For TimeComplexity analysis ima need help with a Summation - algorithm

for an algorithm time complexity analysis i need to know what is the result of the summation of the function n/i when i runs from 1 to logn, i saw somewhere trustable that is actually the harmonic sum, but i highly doubt it...
the function of the algorithm was originally T(n)=5T(n/5)+n/logn
this question was originally found at the Introduction to algorithms second edition book
save me! :)
http://faculties.sbu.ac.ir/~tahmasbi/DataStructure/Introduction%20to%20Algorithms-Cormen%20Solution.pdf
in page 58,there's a line say:
=n*sigma n/i where i goes from 1 to logn
=n*sigma 1/i where i goes from 1 to logn
thats the only part i have problem with.... cause all they did was taking that n out of the sigma, but where is it gone to? why is it true to just make it disappear?
as opposed to what they're saying i think it should be like:
=n*sigma n/i where i goes from 1 to logn
=n*n*sigma 1/i where i goes from 1 to logn
=n^2*sigma 1/i where i goes from 1 to logn

it is indeed harmonic sum:
n/1 + n/2 + ... + n/logn = n* [ 1 + 1/2 + ... + 1/logn] = n*H(logn) where H(logn) is the logn harmonic number.
the book uses H(m) = theta(logm) and because of this, H(logn) = theta(loglogn). so at overall we get: T(n) = n*H(logn) = n*theta(loglogn) = theta(n*loglogn).

Related

Recursive equation from algorithm

I started my masters degree in bioinformatics this October, for a former biologist finding a recursive equation from a piece of code is pretty hard. If somebody could explain this to me, i would be very grateful.
How do i find a recursive equation from this piece of code?
procedure DC(n)
if n<1 then return
for i <- 1 to 8 do DC(n/2)
for i <- 1 to n³ do dummy <- 0
My guess is T(n) = c + 8T(n/2), because the first if condition needs constant time c and the first for loop is the recursive case which performs from 1 to 8, therefore 8*T(n/2), but I dont know how to ad the last line of code to my equation.
You’re close, but that’s not quite it.
Usually, a recurrence relation only describes the work done by the recursive step of a recursive procedure, since it’s assumed that the base case does a constant amount of work. You’d therefore want to look at
what recursive calls are made and on what size inputs they’re made on, and
how much work is done outside of that.
You’ve correctly identified that there are eight recursive calls on inputs of size n / 2, so the 8T(n / 2) term is correct. However, notice that this is followed up by a loop that does O(n3) work. As a result, your recursive function is more accurately modeled as
T(n) = 8T(n / 2) + O(n3).
It’s then worth seeing if you can argue why this recurrence solves to O(n3 log n).
This turns out to be T(n)= 8*T(n/2)+O(n^3).
I will give you a jab at solving this with iteration/recursion tree method.
T(n) = 8* T(n/2) + O(n^3)
~ 8* T(n/2) + n^3
= 8*(8* T(n/4) + (n/2)^3))+n^3
= 8^2*T(n/4)+8*(n/2)^3+ n^3
= 8^2*T(n/2^2)+n^3+n^3
= 8^2( 8*T(n/8)+(n/4)^3)+n^3+n^3
= 8^3*T(n/2^3)+ n^3 + n^3 + n^3
...
= 8^k*T(n/2^k)+ n^3 + n^3 + n^3 + ...k time ...+n^3
This will stop when n/2^k=1 or k=log_2(n).
So the complexity is O(n^3log(n))

Solving a Recurrence Relation: T(n)=T(n-1)+T(n/2)+n

Solve: T(n)=T(n-1)+T(n/2)+n.
I tried solving this using recursion trees.There are two branches T(n-1) and T(n/2) respectively. T(n-1) will go to a higher depth. So we get O(2^n). Is this idea correct?
This is a very strange recurrence for a CS class. This is because from one point of view: T(n) = T(n-1) + T(n/2) + n is bigger than T(n) = T(n-1) + n which is O(n^2).
But from another point of view, the functional equation has an exact solution: T(n) = -2(n + 2). You can easily see that this is the exact solution by substituting it back to the equation: -2(n + 2) = -2(n + 1) + -(n + 2) + n. I am not sure whether this is the only solution.
Here is how I got it: T(n) = T(n-1) + T(n/2) + n. Because you calculate things for very big n, than n-1 is almost the same as n. So you can rewrite it as T(n) = T(n) + T(n/2) + n which is T(n/2) + n = 0, which is equal to T(n) = - 2n, so it is linear. This was counter intuitive to me (the minus sign here), but armed with this solution, I tried T(n) = -2n + a and found the value of a.
I believe you are right. The recurrence relation will always split into two parts, namely T(n-1) and T(n/2). Looking at these two, it is clear that n-1 decreases in value slower than n/2, or in other words, you will have more branches from the n-1 portion of the tree. Despite this, when considering big-o, it is useful to just consider the 'worst-case' scenario, which in this case is that both sides of the tree decreases by n-1 (since this decreases more slowly and you would need to have more branches). In all, you would need to split the relation into two a total of n times, hence you are right to say O(2^n).
Your reasoning is correct, but you give away far too much. (For example, it is also correct to say that 2x^3+4=O(2^n), but that’s not as informative as 2x^3+4=O(x^3).)
The first thing we want to do is get rid of the inhomogeneous term n. This suggests that we may look for a solution of the form T(n)=an+b. Substituting that in, we find:
an+b = a(n-1)+b + an/2+b + n
which reduces to
0 = (a/2+1)n + (b-a)
implying that a=-2 and b=a=-2. Therefore, T(n)=-2n-2 is a solution to the equation.
We now want to find other solutions by subtracting off the solution we’ve already found. Let’s define U(n)=T(n)+2n+2. Then the equation becomes
U(n)-2n-2 = U(n-1)-2(n-1)-2 + U(n/2)-2(n/2)-2 + n
which reduces to
U(n) = U(n-1) + U(n/2).
U(n)=0 is an obvious solution to this equation, but how do the non-trivial solutions to this equation behave?
Let’s assume that U(n)∈Θ(n^k) for some k>0, so that U(n)=cn^k+o(n^k). This makes the equation
cn^k+o(n^k) = c(n-1)^k+o((n-1)^k) + c(n/2)^k+o((n/2)^k)
Now, (n-1)^k=n^k+Θ(n^{k-1}), so that the above becomes
cn^k+o(n^k) = cn^k+Θ(cn^{k-1})+o(n^k+Θ(n^{k-1})) + cn^k/2^k+o((n/2)^k)
Absorbing the lower order terms and subtracting the common cn^k, we arrive at
o(n^k) = cn^k/2^k
But this is false because the right hand side grows faster than the left. Therefore, U(n-1)+U(n/2) grows faster than U(n), which means that U(n) must grow faster than our assumed Θ(n^k). Since this is true for any k, U(n) must grow faster than any polynomial.
A good example of something that grows faster than any polynomial is an exponential function. Consequently, let’s assume that U(n)∈Θ(c^n) for some c>1, so that U(n)=ac^n+o(c^n). This makes the equation
ac^n+o(c^n) = ac^{n-1}+o(c^{n-1}) + ac^{n/2}+o(c^{n/2})
Rearranging and using some order of growth math, this becomes
c^n = o(c^n)
This is false (again) because the left hand side grows faster than the right. Therefore,
U(n) grows faster than U(n-1)+U(n/2), which means that U(n) must grow slower than our assumed Θ(c^n). Since this is true for any c>1, U(n) must grow more slowly than any exponential.
This puts us into the realm of quasi-polynomials, where ln U(n)∈O(log^c n), and subexponentials, where ln U(n)∈O(n^ε). Either of these mean that we want to look at L(n):=ln U(n), where the previous paragraphs imply that L(n)∈ω(ln n)∩o(n). Taking the natural log of our equation, we have
ln U(n) = ln( U(n-1) + U(n/2) ) = ln U(n-1) + ln(1+ U(n/2)/U(n-1))
or
L(n) = L(n-1) + ln( 1 + e^{-L(n-1)+L(n/2)} ) = L(n-1) + e^{-(L(n-1)-L(n/2))} + Θ(e^{-2(L(n-1)-L(n/2))})
So everything comes down to: how fast does L(n-1)-L(n/2) grow? We know that L(n-1)-L(n/2)→∞, since otherwise L(n)∈Ω(n). And it’s likely that L(n)-L(n/2) will be just as useful, since L(n)-L(n-1)∈o(1) is much smaller than L(n-1)-L(n/2).
Unfortunately, this is as far as I’m able to take the problem. I don’t see a good way to control how fast L(n)-L(n/2) grows (and I’ve been staring at this for months). The only thing I can end with is to quote another answer: “a very strange recursion for a CS class”.
I think we can look at it this way:
T(n)=2T(n/2)+n < T(n)=T(n−1)+T(n/2)+n < T(n)=2T(n−1)+n
If we apply the master's theorem, then:
Θ(n∗logn) < Θ(T(n)) < Θ(2n)
Remember that T(n) = T(n-1) + T(n/2) + n being (asymptotically) bigger than T(n) = T(n-1) + n only applies for functions which are asymptotically positive. In that case, we have T = Ω(n^2).
Note that T(n) = -2(n + 2) is a solution to the functional equation, but it doesn't interest us, since it is not an asymptotically positive solution, hence the notations of O don't have meaningful application.
You can also easily check that T(n) = O(2^n). (Refer to yyFred solution, if needed)
If you try using the definition of O for functions of the type n^a(lgn)^b, with a(>=2) and b positive constants, you see that this is not a possible solution too by the Substitution Method.
In fact, the only function that allows a proof with the Substitution Method is exponential, but we know that this recursion doesn't grow as fast as T(n) = 2T(n-1) + n, so if T(n) = O(a^n), we can have a < 2.
Assume that T(m) <= c(a^m), for some constant c, real and positive. Our hypothesis is that this relation is valid for all m < n. Trying to prove this for n, we get:
T(n) <= (1/a+1/a^(n/2))c(a^n) + n
we can get rid of the n easily by changing the hypothesis by a term of lower order. What is important here is that:
1/a+1/a^(n/2) <= 1
a^(n/2+1)-a^(n/2)-a >= 0
Changing variables:
a^(N+1)-a^N-a >= 0
We want to find a bond as tight as possible, so we are searching for the lowest a possible. The inequality we found above accept solutions of a which are pretty close to 1, but is a allowed to get arbitrarily close to 1? The answer is no, let a be of the form a = (1+1/N). Substituting a at the inequality and applying the limit N -> INF:
e-e-1 >= 0
which is a absurd. Hence, the inequality above has some fixed number N* as maximum solution, which can be found computationally. A quick Python program allowed me to find that a < 1+1e-45 (with a little extrapolation), so we can at least be sure that:
T(n) = ο((1+1e-45)^n)
T(n)=T(n-1)+T(n/2)+n is the same as T(n)=T(n)+T(n/2)+n since we are solving for extremely large values of n. T(n)=T(n)+T(n/2)+n can only be true if T(n/2) + n = 0. That means T(n) = T(n) + 0 ~= O(n)

Time complexity of the following algorithm?

I'm learning Big-O notation right now and stumbled across this small algorithm in another thread:
i = n
while (i >= 1)
{
for j = 1 to i // NOTE: i instead of n here!
{
x = x + 1
}
i = i/2
}
According to the author of the post, the complexity is Θ(n), but I can't figure out how. I think the while loop's complexity is Θ(log(n)). The for loop's complexity from what I was thinking would also be Θ(log(n)) because the number of iterations would be halved each time.
So, wouldn't the complexity of the whole thing be Θ(log(n) * log(n)), or am I doing something wrong?
Edit: the segment is in the best answer of this question: https://stackoverflow.com/questions/9556782/find-theta-notation-of-the-following-while-loop#=
Imagine for simplicity that n = 2^k. How many times x gets incremented? It easily follows this is Geometric series
2^k + 2^(k - 1) + 2^(k - 2) + ... + 1 = 2^(k + 1) - 1 = 2 * n - 1
So this part is Θ(n). Also i get's halved k = log n times and it has no asymptotic effect to Θ(n).
The value of i for each iteration of the while loop, which is also how many iterations the for loop has, are n, n/2, n/4, ..., and the overall complexity is the sum of those. That puts it at roughly 2n, which gets you your Theta(n).

Worst Case Performance of Quicksort

I am trying to prove the following worst-case scenario for the Quicksort algorithm but am having some trouble. Initially, we have an array of size n, where n = ij. The idea is that at every partition step of Quicksort, you end up with two sub-arrays where one is of size i and the other is of size i(j-1). i in this case is an integer constant greater than 0. I have drawn out the recursive tree of some examples and understand why this is a worst-case scenario and that the running time will be theta(n^2). To prove this, I've used the iteration method to solve the recurrence equation:
T(n) = T(ij) = m if j = 1
T(n) = T(ij) = T(i) + T(i(j-1)) + cn if j > 1
T(i) = m
T(2i) = m + m + c*2i = 2m + 2ci
T(3i) = m + 2m + 2ci + 3ci = 3m + 5ci
So it looks like the recurrence is:
j
T(n) = jm + ci * sum k - 1
k=1
At this point, I'm a bit lost as to what to do. It looks the summation at the end will result in j^2 if expanded out, but I need to show that it somehow equals n^2. Any explanation on how to continue with this would be appreciated.
Pay attention, the quicksort algorithm worst case scenario is when you have two subproblems of size 0 and n-1. In this scenario, you have this recurrence equations for each level:
T(n) = T(n-1) + T(0) < -- at first level of tree
T(n-1) = T(n-2) + T(0) < -- at second level of tree
T(n-2) = T(n-3) + T(0) < -- at third level of tree
.
.
.
The sum of costs at each level is an arithmetic serie:
n n(n-1)
T(n) = sum k = ------ ~ n^2 (for n -> +inf)
k=1 2
It is O(n^2).
Its a problem of simple mathematics. The complexity as you have calculated correctly is
O(jm + ij^2)
what you have found out is a parameterized complextiy. The standard O(n^2) is contained in this as follows - assuming i=1 you have a standard base case so m=O(1) hence j=n therefore we get O(n^2). if you put ij=n you will get O(nm/i+n^2/i) . Now what you should remember is that m is a function of i depending upon what you will use as the base case algorithm hence m=f(i) thus you are left with O(nf(i)/i + n^2/i). Now again note that since there is no linear algorithm for general sorting hence f(i) = omega(ilogi) which will give you O(nlogi + n^2/i). So you have only one degree of freedom that is i. Check that for any value of i you cannot reduce it below nlogn which is the best bound for comparison based.
Now what I am confused is that you are doing some worst case analysis of quick sort. This is not the way its done. When you say worst case it implies you are using randomization in which case the worst case will always be when i=1 hence the worst case bound will be O(n^2). An elegant way to do this is explained in randomized algorithm book by R. Motwani and Raghavan alternatively if you are a programmer then you look at Cormen.

Find the theta notation of the following recursive method

I have the homework question:
Let T(n) denote the number of times the statement x = x + 1 is
executed in the algorithm
example (n)
{
if (n == 1)
{
return
}
for i = 1 to n
{
x = x + 1
}
example (n/2)
}
Find the theta notation for the number of times x = x + 1 is executed.
(10 points).
here is what I have done:
we have the following amount of work done:
- A constant amount of work for the base case check
- O(n) work to count up the number
- The work required for a recursive call to something half the size
We can express this as a recurrence relation:
T(1) = 1
T(n) = n + T(n/2)
Let’s see what this looks like. We can start expanding this out by noting that
T(n)=n+T(n/2)
=n+(n/2+T(n/4))
=n+n/2+T(n/4)
=n+n/2+(n/4+T(n/8))
=n+n/2+n/4+T(n/8)
We can start to see a pattern here. If we expand out the T(n/2) bit k times, we get:
T(n)=n+n/2+n/4+⋯+n/2^k +T(n/2^k )
Eventually, this stops when n/2^k =1 when this happens, we have:
T(n)=n+n/2+n/4+n/8+⋯+1
What does this evaluate to? Interestingly, this sum is equal to 2n+1 because the sum n+ n/2 + n/4 + n/8 +…. = 2n. Consequently this first function is O(n)
I got that answer thanks to this question answered by #templatetypedef
Know I am confused with the theta notation. will the answer be the same? I know that the theta notation is supposed to bound the function with a lower and upper limit. that means I need to functions?
Yes, the answer will be the same!
You can easily use the same tools to prove T(n) = Omega(n).
After proving T(n) is both O(n) [upper asymptotic bound] and Omega(n) [lower asymptotic bound], you know it is also Theta(n) [tight asymptotic bound]
In your example, it is easy to show that T(n) >= n - since it is homework, it is up to you to understand why.

Resources