Test to validate ruby subclasses implement strategy method - ruby

I'm implementing a simple strategy pattern (for the first time in ruby) and I want to write a test to make sure that every subclass implements the crucial strategy method. So, I have something like this:
class SearchTools::MusicSearcher
def find_artists
raise 'Abstract method called'
end
end
class SearchTools::LastFMSearcher < MusicSearcher
def find_artists(search_phrase)
# get artists from lastfm's restful api
end
end
class SearchTools::DatabaseSearcher < MusicSearcher
def find_artists(search_phrase)
# look in database for artists
end
end
class SearchTools::Search
def initialize(searcher)
#searcher = searcher
end
def find_artists(search_phrase)
#searcher.find_artists(search_phrase)
end
end
I'm currently using rspec, factory_girl and shoulda-matchers for my testing. Anyone know how I achieve this?
Cheers!
P.S. I'm used to specifying a literal 'interface' with C#, so that's why I'm looking to see what I can use in ruby to enforce a common interface for each strategy...

I would expect it to be something like,
it "should respond to find_artists method" do
o = SearchTools::LastFMSearcher.new
o.respond_to?(:find_artists).should be_true
end

Related

Ruby: why doesn't calling super.method work from subclass

I apologize up front. I'm going to struggle articulating this question.
TL;DR - I have an object I'm using to call a method in the subclass. That method needs access to a method in a parent class (forcing inheritance...read below). I'm thinking this won't work because I'm instantiating the subclass, so the inheritance won't work right, but I'm not sure. I'm still seeking out documentation. Basically, the method in the parent class is not "seen" the way I'm doing this - NoMethodError is the exception.
I prefer DRY code, as most people do. I usually use compositing in lieu of inheritance in my code, but I think I'm at a point where if I want to keep this DRY, I have to use inheritance (though I could be wrong, so I'm open to suggestions), and so I'm trying it out, which leads me to this question.
Given the following Ruby "pseudo" code or example to kind of demonstrate what I'm trying to accomplish:
module SomeModule
class ParentClass
def initialize
end
def method_i_want_to_use(arg1, *args)
# does all the things
end
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.class.method_i_want_to_use(arg1, arg)
end
end
end
And then in a different file, same module
module SomeModule
class SubClass < ParentClass
def initialize
end
# this isn't working
def my_other_method
# things get done and then
method_i_want_to_use(arg1, args) ## <<=== fails
end
end
end
Yet in another file
module SomeModule
class Thing
def initialize
#my_obj = SubClass.new
end
def my_method
#my_obj.my_other_method
end
end
end
So one important thing I missed. The method method_i_want_to_use is a method that is used all over the place in my code. It just so happens that in this one class, inheritance was NOT originally used because this class is basically atomic with the exception of this one method. So my problem is either I copy the method into this class and use it (but that kinda breaks the DRY principle sorta) or I find a way to share this method between classes.
This gets into OOP design pretty heavily and I am aware of that. One could ask: well, is the inheritance as it currently sits even relevant to the objects in question? Yes...and no. They can be. In short, principally, it works, but frankly, I don't like it. TBH, I almost prefer to just copy the method into the "subclass" and remove the inheritance and be done with it, but DRY -- unless I'm going a little too wild with DRY in this context and I kinda think I am.
Anyway, just curious what folks with more knowledge than I have for me on this. This really is the first time I've dabbled this deeply into inheritance. :)
I'd love pointers on how I can keep from implementing
There are two different methods here:
an instance method:
def method_i_want_to_use(arg1, *args)
# does all the things
end
and a class method:
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.class.method_i_want_to_use(arg1, arg)
end
but what you probably want in this case is
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.new.method_i_want_to_use(arg1, arg)
end
There are a few choices and it depends on what method_i_want_to_use is doing. Is it a separate thing? Then you can call it as a class method ParentClass.method_i_want_to_use inside the SubClass without inheritance.
Another way is to define it in a module and include it
include ModuleX
# and then in your code
method_i_want_to_use(...)
I'd use inheritance if you want to have some kind of common abstraction layer and you expect multiple subclasses to behave the same way. If the classes/objects that need to use method_i_want_to_use have different behaviours then inheritance is not the correct choice. Let's say you have a class that send a request to a 3rd party API and you have a class that does saves records to your db. For some reason you need to use the same piece of code (a method) in both cases, maybe to calculate some value. Using inheritance to include the method would be a mistake, because both classes have different behaviours.
Hope that helps.
After fixing some of the syntax errors and changing the call self.class.method_i_want_to_use to self.new.method_i_want_to_use as Adam also mentioned in his answer, this code seems to work fine.
I did not get any undefined methods until I tried to call SomeModule::ParentClass.method_i_want_to_use(3,4) and that was fixed by the change from class to new. Are you sure your undefined method error was not related to that?
module SomeModule
class ParentClass
def initialize
end
def method_i_want_to_use(arg1, *args)
# does all the things
puts "here #{arg1} , #{args}"
end
def self.method_i_want_to_use(arg1, *args)
arg = args.first unless args.empty?
self.new.method_i_want_to_use(arg1, arg)
end
end
end
module SomeModule
class SubClass < ParentClass
def initialize
end
# this isn't working
def my_other_method(arg1, arg2)
# things get done and then
method_i_want_to_use(arg1, arg2) ## <<=== fails
end
end
end
module SomeModule
class Thing
def initialize
#my_obj = SubClass.new
end
def my_method(arg1,arg2)
#my_obj.my_other_method(arg1, arg2)
end
end
end
SomeModule::Thing.new.my_method(1,2)
SomeModule::ParentClass.method_i_want_to_use(3,4)
prints:
here 1 , [2]
here 3 , [4]

Testing an abstracted if conditional

I'm trying to figure out the best way to test find_communities here without resorting to using polymorphism here to defeat the if statement staring at me.
class CommunityFinder
def initialize(filters={})
#filters = filters
end
def find_communities
return my_communities if #filters[:my_communities]
visible_communities
end
def my_communities
# [...]
end
def visibile_communities
# [...]
end
end
I have both my_communities and visible_communities well tested, but I have concerns about testing find_communities.
I don't want to duplicate the test setup for both my_communities and visible_communities, because there's likely going to be
I would prefer for the class API to contain all 3 public methods because the conditions for find_communities won't ever change.
I'm writing this with the expectation that the class is going to change by someone other than me in the near future, and that there's going to be more methods
Should I:
make find_communities live in the caller
make find_communities be it's own strategy
duplicate the tests into find_communities
pick your own 4th option.
This example is a case where you really should have two subclasses, each of which implements its own communities method:
class CommunityFinder::Base
def initialize(**options)
#options = options
end
end
class CommunityFinder::Mine < CommunityFinder::Base
def communities
end
end
class CommunityFinder::Visible < CommunityFinder::Base
def communities
end
end
You can use a factory method to instantiate the correct subclass:
module CommunityFinder
def self.filter(**options)
if (options[:my_communities])
CommunityFinder::Mine.new(options)
else
CommunityFinder::Visible.new(options)
end
end
end

How to Convert an ActiveRecord::Relation by default

I am working on a project that requires very specific methods to be called on an ActiveRecord::Relation object. These methods cannot extend ActiveRecord::Relation because the Class has it's own initialize method to determine if the object should be collected. I have tried a dozen ways to handle this but because of method chaining in AR I have been unable to accomplish this. Currently I have monkey patched ActiveRecord::Relation with a method that converts it like so:
module ActiveRecord
class Relation
def to_claim_set
exec_queries unless loaded?
ClaimSet.new(#records)
end
end
end
Firstly I am sure this is an improper way to handle it. Secondly this causes me to have to call #to_claim_set constantly throughout the application.
I am hoping someone can assist on making this the default return after all method chaining is complete.
What I am hoping for is something like
Claim.policy_number('913006')
#=> ClaimSetObjectHere
But I need it to support chaining like AR does so that things like
Claim.policy_number('913006').by_program('Base')
#=> ClaimSetObjectHere
I also tried to patch the #where method inside Claim which works great unless I use a scope or I chain methods in which case it complains that ClaimSet does not define default_scoped?.
Any insight would be greatly appreciated. As for "Why would you want to do this" like I said I am constantly calling this method throughout the application and I need the methods defined in ClaimSet for this to function properly.
Note: This is being used outside of rails
Okay so what I ended up doing was imposing a wrapper for ActiveRecord::Relation like so:(removed specific business logic for brevity)
class ClaimSet
def initialize(object)
process_target(object)
# ...
end
# ...
def respond_to_missing?(method_name,include_private=false)
#target.respond_to?(method_name)
end
def method_missing(method_name, *args, &block)
if #target.respond_to?(method_name)
ClaimSet.new(#target.send(method_name,*args,&block))
else
super
end
end
private
def process_target(object)
#target = object if object.is_a?(ActiveRecord::Relation)
#target = object.target if object.is_a?(ClaimSet)
end
end
Then in the Claim class.
class Claim < ActiveRecord::Base
class << self
def where(*args)
ClaimSet.new(super(*args))
end
def localized_scope(name,proc)
scope_proc = lambda do |*args|
ClaimSet.new(proc.call(*args))
end
singleton_class.send(:define_method,name,scope_proc)
end
end
end
Then I define all my scopes as localized_scope e.g.
localized_scope :policy_number, ->(policy_number){where(policy_number: policy_number)}
Now it always returns a ClaimSet in place of an ActiveRecord::Relation for #where and #localized_scope and supports method chaining through #method_missing. It also removes the monkey patch on ActiveRecord::Relation.
If you have any other suggestions please let me know as I would be glad to entertain other ideas but this works for the time being.

Get class by name in Ruby

I have two classes
class ClassOne
def do_something
[...]
end
end
class ClassTwo
def do_something
[...]
end
end
I am getting a class name (either ClassOne or ClassTwo) from the database and I want to call do_something in that class
so I have
class_name = "ClassOne"
and I want to call ClassOne.do_something or ClassTwo.do_something if class_name is equals to "ClassTwo".
I can't do it using a simple if condition, I have many classes and am checking if the class exists before calling..
Is there a way to do it?
For vanilla ruby:
Kernel.const_get('ClassOne').do_something
For Rails:
'ClassOne'.constantize.do_something
Although you can convert any arbitrary string to a class using constantize from ActiveSupport if available, this could cause exceptions if users can submit the string in question. It might be safer to use a case:
case (with_class)
when 'ClassOne', 'ClassTwo'
with_class.constantize.do_something
else
raise "Um, what are you doing?"
end
The same thing could be achieved with a Hash or Array defining valid classes and testing with either [] or include? accordingly.
eval("#{classname}.do_something")
Note: you have to change your code to def self.do_something, otherwise these are instance methods. It looks like this is your intention.

Inefficient Ruby method naming: passing namespace as argument as a way to call methods

There has got to be a more efficient way to do this in Ruby. I have a list of methods that scrape the same things (title, price) across multiple sites but in slightly different ways based on the code in each store. For example:
def store1_get_title
def store1_get_price
def store2_get_title
def store2_get_price
def store3_get_title
def store3_get_price
When calling all of these functions, I would just like a generic call with say a "namespace" parameter to do invoke any of these methods without having to type out all of them, something like:
for get_all_stores().each do |store|
store::get_title
store::get_price
end
...which would invoke store1_get_title, store1_get_price, store2_get_title, store2_get_price like I want. Is there something like this or a better way to do this?
Hope that makes sense. Thanks for any input!
Edit: these tasks are in rake task code.
This is a perfect use for classes. If you find two stores with the same software powering them (maybe Yahoo commerce or EBay stores) you can make instances of the classes with different parameters.
class Amazon
def get_price; end
def get_title; end
end
class Ebay
def initialize seller; end
def get_price; end
def get_title; end
end
[Amazon.new, Ebay.new("seller1"), Ebay.new("seller2")] each do |store|
store.get_price
store.get_title
end
And you can do this in any other object-oriented language by defining a base class or interface that all of the stores implement/inherit.
I don't understand the logic of your application. Perhaps you should think about a class definition (see Ken Blooms answer).
Nevertheless you could try a dynamic call with send:
def store1_get_title
p __method__
end
def store1_get_price
p __method__
end
def store2_get_title
p __method__
end
def store2_get_price
p __method__
end
def store3_get_title
p __method__
end
def store3_get_price
p __method__
end
all_stores = ['store1', 'store2', 'store3']
all_stores.each do |store|
send("#{store}_get_title")
send("#{store}_get_price")
end
You didn't define what get_all_stores returns. In my example I used Strings. You could add some syntactical sugar and extend String (I don't recommend this)
class String
def get_title()
send("#{self}_get_title")
end
def get_price()
send("#{self}_get_price")
end
end
all_stores.each do |store|
store.get_title
store.get_price
end
One last remark. You wrote
for get_all_stores().each do |store|
each alone should be enough. for is not ruby-like and in combination with each it doen't look reasonable to me.

Resources