I've been using a function file [ret]=drawellipse(x,y,a,b,angle,steps,color,img). Calling the function through a script file to draw random ellipses in image. But once i set the random center point(x,y), and random a, b, there is high possibility that the ellipses intersection would occur. How can i prevent the intersection? (I'm supposed to draw the ellipses that are all separate from each other)
Well, over here i have a function file which is to check whether the ellipses got overlap or not,overlap = overlap_ellipses(x0,y0,a0,b0,angle0,x1,y1,a1,b1,angle1). If the two ellipses are overlap, then the 'overlap=1', otherwise 'overlap=0'.
Based on all these, i tested in the command window:
x=rand(4,1)*400; % x and y are the random coodinates for the center of ellipses
y=rand(4,1)*400;
a=[50 69 30 60]; % major axis for a and b, i intend to use random also in the future
b=[20 40 10 40]; % minor axis
angle=[30 90 45 0]; % angle of ellipse
steps=10000;
color=[255 0 0]; % inputs for another function file to draw the ellipse
img=zeros(500,500,3);
The following i want to dispaly the ellipses if overlap==0, and 'if overlap==1', decrease the a and b, till there is no intersection. Lastly, to imshow the img.
for i=1:length(x)
img=drawellipse(x(i),y(i),a(i),b(i),angle(i),steps,color,img);
end
For me now, i have difficulty in coding the middle part. How can i use the if statement to get the value of overlap and how to make the index corresponding to the ellipse i need to draw.
i tested a bit like
for k=1:(length(x)-1)
overlap = overlap_ellipses(x(1),y(1),a(1),b(1),angle(1),x(1+k),y(1+k),a(1+k),b(1+k),angle(1+k))
end
it returns
overlap=0
overlap=0
overlap=1
it is not [0 0 1]. I can't figure it out, thus stuck in the process.
The final image shoule look like the picture in this voronoi diagram of ellipses.
(There is no intersection between any two ellipses)
Assuming you are drawing the ellipses into a raster graphics image, you could calculate the pixels you would have to draw for an ellipse, check whether these pixels in the image are still of the background color, and draw the ellipse only if the answer is yes, otherwise reject it (because something else, i.e. another ellipse, is in the way) and try other x,y,a and b.
Alternatively, you could split your image into rectangles (not neccessarily of equal size) and place one ellipse in each of those, picking x,y,a,b such that no ellipse exceeds its rectangle - then the ellipses cannot overlap either, but it depends on how much "randomness" your ellipse placing should have whether this suffices.
The mathematically rigorous way would be to store x,y,a,b of each drawn ellipse and for each new ellipse, do pairwise checks with each of those whether they have common points by solving a system of two quadratic equations. However, this might be a bit complicated, especially once the angle is not 0.
Edit in response to the added code: Instead of fixing all x's and y's before the loop, you can determine them inside the loop. Since you know how many ellipses you want, but not how many you have to sample, you need a while loop. The test loop you give may come in handy, but you need to compare all previous ellipses to the one created in the loop iteration, not the first one.
i=1;
while (i<=4) %# or length(a), or, more elegantly, some pre-defined max
x(i) = rand*400; y(i) = rand*400; %# or take x and y as givren and decrease a and b
%# now, check overlap for given center
overlap = false;
for k=1:(i-1)
overlap = overlap || overlap_ellipses(x(i),y(i),a(i),b(i),angle(i),x(k),y(k),a(k),b(k),angle(k))
end
if (~overlap)
img = drawellipse(x(i),y(i),a(i),b(i),angle(i),steps,color,img);
i = i+1; %# determine next ellipse
end %# else x(i) and y(i) will be overwritten in next while loop iteration
end
Of course, if a and b are fixed, it may happen that no ellipse fits the image dimensions if the already present ones are unfortunately placed, resulting in an infinite loop.
Regarding your plan of leaving the center fixed and decreasing the ellipse's size until it fits: where does your overlap_ellipses method come from? Maybe itcan be adapted to return a factor by which one ellipse needs to be shrinked to fit next to the other (and 1 if it fits already)?
The solution proposed by #arne.b (the first one) is a good way to rasterize non-overlapping ellipses.
Let me illustrate that idea with an example. I will be extending my previous answer:
%# color image
I = imread('pears.png');
sz = size(I);
%# parameters of ellipses
num = 7;
h = zeros(1,num);
clr = lines(num); %# color of each ellipse
x = rand(num,1) .* sz(2); %# center x-coords
y = rand(num,1) .* sz(1); %# center y-coords
a = rand(num,1) .* 200; %# major axis length
b = rand(num,1) .* 200; %# minor axis length
angle = rand(num,1) .* 360; %# angle of rotation
%# label image, used to hold rasterized ellipses
BW = zeros(sz(1),sz(2));
%# randomly place ellipses one-at-a-time, skip if overlaps previous ones
figure, imshow(I)
axis on, hold on
for i=1:num
%# ellipse we would like to draw directly on image matrix
[ex,ey] = calculateEllipse(x(i),y(i), a(i),b(i), angle(i), 100);
%# lets plot the ellipse (overlayed)
h(i) = plot(ex,ey, 'LineWidth',2, 'Color',clr(i,:));
%# create mask for image pixels inside the ellipse polygon
mask = poly2mask(ex,ey,sz(1),sz(2));
%# get the perimter of this mask
mask = bwperim(mask,8);
%# skip if there is an existing overlapping ellipse
if any( BW(mask)~=0 ), continue, end
%# use the mask to place the ellipse in the label image
BW(mask) = i;
end
hold off
legend(h, cellstr(num2str((1:num)','Line%d')), 'Location','BestOutside') %'
%# set pixels corresponding to ellipses using specified colors
clr = im2uint8(clr);
II = I;
for i=1:num
BW_ind = bsxfun(#plus, find(BW==i), prod(sz(1:2)).*(0:2));
II(BW_ind) = repmat(clr(i,:), [size(BW_ind,1) 1]);
end
figure, imshow(II, 'InitialMagnification',100, 'Border','tight')
Note how the overlap test is performed in the order the ellipses are added, thus after Line1 (blue) and Line2 (green) are drawn, Line3 (red) will be skipped because it overlaps one of the previous ones, and so on for the rest...
One option is to keep track of all the ellipses already drawn, and to make sure the next set of [x,y,a,b] does not produce a new ellipse which intersects with the existing ones. You can either invoke random numbers until you come up with a set that fulfills the condition, or once you have a set which violates the condition, decrease the values of a and/or b until no intersection occurs.
Related
I'm plotting a polygon made of edges and vertices. I'd like to plot these elements at a specific size or proportion: whether the polygon has 10 or 1000 vertices, I'd like the elements to be drawn at the same size. When zooming in and out of the vector image, element size would remain static.
For example, define a canvas of 100inx100in and draw lines .1in thick (and save to a pdf).
Currently, it seems impossible since, e.g., the LineWidth, MarkerSize, and FontSize are relative to the screen instead of the canvas. This means that when you zoom into the figure, the elements keep their size wrt screen. One option is to scale their size according to the zoom level. However, then the large polygon wouldn't necessarily fit the screen.
There are two ways that I see to resolve this, both seem impossible:
Define the size properties wrt the canvas and not the screen.
Go to the proper zoom level, and draw all elements even if they aren't in the figure clip region (save to a pdf).
Questions on the subject asked about specific elements such as lines or markers. The suggested solutions were to draw with alternative functions such as patch() and rectangle().
In that case, I'll forsake matlab's clunky drawing mechanism altogether, export the data, and draw in svg. But it would be a shame since matlab has powerful tools such as different marker shapes or a force graph.
Am I missing something fundamental or is this the worst design I've seen lately?
Duplicate:
www.mathworks.com/matlabcentral/answers/1569953-plot-elements-of-specific-size
Matt J. observed that, in fact, when saving a pdf, there's no resolution limit regardless of the figure limitation.
http://www.mathworks.com/matlabcentral/answers/1569953-plot-elements-of-specific-size
Then, we can do the following:
Draw a small proof-of-concept plot with the right proportion between elements (markers, edges, and fonts). Save the data-unit-to-point ratio (sc0 below). Alternatively, you can use the same constant for all your drawings, considering this matlab's default drawing ratio.
Draw a plot of any complexity with similar proportions.
Scale it to have the same ratio as the saved one.
Save to pdf.
For example:
% draw a vertical polyline with n vertices
n = 5; % polyline size
y = 0:n;
plot( zeros( size(y) ), y, '-o', 'LineWidth', 2, 'MarkerSize', 10 );
axis equal;
% scale
sc0 = 51; % ratio calculated by data_units_to_points_ratio() from the initial (designed) fig of a polyline of size 5
sc = data_unit_to_point_ratio() / sc0;
scale_fig_objects( sc );
% save
print( 'plot.pdf' );
If you change n=100, the figure would be a proportional mess (a thin line, markers not showing), but the pdf would be fine, having the same segment (vertex to edge) proportion.
Functions used:
% Based on Matt's suggestion
function conversionFactor = data_unit_to_point_ratio()
set( gcf, 'Units', 'points' );
DU = diff(xlim); % width of figure in data units
hfig = gcf;
P = hfig.Position(3); % width of figure in points
conversionFactor = P / DU; % conversion factor, data units to points
and
function scale_fig_objects( s )
hs = findobj;
for i = 1:length( hs )
h = hs(i);
t = h.Type;
if strcmpi( t, 'line' ) || strcmpi( t, 'GraphPlot' )
h.LineWidth = h.LineWidth * s;
h.MarkerSize = h.MarkerSize * s;
elseif strcmpi( t, 'scatter' )
h.SizeData = h.SizeData * s^2; % it's a squared factor!
elseif strcmpi( t, 'text' )
h.FontSize = h.FontSize * s;
end
end
this is my situation: I have a 30x30 image and I want to calculate the radial and tangent component of the gradient of each point (pixel) along the straight line passing through the centre of the image (15,15) and the same (i,j) point.
[dx, dy] = gradient(img);
for i=1:30
for j=1:30
pt = [dx(i, j), dy(i,j)];
line = [i-15, j-15];
costh = dot(line, pt)/(norm(line)*norm(pt));
par(i,j) = norm(costh*line);
tang(i,j) = norm(sin(acos(costh))*line);
end
end
is this code correct?
I think there is a conceptual error in your code, I tried to get your results with a different approach, see how it compares to yours.
[dy, dx] = gradient(img);
I inverted x and y because the usual convention in matlab is to have the first dimension along the rows of a matrix while gradient does the opposite.
I created an array of the same size as img but with each pixel containing the angle of the vector from the center of the image to this point:
[I,J] = ind2sub(size(img), 1:numel(img));
theta=reshape(atan2d(I-ceil(size(img,1)/2), J-ceil(size(img,2)/2)), size(img))+180;
The function atan2d ensures that the 4 quadrants give distinct angle values.
Now the projection of the x and y components can be obtained with trigonometry:
par=dx.*sind(theta)+dy.*cosd(theta);
tang=dx.*cosd(theta)+dy.*sind(theta);
Note the use of the .* to achieve point-by-point multiplication, this is a big advantage of Matlab's matrix computations which saves you a loop.
Here's an example with a well-defined input image (no gradient along the rows and a constant gradient along the columns):
img=repmat(1:30, [30 1]);
The results:
subplot(1,2,1)
imagesc(par)
subplot(1,2,2)
imagesc(tang)
colorbar
I have a .txt file with about 100,000 points in the 2-D plane. When I plot the points, there is a clearly defined 2-D region (think of a 2-D disc that has been morphed a bit).
What is the easiest way to compute the area of this region? Any way of doing easily in Matlab?
I made a polygonal approximation by finding a bunch (like 40) points on the boundary of the region and computing the area of the polygonal region in Matlab, but I was wondering if there is another, less tedious method than finding 40 points on the boundary.
Consider this example:
%# random points
x = randn(300,1);
y = randn(300,1);
%# convex hull
dt = DelaunayTri(x,y);
k = convexHull(dt);
%# area of convex hull
ar = polyarea(dt.X(k,1),dt.X(k,2))
%# plot
plot(dt.X(:,1), dt.X(:,2), '.'), hold on
fill(dt.X(k,1),dt.X(k,2), 'r', 'facealpha', 0.2);
hold off
title( sprintf('area = %g',ar) )
There is a short screencast By Doug Hull which solves this exact problem.
EDIT:
I am posting a second answer inspired by the solution proposed by #Jean-FrançoisCorbett.
First I create random data, and using the interactive brush tool, I remove some points to make it look like the desired "kidney" shape...
To have a baseline to compare against, we can manually trace the enclosing region using the IMFREEHAND function (I'm doing this using my laptop's touchpad, so not the most accurate drawing!). Then we find the area of this polygon using POLYAREA. Just like my previous answer, I compute the convex hull as well:
Now, and based on a previous SO question I had answered (2D histogram), the idea is to lay a grid over the data. The choice of the grid resolution is very important, mine was numBins = [20 30]; for the data used.
Next we count the number of squares containing enough points (I used at least 1 point as threshold, but you could try a higher value). Finally we multiply this count by the area of one grid square to obtain the approximated total area.
%### DATA ###
%# some random data
X = randn(100000,1)*1;
Y = randn(100000,1)*2;
%# HACK: remove some point to make data look like a kidney
idx = (X<-1 & -4<Y & Y<4 ); X(idx) = []; Y(idx) = [];
%# or use the brush tool
%#brush on
%### imfreehand ###
figure
line('XData',X, 'YData',Y, 'LineStyle','none', ...
'Color','b', 'Marker','.', 'MarkerSize',1);
daspect([1 1 1])
hROI = imfreehand('Closed',true);
pos = getPosition(hROI); %# pos = wait(hROI);
delete(hROI)
%# total area
ar1 = polyarea(pos(:,1), pos(:,2));
%# plot
hold on, plot(pos(:,1), pos(:,2), 'Color','m', 'LineWidth',2)
title('Freehand')
%### 2D histogram ###
%# center of bins
numBins = [20 30];
xbins = linspace(min(X), max(X), numBins(1));
ybins = linspace(min(Y), max(Y), numBins(2));
%# map X/Y values to bin-indices
Xi = round( interp1(xbins, 1:numBins(1), X, 'linear', 'extrap') );
Yi = round( interp1(ybins, 1:numBins(2), Y, 'linear', 'extrap') );
%# limit indices to the range [1,numBins]
Xi = max( min(Xi,numBins(1)), 1);
Yi = max( min(Yi,numBins(2)), 1);
%# count number of elements in each bin
H = accumarray([Yi(:), Xi(:)], 1, [numBins(2) numBins(1)]);
%# total area
THRESH = 0;
sqNum = sum(H(:)>THRESH);
sqArea = (xbins(2)-xbins(1)) * (ybins(2)-ybins(1));
ar2 = sqNum*sqArea;
%# plot 2D histogram/thresholded_histogram
figure, imagesc(xbins, ybins, H)
axis on, axis image, colormap hot; colorbar; %#caxis([0 500])
title( sprintf('2D Histogram, bins=[%d %d]',numBins) )
figure, imagesc(xbins, ybins, H>THRESH)
axis on, axis image, colormap gray
title( sprintf('H > %d',THRESH) )
%### convex hull ###
dt = DelaunayTri(X,Y);
k = convexHull(dt);
%# total area
ar3 = polyarea(dt.X(k,1), dt.X(k,2));
%# plot
figure, plot(X, Y, 'b.', 'MarkerSize',1), daspect([1 1 1])
hold on, fill(dt.X(k,1),dt.X(k,2), 'r', 'facealpha',0.2); hold off
title('Convex Hull')
%### plot ###
figure, hold on
%# plot histogram
imagesc(xbins, ybins, H>=1)
axis on, axis image, colormap gray
%# plot grid lines
xoff = diff(xbins(1:2))/2; yoff = diff(ybins(1:2))/2;
xv1 = repmat(xbins+xoff,[2 1]); xv1(end+1,:) = NaN;
yv1 = repmat([ybins(1)-yoff;ybins(end)+yoff;NaN],[1 size(xv1,2)]);
yv2 = repmat(ybins+yoff,[2 1]); yv2(end+1,:) = NaN;
xv2 = repmat([xbins(1)-xoff;xbins(end)+xoff;NaN],[1 size(yv2,2)]);
xgrid = [xv1(:);NaN;xv2(:)]; ygrid = [yv1(:);NaN;yv2(:)];
line(xgrid, ygrid, 'Color',[0.8 0.8 0.8], 'HandleVisibility','off')
%# plot points
h(1) = line('XData',X, 'YData',Y, 'LineStyle','none', ...
'Color','b', 'Marker','.', 'MarkerSize',1);
%# plot convex hull
h(2) = patch('XData',dt.X(k,1), 'YData',dt.X(k,2), ...
'LineWidth',2, 'LineStyle','-', ...
'EdgeColor','r', 'FaceColor','r', 'FaceAlpha',0.5);
%# plot freehand polygon
h(3) = plot(pos(:,1), pos(:,2), 'g-', 'LineWidth',2);
%# compare results
title(sprintf('area_{freehand} = %g, area_{grid} = %g, area_{convex} = %g', ...
ar1,ar2,ar3))
legend(h, {'Points' 'Convex Jull','FreeHand'})
hold off
Here is the final result of all three methods overlayed, with the area approximations displayed:
My answer is the simplest and perhaps the least elegant and precise. But first, a comment on previous answers:
Since your shape is usually kidney-shaped (not convex), calculating the area of its convex hull won't do, and an alternative is to determine its concave hull (see e.g. http://www.concavehull.com/home.php?main_menu=1) and calculate the area of that. But determining a concave hull is far more difficult than a convex hull. Plus, straggler points will cause trouble in both he convex and concave hull.
Delaunay triangulation followed by pruning, as suggested in #Ed Staub's answer, may a bit be more straightforward.
My own suggestion is this: How precise does your surface area calculation have to be? My guess is, not very. With either concave hull or pruned Delaunay triangulation, you'll have to make an arbitrary choice anyway as to where the "boundary" of your shape is (the edge isn't knife-sharp, and I see there are some straggler points sprinkled around it).
Therefore a simpler algorithm may be just as good for your application.
Divide your image in an orthogonal grid. Loop through all grid "pixels" or squares; if a given square contains at least one point (or perhaps two points?), mark the square as full, else empty. Finally, add the area of all full squares. Bingo.
The only parameter is the resolution length (size of the squares). Its value should be set to something similar to the pruning length in the case of Delaunay triangulation, i.e. "points within my shape are closer to each other than this length, and points further apart than this length should be ignored".
Perhaps an additional parameter is the number of points threshold for a square to be considered full. Maybe 2 would be good to ignore straggler points, but that may define the main shape a bit too tightly for your taste... Try both 1 and 2, and perhaps take an average of both. Or, use 1 and prune away the squares that have no neighbours (game-of-life-style). Simlarly, empty squares whose 8 neighbours are full should be considered full, to avoid holes in the middle of the shape.
There is no end to how much this algorithm can be refined, but due to the arbitrariness intrinsic to the problem definition in your particular application, any refinement is probably the algorithm equivalent of "polishing a turd".
I know next to nothing, so don't put much stock in this... consider doing a Delaunay triangulation. Then remove any hull (outer) edges longer than some maximum. Repeat until nothing to remove. Fill the remaining triangles.
This will orphan some outlier points.
I suggest using a space-filling-curve, for example a z-curve or better a moore curve. A sfc fills the full space and is good to index each points. For example for all f(x)=y you can sort the points of the curve in ascendending order and from that result you take as many points until you get a full roundtrip. These points you can then use to compute the area. Because you have many points maybe you want to use less points and use a cluster which make the result less accurate.
I think you can get the border points using convex hull algorithm with restriction to the edge length (you should sort points by vertical axis). Thus it will follow nonconvexity of your region. I propose length round 0.02. In any case you can experiment a bit with different lengths drawing the result and examining it visually.
I have a bit of a problem categorizing points based on relative normals.
What I would like to do is use the information I got below to fit a simplified polygon to the points, with a bias towards 90 degree angles to an extent.
I have the rough (although not very accurate) normal lines for each point, but I'm not sure how to separate the data base on closeness of points and closeness of the normals. I plan to do a linear regression after chunking the points for each face, as the normal lines sometimes does not fit well with the actual faces (although they are close to each other for each face)
Example:
alt text http://a.imageshack.us/img842/8439/ptnormals.png
Ideally, I would like to be able to fit a rectangle around this data. However, the polygon does not need to be convex, nor does it have to be aligned with the axis.
Any hints as to how to achieve something like this would be awesome.
Thanks in advance
I am not sure if this is what you are looking for, but here's my attempt at solving the problem as I understood it:
I am using the angles of the normal vectors to find points belonging to each side of the rectangle (left, right, up, down), then simply fit a line to each.
%# create random data (replace those with your actual data)
num = randi([10 20]);
pT = zeros(num,2);
pT(:,1) = rand(num,1);
pT(:,2) = ones(num,1) + 0.01*randn(num,1);
aT = 90 + 10*randn(num,1);
num = randi([10 20]);
pB = zeros(num,2);
pB(:,1) = rand(num,1);
pB(:,2) = zeros(num,1) + 0.01*randn(num,1);
aB = 270 + 10*randn(num,1);
num = randi([10 20]);
pR = zeros(num,2);
pR(:,1) = ones(num,1) + 0.01*randn(num,1);
pR(:,2) = rand(num,1);
aR = 0 + 10*randn(num,1);
num = randi([10 20]);
pL = zeros(num,2);
pL(:,1) = zeros(num,1) + 0.01*randn(num,1);
pL(:,2) = rand(num,1);
aL = 180 + 10*randn(num,1);
pts = [pT;pR;pB;pL]; %# x/y coords
angle = mod([aT;aR;aB;aL],360); %# angle in degrees [0,360]
%# plot points and normals
plot(pts(:,1), pts(:,2), 'o'), hold on
theta = angle * pi / 180;
quiver(pts(:,1), pts(:,2), cos(theta), sin(theta), 0.4, 'Color','g')
hold off
%# divide points based on angle
[~,bin] = histc(angle,[0 45 135 225 315 360]);
bin(bin==5) = 1; %# combine last and first bin
%# fit line to each segment
hold on
for i=1:4
%# indices of points in this segment
idx = ( bin == i );
%# x/y or y/x
if i==2||i==4, xx=1; yy=2; else xx=2; yy=1; end
%# fit line
coeff = polyfit(pts(idx,xx), pts(idx,yy), 1);
fit(:,1) = 0:0.05:1;
fit(:,2) = polyval(coeff, fit(:,1));
%# plot fitted line
plot(fit(:,xx), fit(:,yy), 'Color','r', 'LineWidth',2)
end
hold off
I'd try the following
Cluster the points based on proximity and similar angle. I'd use single-linkage hierarchical clustering (LINKAGE in Matlab), since you don't know a priori how many edges there will be. Single linkage favors linear structures, which is exactly what you're looking for. As the distance criterion between two points you can use the euclidean distance between point coordinates multiplied by a function of the angle that increases very steeply as soon as the angle differs more than, say, 20 or 30 degrees.
Do (robust) linear regression into the data. Using the normals may or may not help. My guess is that they won't help too much. For simplicity, you may want to disregard the normals initially.
Find the intersections between the lines.
If you have to, you can always try and improve the fit, for example by constraining opposite lines to be parallel.
If that fails, you could try and implement the approach in THIS PAPER, which allows fitting multiple straight lines at once.
You could get the mean value for the X and Y coordinates for each side and then just make lines based on that.
I have an image in MATLAB:
im = rgb2gray(imread('some_image.jpg');
% normalize the image to be between 0 and 1
im = im/max(max(im));
And I've done some processing that resulted in a number of points that I want to highlight:
points = some_processing(im);
Where points is a matrix the same size as im with ones in the interesting points.
Now I want to draw a circle on the image in all the places where points is 1.
Is there any function in MATLAB that does this? The best I can come up with is:
[x_p, y_p] = find (points);
[x, y] = meshgrid(1:size(im,1), 1:size(im,2))
r = 5;
circles = zeros(size(im));
for k = 1:length(x_p)
circles = circles + (floor((x - x_p(k)).^2 + (y - y_p(k)).^2) == r);
end
% normalize circles
circles = circles/max(max(circles));
output = im + circles;
imshow(output)
This seems more than somewhat inelegant. Is there a way to draw circles similar to the line function?
You could use the normal PLOT command with a circular marker point:
[x_p,y_p] = find(points);
imshow(im); %# Display your image
hold on; %# Add subsequent plots to the image
plot(y_p,x_p,'o'); %# NOTE: x_p and y_p are switched (see note below)!
hold off; %# Any subsequent plotting will overwrite the image!
You can also adjust these other properties of the plot marker: MarkerEdgeColor, MarkerFaceColor, MarkerSize.
If you then want to save the new image with the markers plotted on it, you can look at this answer I gave to a question about maintaining image dimensions when saving images from figures.
NOTE: When plotting image data with IMSHOW (or IMAGE, etc.), the normal interpretation of rows and columns essentially becomes flipped. Normally the first dimension of data (i.e. rows) is thought of as the data that would lie on the x-axis, and is probably why you use x_p as the first set of values returned by the FIND function. However, IMSHOW displays the first dimension of the image data along the y-axis, so the first value returned by FIND ends up being the y-coordinate value in this case.
This file by Zhenhai Wang from Matlab Central's File Exchange does the trick.
%----------------------------------------------------------------
% H=CIRCLE(CENTER,RADIUS,NOP,STYLE)
% This routine draws a circle with center defined as
% a vector CENTER, radius as a scaler RADIS. NOP is
% the number of points on the circle. As to STYLE,
% use it the same way as you use the rountine PLOT.
% Since the handle of the object is returned, you
% use routine SET to get the best result.
%
% Usage Examples,
%
% circle([1,3],3,1000,':');
% circle([2,4],2,1000,'--');
%
% Zhenhai Wang <zhenhai#ieee.org>
% Version 1.00
% December, 2002
%----------------------------------------------------------------
Funny! There are 6 answers here, none give the obvious solution: the rectangle function.
From the documentation:
Draw a circle by setting the Curvature property to [1 1]. Draw the circle so that it fills the rectangular area between the points (2,4) and (4,6). The Position property defines the smallest rectangle that contains the circle.
pos = [2 4 2 2];
rectangle('Position',pos,'Curvature',[1 1])
axis equal
So in your case:
imshow(im)
hold on
[y, x] = find(points);
for ii=1:length(x)
pos = [x(ii),y(ii)];
pos = [pos-0.5,1,1];
rectangle('position',pos,'curvature',[1 1])
end
As opposed to the accepted answer, these circles will scale with the image, you can zoom in an they will always mark the whole pixel.
Hmm I had to re-switch them in this call:
k = convhull(x,y);
figure;
imshow(image); %# Display your image
hold on; %# Add subsequent plots to the image
plot(x,y,'o'); %# NOTE: x_p and y_p are switched (see note below)!
hold off; %# Any subsequent plotting will overwrite the image!
In reply to the comments:
x and y are created using the following code:
temp_hull = stats_single_object(k).ConvexHull;
for k2 = 1:length(temp_hull)
i = i+1;
[x(i,1)] = temp_hull(k2,1);
[y(i,1)] = temp_hull(k2,2);
end;
it might be that the ConvexHull is the other way around and therefore the plot is different. Or that I made a mistake and it should be
[x(i,1)] = temp_hull(k2,2);
[y(i,1)] = temp_hull(k2,1);
However the documentation is not clear about which colum = x OR y:
Quote: "Each row of the matrix contains the x- and y-coordinates of one vertex of the polygon. "
I read this as x is the first column and y is the second colum.
In newer versions of MATLAB (I have 2013b) the Computer Vision System Toolbox contains the vision.ShapeInserter System object which can be used to draw shapes on images. Here is an example of drawing yellow circles from the documentation:
yellow = uint8([255 255 0]); %// [R G B]; class of yellow must match class of I
shapeInserter = vision.ShapeInserter('Shape','Circles','BorderColor','Custom','CustomBorderColor',yellow);
I = imread('cameraman.tif');
circles = int32([30 30 20; 80 80 25]); %// [x1 y1 radius1;x2 y2 radius2]
RGB = repmat(I,[1,1,3]); %// convert I to an RGB image
J = step(shapeInserter, RGB, circles);
imshow(J);
With MATLAB and Image Processing Toolbox R2012a or newer, you can use the viscircles function to easily overlay circles over an image. Here is an example:
% Plot 5 circles at random locations
X = rand(5,1);
Y = rand(5,1);
% Keep the radius 0.1 for all of them
R = 0.1*ones(5,1);
% Make them blue
viscircles([X,Y],R,'EdgeColor','b');
Also, check out the imfindcircles function which implements the Hough circular transform. The online documentation for both functions (links above) have examples that show how to find circles in an image and how to display the detected circles over the image.
For example:
% Read the image into the workspace and display it.
A = imread('coins.png');
imshow(A)
% Find all the circles with radius r such that 15 ≤ r ≤ 30.
[centers, radii, metric] = imfindcircles(A,[15 30]);
% Retain the five strongest circles according to the metric values.
centersStrong5 = centers(1:5,:);
radiiStrong5 = radii(1:5);
metricStrong5 = metric(1:5);
% Draw the five strongest circle perimeters.
viscircles(centersStrong5, radiiStrong5,'EdgeColor','b');
Here's the method I think you need:
[x_p, y_p] = find (points);
% convert the subscripts to indicies, but transposed into a row vector
a = sub2ind(size(im), x_p, y_p)';
% assign all the values in the image that correspond to the points to a value of zero
im([a]) = 0;
% show the new image
imshow(im)