Ramp up/down algorithm for user load testing - algorithm

I'm working on a user load testing application for web servers and I'm trying to implement a feature for automatically ramping up the maximum number of "users" that a server can handle. I want to spawn test users until some threshold for the average response time and/or http request failure ratio is met, and then I want to kill/spawn users until a stable state just below the thresholds is found.
Essentially, I want to find the maximum stable number of concurrent users that still meets the requirements, as fast as possible.
I can of course figure out an algorithm for this myself but I'm thinking that there might be existing ramp up/ramp down algorithms that I could use. If anyone has knowledge on this I would love if you could point me in the right direction!
Thanks!

This depends a lot on what's going on and if the system begins to decay gradually or if there is a discrete drop in performance (e.g. "healthy" -> "dead").
In the second case, there's no feedback to indicate whether or not you're approaching the boundary, so you will need to first find a point that exceeds the threshold and jump between that and the largest value that doesn't exceed the threshold. You might simplify this with 2 (or more) separate servers. Splitting in the middle is pretty much the fastest way feasible, though if you have 10 servers, you could divide into 10 steps at each iteration.
If you get some feedback, then you're looking for a method that incorporates this. You may find that the Nelder-Mead algorithm is suitable. It's fairly easy to implement, but you'll likely find implementations in any language of interest.

Related

Simulation Performance Metrics

This is a semi-broad question, but it's one that I feel on some level is answerable or at least approachable.
I've spent the last month or so making a fairly extensive simulation. In order to protect the interests of my employer, I won't state specifically what it does... but an analogy of what it does may be explained by... a high school dance.
A girl or boy enters the dance floor, and based on the selection of free dance partners, an optimal choice is made. After a period of time, two dancers finish dancing and are now free for a new partnership.
I've been making partner selection algorithms designed to maximize average match outcome while not sacrificing wait time for a partner too much.
I want a way to gauge / compare versions of my algorithms in order to make a selection of the optimal algorithm for any situation. This is difficult however since the inputs of my simulation are extremely large matrices of input parameters (2-5 per dancer), and the simulation takes several minutes to run (a fact that makes it difficult to test a large number of simulation inputs). I have a few output metrics, but linking them to the large number of inputs is extremely hard. I'm also interested in finding which algorithms completely fail under certain input conditions...
Any pro tips / online resources which might help me in defining input constraints / output variables which might give clarity on an optimal algorithm?
I might not understand what you exactly want. But here is my suggestion. Let me know if my solution is inaccurate/irrelevant and I will edit/delete accordingly.
Assume you have a certain metric (say compatibility of the pairs or waiting time). If you just have the average or total number for this metric over all the users, it is kind of useless. Instead you might want to find the distribution of of this metric over all users. If nothing, you should always keep track of the variance. Once you have the distribution, you can calculate a probability that particular algorithm A is better than B for a certain metric.
If you do not have the distribution of the metric within an experiment, you can always run multiple experiments, and the number of experiments you need to run depends on the variance of the metric and difference between two algorithms.

Best algorithm for optimizing the decisions in a simulation

I'm looking for the best algorithm to optimise the decisions made in a simultaion to find a fast result in a reasonable amount of time. The simultaion does a number of "ticks" and occasionaly needs to make a decision. Eventually a goal state is reached. ( It would be possible to never reach a goal state if you make very bad decisions )
There are many many goal states. I want to find the goal state with the least number of ticks ( a tick equates roughly to a second in real life." I basically want to decide which decisions to make to get to the goal in as few seconds as possible,
Some points about the problem domain:
Straight off the bat I can generate a series of choices that will lead to a solution. It won't be optimal.
I have a reasonable heuristic function to determine what would be a good decision
I have a reasonable function to determine the minimum possible time cost from a node to a goal.
Algorithms:
I need to process this problem for about 10 seconds and then give the best answer I can.
I believe A* would find me the optimal soluton. The problem is that the decision tree will be so large that I won't be able to calculate it quick enough.
IDA* would give me a good first few choices in 10 seconds but I need a path all the way to a goal.
At the moment I am thinking that I will start off with the known non optimal path to a goal and then perhaps use Simulated Anealing and attempt to improve it over 10 seconds.
What would be a good algorithm to research to try to solve this sort of problem?
Have a look at limited discrepancy search, repeating with increasingly loose limits on the maximum discrepancy search, or beam search.
If you have a good heuristic you should be able to use it to compare individual choices - for the limited discrepancy search, and compare partial solutions, for the beam search.
See if you can place an upper bound on how good any extension of a partial solution is. Then you can prune out partial solutions that can't possibly be extended to beat the result from the heuristic, or the best result found so far in a series of iterative searches with increasing depth.
Let's get a few facts out.
1) The only way to know for sure which decision is the best is to test every possible decision and evaluate the outcome based on some criteria.
2) We are highly unlikely to have the time to decide to go through every possible decision, so we have to limit how far in the future we will evaluate the decision.
3) We are highly unlikely to make the best move ~ever~. Not just often, but ever. Unless you have only a couple of decisions, chances are every time you make a decision, there was a better one you didn't get to.
4) We can use how our previous decisions worked out to our advantage.
Put all this together... Let's say when we have a decision, we evaluate what happens 30 ticks into the future, in 30 ticks we can check to see if what actually happened matches what we simulated 30 ticks ago. If it was, we know that decision leads to predictable outcomes and we should use that decision less. If we didn't, or if it turns out better than we hoped, we should use that decision more.
Ideally, you would use your logic in a ... simulation of your simulation ... for purposes of evaluating it. Then when you get to the 'real' simulation, you have a better chance at picking your better decisions earlier. Of course, give a higher weight to the results of your actual simulation results as opposed to your simulated simulation results.

algorithm to calculate ETA of a file downloading session [duplicate]

We've all poked fun at the 'X minutes remaining' dialog which seems to be too simplistic, but how can we improve it?
Effectively, the input is the set of download speeds up to the current time, and we need to use this to estimate the completion time, perhaps with an indication of certainty, like '20-25 mins remaining' using some Y% confidence interval.
Code that did this could be put in a little library and used in projects all over, so is it really that difficult? How would you do it? What weighting would you give to previous download speeds?
Or is there some open source code already out there?
Edit: Summarising:
Improve estimated completion time via better algo/filter etc.
Provide interval instead of single time ('1h45-2h30 mins'), or just limit the precision ('about 2 hours').
Indicate when progress has stalled - although if progress consistently stalls and then continues, we should be able to deal with that. Perhaps 'about 2 hours, currently stalled'
More generally, I think you are looking for a way to give an instant mesure of the transfer speed, which is generally obtained by an average over a small period.
The problem is generally that in order to be reactive, the period is usually extremely small, which leads to the yoyo effect.
I would propose a very simple scheme, let's model it.
Think of a curve speed (y) over time (x).
the Instant Speed, is no more than reading y for the current x (x0).
the Average Speed, is no more than Integral(f(x), x in [x0-T,x0]) / T
the scheme I propose is to apply a filter, to give more weight to the last moments, while still taking into account the past moments.
It can be easily implement as g(x,x0,T) = 2 * (x - x0) + 2T which is a simple triangle of surface T.
And now you can compute Integral(f(x)*g(x,x0,T), x in [x0-T,x0]) / T, which should work because both functions are always positive.
Of course you could have a different g as long as it's always positive in the given interval and that its integral on the interval is T (so that its own average is exactly 1).
The advantage of this method is that because you give more weight to immediate events, you can remain pretty reactive even if you consider larger time intervals (so that the average is more precise, and less susceptible to hiccups).
Also, what I have rarely seen but think would provide more precise estimates would be to correlate the time used for computing the average to the estimated remaining time:
if I download a 5ko file, it's going to be loaded in an instant, no need to estimate
if I download a 15 Mo file, it's going to take between 2 minutes roughly, so I would like estimates say... every 5 seconds ?
if I download a 1.5 Go file, it's going to take... well around 200 minutes (with the same speed)... which is to say 3h20m... perhaps that an estimates every minute would be sufficient ?
So, the longer the download is going to take, the less reactive I need to be, and the more I can average out. In general, I would say that a window could cover 2% of the total time (perhaps except for the few first estimates, because people appreciate immediate feedback). Also, indicating progress by whole % at a time is sufficient. If the task is long, I was prepared to wait anyway.
I wonder, would a state estimation technique produce good results here? Something like a Kalman Filter?
Basically you predict the future by looking at your current model, and change the model at each time step to reflect the changes to the real world. I think this kind of technique is used for estimating the time left on your laptop battery, which can also vary according to use, age of battery, etc'.
see http://en.wikipedia.org/wiki/Kalman_filter for a more in depth description of the algorithm.
The filter also gives a variance measure, which could be used to indicate your confidence of the estimate (allthough, as was mentioned by other answers, it might not be the best idea to show this to the end user)
Does anyone know if this is actually used somewhere for download (or file copy) estimation?
Don't confuse your users by providing more information than they need. I'm thinking of the confidence interval. Skip it.
Internet download times are highly variable. The microwave interferes with WiFi. Usage varies by time of day, day of week, holidays, and releases of new exciting games. The server may be heavily loaded right now. If you carry your laptop to cafe, the results will be different than at home. So, you probably can't rely on historical data to predict the future of download speeds.
If you can't accurately estimate the time remaining, then don't lie to your user by offering such an estimate.
If you know how much data must be downloaded, you can provide % completed progress.
If you don't know at all, provide a "heartbeat" - a piece of moving UI that shows the user that things are working, even through you don't know how long remains.
Improving the estimated time itself: Intuitively, I would guess that the speed of the net connection is a series of random values around some temporary mean speed - things tick along at one speed, then suddenly slow or speed up.
One option, then, could be to weight the previous set of speeds by some exponential, so that the most recent values get the strongest weighting. That way, as the previous mean speed moves further into the past, its effect on the current mean reduces.
However, if the speed randomly fluctuates, it might be worth flattening the top of the exponential (e.g. by using a Gaussian filter), to avoid too much fluctuation.
So in sum, I'm thinking of measuring the standard deviation (perhaps limited to the last N minutes) and using that to generate a Gaussian filter which is applied to the inputs, and then limiting the quoted precision using the standard deviation.
How, though, would you limit the standard deviation calculation to the last N minutes? How do you know how long to use?
Alternatively, there are pattern recognition possibilities to detect if we've hit a stable speed.
I've considered this off and on, myself. I the answer starts with being conservative when computing the current (and thus, future) transfer rate, and includes averaging over longer periods, to get more stable estimates. Perhaps low-pass filtering the time that is displayed, so that one doesn't get jumps between 2 minutes and 2 days.
I don't think a confidence interval is going to be helpful. Most people wouldn't be able to interpret it, and it would just be displaying more stuff that is a guess.

Estimating/forecasting download completion time

We've all poked fun at the 'X minutes remaining' dialog which seems to be too simplistic, but how can we improve it?
Effectively, the input is the set of download speeds up to the current time, and we need to use this to estimate the completion time, perhaps with an indication of certainty, like '20-25 mins remaining' using some Y% confidence interval.
Code that did this could be put in a little library and used in projects all over, so is it really that difficult? How would you do it? What weighting would you give to previous download speeds?
Or is there some open source code already out there?
Edit: Summarising:
Improve estimated completion time via better algo/filter etc.
Provide interval instead of single time ('1h45-2h30 mins'), or just limit the precision ('about 2 hours').
Indicate when progress has stalled - although if progress consistently stalls and then continues, we should be able to deal with that. Perhaps 'about 2 hours, currently stalled'
More generally, I think you are looking for a way to give an instant mesure of the transfer speed, which is generally obtained by an average over a small period.
The problem is generally that in order to be reactive, the period is usually extremely small, which leads to the yoyo effect.
I would propose a very simple scheme, let's model it.
Think of a curve speed (y) over time (x).
the Instant Speed, is no more than reading y for the current x (x0).
the Average Speed, is no more than Integral(f(x), x in [x0-T,x0]) / T
the scheme I propose is to apply a filter, to give more weight to the last moments, while still taking into account the past moments.
It can be easily implement as g(x,x0,T) = 2 * (x - x0) + 2T which is a simple triangle of surface T.
And now you can compute Integral(f(x)*g(x,x0,T), x in [x0-T,x0]) / T, which should work because both functions are always positive.
Of course you could have a different g as long as it's always positive in the given interval and that its integral on the interval is T (so that its own average is exactly 1).
The advantage of this method is that because you give more weight to immediate events, you can remain pretty reactive even if you consider larger time intervals (so that the average is more precise, and less susceptible to hiccups).
Also, what I have rarely seen but think would provide more precise estimates would be to correlate the time used for computing the average to the estimated remaining time:
if I download a 5ko file, it's going to be loaded in an instant, no need to estimate
if I download a 15 Mo file, it's going to take between 2 minutes roughly, so I would like estimates say... every 5 seconds ?
if I download a 1.5 Go file, it's going to take... well around 200 minutes (with the same speed)... which is to say 3h20m... perhaps that an estimates every minute would be sufficient ?
So, the longer the download is going to take, the less reactive I need to be, and the more I can average out. In general, I would say that a window could cover 2% of the total time (perhaps except for the few first estimates, because people appreciate immediate feedback). Also, indicating progress by whole % at a time is sufficient. If the task is long, I was prepared to wait anyway.
I wonder, would a state estimation technique produce good results here? Something like a Kalman Filter?
Basically you predict the future by looking at your current model, and change the model at each time step to reflect the changes to the real world. I think this kind of technique is used for estimating the time left on your laptop battery, which can also vary according to use, age of battery, etc'.
see http://en.wikipedia.org/wiki/Kalman_filter for a more in depth description of the algorithm.
The filter also gives a variance measure, which could be used to indicate your confidence of the estimate (allthough, as was mentioned by other answers, it might not be the best idea to show this to the end user)
Does anyone know if this is actually used somewhere for download (or file copy) estimation?
Don't confuse your users by providing more information than they need. I'm thinking of the confidence interval. Skip it.
Internet download times are highly variable. The microwave interferes with WiFi. Usage varies by time of day, day of week, holidays, and releases of new exciting games. The server may be heavily loaded right now. If you carry your laptop to cafe, the results will be different than at home. So, you probably can't rely on historical data to predict the future of download speeds.
If you can't accurately estimate the time remaining, then don't lie to your user by offering such an estimate.
If you know how much data must be downloaded, you can provide % completed progress.
If you don't know at all, provide a "heartbeat" - a piece of moving UI that shows the user that things are working, even through you don't know how long remains.
Improving the estimated time itself: Intuitively, I would guess that the speed of the net connection is a series of random values around some temporary mean speed - things tick along at one speed, then suddenly slow or speed up.
One option, then, could be to weight the previous set of speeds by some exponential, so that the most recent values get the strongest weighting. That way, as the previous mean speed moves further into the past, its effect on the current mean reduces.
However, if the speed randomly fluctuates, it might be worth flattening the top of the exponential (e.g. by using a Gaussian filter), to avoid too much fluctuation.
So in sum, I'm thinking of measuring the standard deviation (perhaps limited to the last N minutes) and using that to generate a Gaussian filter which is applied to the inputs, and then limiting the quoted precision using the standard deviation.
How, though, would you limit the standard deviation calculation to the last N minutes? How do you know how long to use?
Alternatively, there are pattern recognition possibilities to detect if we've hit a stable speed.
I've considered this off and on, myself. I the answer starts with being conservative when computing the current (and thus, future) transfer rate, and includes averaging over longer periods, to get more stable estimates. Perhaps low-pass filtering the time that is displayed, so that one doesn't get jumps between 2 minutes and 2 days.
I don't think a confidence interval is going to be helpful. Most people wouldn't be able to interpret it, and it would just be displaying more stuff that is a guess.

How to detect anomalous resource consumption reliably?

This question is about a whole class of similar problems, but I'll ask it as a concrete example.
I have a server with a file system whose contents fluctuate. I need to monitor the available space on this file system to ensure that it doesn't fill up. For the sake of argument, let's suppose that if it fills up, the server goes down.
It doesn't really matter what it is -- it might, for example, be a queue of "work".
During "normal" operation, the available space varies within "normal" limits, but there may be pathologies:
Some other (possibly external)
component that adds work may run out
of control
Some component that removes work seizes up, but remains undetected
The statistical characteristics of the process are basically unknown.
What I'm looking for is an algorithm that takes, as input, timed periodic measurements of the available space (alternative suggestions for input are welcome), and produces as output, an alarm when things are "abnormal" and the file system is "likely to fill up". It is obviously important to avoid false negatives, but almost as important to avoid false positives, to avoid numbing the brain of the sysadmin who gets the alarm.
I appreciate that there are alternative solutions like throwing more storage space at the underlying problem, but I have actually experienced instances where 1000 times wasn't enough.
Algorithms which consider stored historical measurements are fine, although on-the-fly algorithms which minimise the amount of historic data are preferred.
I have accepted Frank's answer, and am now going back to the drawing-board to study his references in depth.
There are three cases, I think, of interest, not in order:
The "Harrods' Sale has just started" scenario: a peak of activity that at one-second resolution is "off the dial", but doesn't represent a real danger of resource depletion;
The "Global Warming" scenario: needing to plan for (relatively) stable growth; and
The "Google is sending me an unsolicited copy of The Index" scenario: this will deplete all my resources in relatively short order unless I do something to stop it.
It's the last one that's (I think) most interesting, and challenging, from a sysadmin's point of view..
If it is actually related to a queue of work, then queueing theory may be the best route to an answer.
For the general case you could perhaps attempt a (multiple?) linear regression on the historical data, to detect if there is a statistically significant rising trend in the resource usage that is likely to lead to problems if it continues (you may also be able to predict how long it must continue to lead to problems with this technique - just set a threshold for 'problem' and use the slope of the trend to determine how long it will take). You would have to play around with this and with the variables you collect though, to see if there is any statistically significant relationship that you can discover in the first place.
Although it covers a completely different topic (global warming), I've found tamino's blog (tamino.wordpress.com) to be a very good resource on statistical analysis of data that is full of knowns and unknowns. For example, see this post.
edit: as per my comment I think the problem is somewhat analogous to the GW problem. You have short term bursts of activity which average out to zero, and long term trends superimposed that you are interested in. Also there is probably more than one long term trend, and it changes from time to time. Tamino describes a technique which may be suitable for this, but unfortunately I cannot find the post I'm thinking of. It involves sliding regressions along the data (imagine multiple lines fitted to noisy data), and letting the data pick the inflection points. If you could do this then you could perhaps identify a significant change in the trend. Unfortunately it may only be identifiable after the fact, as you may need to accumulate a lot of data to get significance. But it might still be in time to head off resource depletion. At least it may give you a robust way to determine what kind of safety margin and resources in reserve you need in future.

Resources