + diff(B,C). And obviously diff(A,C) should be the same as diff(C,A).
In thinking about this, I also begin to wonder whether we could conceive of the 'difference' as a distance between any two strings, and, with a rigorous definition of the distance, could we then attempt some kind of cluster analysis on the input strings. Just a thought.
Great question! The steps to a solution are:
tokenizing input
using tokens to build an appropriate data structure. a DAWG is ideal, but a Trie is simpler and a decent starting point.
optional post-processing of the data structure for simplification or clustering of subtrees into separate outputs
serialization of the data structure to a regular expression or similar syntax
I've implemented this approach in regroup.py. Here's an example:
$ cat | ./regroup.py --cluster-prefix-len=2
EFgreen
EFgrey
EntireS1
EntireS2
J27RedP1
J27GreenP1
J27RedP2
J27GreenP2
JournalP1Black
JournalP1Blue
JournalP1Green
JournalP1Red
JournalP2Black
JournalP2Blue
JournalP2Green
^D
EFgre(en|y)
EntireS[12]
J27(Green|Red)P[12]
JournalP[12](Bl(ack|ue)|(Green|Red))
Something like that might work.
Build a trie that represents all your strings.
In the example you gave, there would be two edges from the root: "E" and "J". The "J" branch would then split into "Jo" and "J2".
A single strand that forks, e.g. E-n-t-i-r-e-S-(forks to 1, 2) indicates a choice, so that would be EntireS[1,2]
If the strand is "too short" in relation to the fork, e.g. B-A-(forks to N-A-N-A and H-A-M-A-S), we list two words ("banana, bahamas") rather than a choice ("ba[nana,hamas]"). "Too short" might be as simple as "if the part after the fork is longer than the part before", or maybe weighted by the number of words that have a given prefix.
If two subtrees are "sufficiently similar" then they can be merged so that instead of a tree, you now have a general graph. For example if you have ABRed,ABBlue,ABGreen,CDRed,CDBlue,CDGreen, you may find that the subtree rooted at "AB" is the same as the subtree rooted at "CD", so you'd merge them. In your output this will look like this: [left branch, right branch][subtree], so: [AB,CD][Red,Blue,Green]. How to deal with subtrees that are close but not exactly the same? There's probably no absolute answer but someone here may have a good idea.
I'm marking this answer community wiki. Please feel free to extend it so that, together, we may have a reasonable answer to the question.
try "frak" . It creates regex expression from set of strings. Maybe some modification of it will help you.
https://github.com/noprompt/frak
Hope it helps.
There are many many approaches to string similarity. I would suggest taking a look at this open-source library that implements a lot of metrics like Levenshtein distance.
http://sourceforge.net/projects/simmetrics/
You should be able to achieve this with generalized suffix trees: look for long paths in the suffix tree which come from multiple source strings.
There are many solutions proposed that solve the general case of finding common substrings. However, the problem here is more specialized. You're looking for common prefixes, not just substrings. This makes it a little simpler.
A nice explanation for finding longest common prefix can be found at
http://www.geeksforgeeks.org/longest-common-prefix-set-1-word-by-word-matching/
So my proposed "pythonese" pseudo-code is something like this (refer to the link for an implementation of find_lcp:
def count_groups(items):
sorted_list = sorted(items)
prefix = sorted_list[0]
ctr = 0
groups = {}
saved_common_prefix = ""
for i in range(1, sorted_list):
common_prefix = find_lcp(prefix, sorted_list[i])
if len(common_prefix) > 0: #we are still in the same group of items
ctr += 1
saved_common_prefix = common_prefix
prefix = common_prefix
else: # we must have switched to a new group
groups[saved_common_prefix] = ctr
ctr = 0
saved_common_prefix = ""
prefix = sorted_list[i]
return groups
For this particular example of strings to keep it extremely simple consider using simple word/digit -separation.
A non-digit sequence apparently can begin with capital letter (Entire). After breaking all strings into groups of sequences, something like
[Entire][S][1]
[Entire][S][2]
[J][27][Red][P][1]
[J][27][Green][P][1]
[J][27][Red][P][2]
....
[Journal][P][1][Blue]
[Journal][P][1][Green]
Then start grouping by groups, you can fairly soon see that prefix "Entire" is a common for some group and that all subgroups have S as headgroup, so only variable for those is 1,2.
For J27 case you can see that J27 is only leaf, but that it then branches at Red and Green.
So somekind of List<Pair<list, string>> -structure (composite pattern if I recall correctly).
import java.util.*;
class StringProblem
{
public List<String> subString(String name)
{
List<String> list=new ArrayList<String>();
for(int i=0;i<=name.length();i++)
{
for(int j=i+1;j<=name.length();j++)
{
String s=name.substring(i,j);
list.add(s);
}
}
return list;
}
public String commonString(List<String> list1,List<String> list2,List<String> list3)
{
list2.retainAll(list1);
list3.retainAll(list2);
Iterator it=list3.iterator();
String s="";
int length=0;
System.out.println(list3); // 1 1 2 3 1 2 1
while(it.hasNext())
{
if((s=it.next().toString()).length()>length)
{
length=s.length();
}
}
return s;
}
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
System.out.println("Enter the String1:");
String name1=sc.nextLine();
System.out.println("Enter the String2:");
String name2=sc.nextLine();
System.out.println("Enter the String3:");
String name3=sc.nextLine();
// String name1="salman";
// String name2="manmohan";
// String name3="rahman";
StringProblem sp=new StringProblem();
List<String> list1=new ArrayList<String>();
list1=sp.subString(name1);
List<String> list2=new ArrayList<String>();
list2=sp.subString(name2);
List<String> list3=new ArrayList<String>();
list3=sp.subString(name3);
sp.commonString(list1,list2,list3);
System.out.println(" "+sp.commonString(list1,list2,list3));
}
}
What is the algorithm - seemingly in use on domain parking pages - that takes a spaceless bunch of words (eg "thecarrotofcuriosity") and more-or-less correctly breaks it down into the constituent words (eg "the carrot of curiosity") ?
Start with a basic Trie data structure representing your dictionary. As you iterate through the characters of the the string, search your way through the trie with a set of pointers rather than a single pointer - the set is seeded with the root of the trie. For each letter, the whole set is advanced at once via the pointer indicated by the letter, and if a set element cannot be advanced by the letter, it is removed from the set. Whenever you reach a possible end-of-word, add a new root-of-trie to the set (keeping track of the list of words seen associated with that set element). Finally, once all characters have been processed, return an arbitrary list of words which is at the root-of-trie. If there's more than one, that means the string could be broken up in multiple ways (such as "therapistforum" which can be parsed as ["therapist", "forum"] or ["the", "rapist", "forum"]) and it's undefined which we'll return.
Or, in a wacked up pseudocode (Java foreach, tuple indicated with parens, set indicated with braces, cons using head :: tail, [] is the empty list):
List<String> breakUp(String str, Trie root) {
Set<(List<String>, Trie)> set = {([], root)};
for (char c : str) {
Set<(List<String>, Trie)> newSet = {};
for (List<String> ls, Trie t : set) {
Trie tNext = t.follow(c);
if (tNext != null) {
newSet.add((ls, tNext));
if (tNext.isWord()) {
newSet.add((t.follow(c).getWord() :: ls, root));
}
}
}
set = newSet;
}
for (List<String> ls, Trie t : set) {
if (t == root) return ls;
}
return null;
}
Let me know if I need to clarify or I missed something...
I would imagine they take a dictionary word list like /usr/share/dict/words on your common or garden variety Unix system and try to find sets of word matches (starting from the left?) that result in the largest amount of original text being covered by a match. A simple breadth-first-search implementation would probably work fine, since it obviously doesn't have to run fast.
I'd imaging these sites do it similar to this:
Get a list of word for your target language
Remove "useless" words like "a", "the", ...
Run through the list and check which of the words are substrings of the domain name
Take the most common words of the remaining list (Or the ones with the highest adsense rating,...)
Of course that leads to nonsense for expertsexchange, but what else would you expect there...
(disclaimer: I did not try it myself, so take it merely as a food for experimentation. 4-grams are taken mostly out of the blue sky, just from my experience that 3-grams won't work all too well; 5-grams and more might work better, even though you will have to deal with a pretty large table). It's also simplistic in a sense that it does not take into the account the ending of the string - if it works for you otherwise, you'd probably need to think about fixing the endings.
This algorithm would run in a predictable time proportional to the length of the string that you are trying to split.
So, first: Take a lot of human-readable texts. for each of the text, supposing it is in a single string str, run the following algorithm (pseudocode-ish notation, assumes the [] is a hashtable-like indexing, and that nonexistent indexes return '0'):
for(i=0;i<length(s)-5;i++) {
// take 4-character substring starting at position i
subs2 = substring(str, i, 4);
if(has_space(subs2)) {
subs = substring(str, i, 5);
delete_space(subs);
yes_space[subs][position(space, subs2)]++;
} else {
subs = subs2;
no_space[subs]++;
}
}
This will build you the tables which will help to decide whether a given 4-gram would need to have a space in it inserted or not.
Then, take your string to split, I denote it as xstr, and do:
for(i=0;i<length(xstr)-5;i++) {
subs = substring(xstr, i, 4);
for(j=0;j<4;j++) {
do_insert_space_here[i+j] -= no_space[subs];
}
for(j=0;j<4;j++) {
do_insert_space_here[i+j] += yes_space[subs][j];
}
}
Then you can walk the "do_insert_space_here[]" array - if an element at a given position is bigger than 0, then you should insert a space in that position in the original string. If it's less than zero, then you shouldn't.
Please drop a note here if you try it (or something of this sort) and it works (or does not work) for you :-)
I am searching for an efficient a technique to find a sequence of Op occurences in a Seq[Op]. Once an occurence is found, I want to replace the occurence with a defined replacement and run the same search again until the list stops changing.
Scenario:
I have three types of Op case classes. Pop() extends Op, Push() extends Op and Nop() extends Op. I want to replace the occurence of Push(), Pop() with Nop(). Basically the code could look like seq.replace(Push() ~ Pop() ~> Nop()).
Problem:
Now that I call seq.replace(...) I will have to search in the sequence for an occurence of Push(), Pop(). So far so good. I find the occurence. But now I will have to splice the occurence form the list and insert the replacement.
Now there are two options. My list could be mutable or immutable. If I use an immutable list I am scared regarding performance because those sequences are usually 500+ elements in size. If I replace a lot of occurences like A ~ B ~ C ~> D ~ E I will create a lot of new objects If I am not mistaken. However I could also use a mutable sequence like ListBuffer[Op].
Basically from a linked-list background I would just do some pointer-bending and after a total of four operations I am done with the replacement without creating new objects. That is why I am now concerned about performance. Especially since this is a performance-critical operation for me.
Question:
How would you implement the replace() method in a Scala fashion and what kind of data structure would you use keeping in mind that this is a performance-critical operation?
I am happy with answers that point me in the right direction or pseudo code. No need to write a full replace method.
Thank you.
Ok, some considerations to be made. First, recall that, on lists, tail does not create objects, and prepending (::) only creates one object for each prepended element. That's pretty much as good as you can get, generally speaking.
One way of doing this would be this:
def myReplace(input: List[Op], pattern: List[Op], replacement: List[Op]) = {
// This function should be part of an KMP algorithm instead, for performance
def compare(pattern: List[Op], list: List[Op]): Boolean = (pattern, list) match {
case (x :: xs, y :: ys) if x == y => compare(xs, ys)
case (Nil, Nil) => true
case _ => false
}
var processed: List[Op] = Nil
var unprocessed: List[Op] = input
val patternLength = pattern.length
val reversedReplacement = replacement.reverse
// Do this until we finish processing the whole sequence
while (unprocessed.nonEmpty) {
// This inside algorithm would be better if replaced by KMP
// Quickly process non-matching sequences
while (unprocessed.nonEmpty && unprocessed.head != pattern.head) {
processed ::= unprocessed.head
unprocessed = unprocessed.tail
}
if (unprocessed.nonEmpty) {
if (compare(pattern, unprocessed)) {
processed :::= reversedReplacement
unprocessed = unprocessed drop patternLength
} else {
processed ::= unprocessed.head
unprocessed = unprocessed.tail
}
}
}
processed.reverse
}
You may gain speed by using KMP, particularly if the pattern searched for is long.
Now, what is the problem with this algorithm? The problem is that it won't test if the replaced pattern causes a match before that position. For instance, if I replace ACB with C, and I have an input AACBB, then the result of this algorithm will be ACB instead of C.
To avoid this problem, you should create a backtrack. First, you check at which position in your pattern the replacement may happen:
val positionOfReplacement = pattern.indexOfSlice(replacement)
Then, you modify the replacement part of the algorithm this:
if (compare(pattern, unprocessed)) {
if (positionOfReplacement > 0) {
unprocessed :::= replacement
unprocessed :::= processed take positionOfReplacement
processed = processed drop positionOfReplacement
} else {
processed :::= reversedReplacement
unprocessed = unprocessed drop patternLength
}
} else {
This will backtrack enough to solve the problem.
This algorithm won't deal efficiently, however, with multiply patterns at the same time, which I guess is where you are going. For that, you'll probably need some adaptation of KMP, to do it efficiently, or, otherwise, use a DFA to control possible matchings. It gets even worse if you want to match both AB and ABC.
In practice, the full blow problem is equivalent to regex match & replace, where the replace is a function of the match. Which means, of course, you may want to start looking into regex algorithms.
EDIT
I was forgetting to complete my reasoning. If that technique doesn't work for some reason, then my advice is going with an immutable tree-based vector. Tree-based vectors enable replacement of partial sequences with low amount of copying.
And if that doesn't do, then the solution is doubly linked lists. And pick one from a library with slice replacement -- otherwise you may end up spending way too much time debugging a known but tricky algorithm.