Related
Given an array of integers which are needed to be split into four
boxes such that sum of XOR's of the boxes is maximum.
I/P -- [1,2,1,2,1,2]
O/P -- 9
Explanation: Box1--[1,2]
Box2--[1,2]
Box3--[1,2]
Box4--[]
I've tried using recursion but failed for larger test cases as the
Time Complexity is exponential. I'm expecting a solution using dynamic
programming.
def max_Xor(b1,b2,b3,b4,A,index,size):
if index == size:
return b1+b2+b3+b4
m=max(max_Xor(b1^A[index],b2,b3,b4,A,index+1,size),
max_Xor(b1,b2^A[index],b3,b4,A,index+1,size),
max_Xor(b1,b2,b3^A[index],b4,A,index+1,size),
max_Xor(b1,b2,b3,b4^A[index],A,index+1,size))
return m
def main():
print(max_Xor(0,0,0,0,A,0,len(A)))
Thanks in Advance!!
There are several things to speed up your algorithm:
Build in some start-up logic: it doesn't make sense to put anything into box 3 until boxes 1 & 2 are differentiated. In fact, you should generally have an order of precedence to keep you from repeating configurations in a different order.
Memoize your logic; this avoids repeating computations.
For large cases, take advantage of what value algebra exists.
This last item may turn out to be the biggest saving. For instance, if your longest numbers include several 5-bit and 4-bit numbers, it makes no sense to consider shorter numbers until you've placed those decently in the boxes, gaining maximum advantage for the leading bits. With only four boxes, you cannot have a num from 3-bit numbers that dominates a single misplaced 5-bit number.
Your goal is to place an odd number of 5-bit numbers into 3 or all 4 boxes; against this, check only whether this "pessimizes" bit 4 of the remaining numbers. For instance, given six 5-digit numbers (range 16-31) and a handful of small ones (0-7), your first consideration is to handle only combinations that partition the 5-digit numbers by (3, 1, 1, 1), as this leaves that valuable 5-bit turned on in each set.
With a more even mixture of values in your input, you'll also need to consider how to distribute the 4-bits for a similar "keep it odd" heuristic. Note that, as you work from largest to smallest, you need worry only about keeping it odd, and watching the following bit.
These techniques should let you prune your recursion enough to finish in time.
We can use Dynamic programming here to break the problem into smaller sets then store their result in a table. Then use already stored result to calculate answer for bigger set.
For example:
Input -- [1,2,1,2,1,2]
We need to divide the array consecutively into 4 boxed such that sum of XOR of all boxes is maximised.
Lets take your test case, break the problem into smaller sets and start solving for smaller set.
box = 1, num = [1,2,1,2,1,2]
ans = 1 3 2 0 1 3
Since we only have one box so all numbers will go into this box. We will store this answer into a table. Lets call the matrix as DP.
DP[1] = [1 3 2 0 1 3]
DP[i][j] stores answer for distributing 0-j numbers to i boxes.
now lets take the case where we have two boxes and we will take numbers one by one.
num = [1] since we only have one number it will go into the first box.
DP[1][0] = 1
Lets add another number.
num = [1 2]
now there can be two ways to put this new number into the box.
case 1: 2 will go to the First box. Since we already have answer
for both numbers in one box. we will just use that.
answer = DP[0][1] + 0 (Second box is empty)
case 2: 2 will go to second box.
answer = DP[0][0] + 2 (only 2 is present in the second box)
Maximum of the two cases will be stored in DP[1][1].
DP[1][1] = max(3+0, 1+2) = 3.
Now for num = [1 2 1].
Again for new number we have three cases.
box1 = [1 2 1], box2 = [], DP[0][2] + 0
box1 = [1 2], box2 = [1], DP[0][1] + 1
box1 = [1 ], box2 = [2 1], DP[0][0] + 2^1
Maximum of these three will be answer for DP[1][2].
Similarly we can find answer of num = [1 2 1 2 1 2] box = 4
1 3 2 0 1 3
1 3 4 6 5 3
1 3 4 6 7 9
1 3 4 6 7 9
Also note that a xor b xor a = b. you can use this property to get xor of a segment of an array in constant time as suggested in comments.
This way you can break the problem in smaller subset and use smaller set answer to compute for the bigger ones. Hope this helps. After understanding the concept you can go ahead and implement it with better time than exponential.
I would go bit by bit from the highest bit to the lowest bit. For every bit, try all combinations that distribute the still unused numbers that have that bit set so that an odd number of them is in each box, nothing else matters. Pick the best path overall. One issue that complicates this greedy method is that two boxes with a lower bit set can equal one box with the next higher bit set.
Alternatively, memoize the boxes state in your recursion as an ordered tuple.
EDIT: clarified description of problem
Is there a fast algorithm solving following problem?
And, is also for extendend version of this problem
that is replaced natural numbers to Z/(2^n Z)?(This problem was too complex to add more quesion in one place, IMO.)
Problem:
For a given set of natural numbers like {7, 20, 17, 100}, required algorithm
returns the shortest sequence of additions, mutliplications and powers compute
all of given numbers.
Each item of sequence are (correct) equation that matches following pattern:
<number> = <number> <op> <number>
where <number> is a natual number, <op> is one of {+, *, ^}.
In the sequence, each operand of <op> should be one of
1
numbers which are already appeared in the left-hand-side of equal.
Example:
Input: {7, 20, 17, 100}
Output:
2 = 1 + 1
3 = 1 + 2
6 = 2 * 3
7 = 1 + 6
10 = 3 + 7
17 = 7 + 10
20 = 2 * 10
100 = 10 ^ 2
I wrote backtracking algorithm in Haskell.
it works for small input like above, but my real query is
randomly distributed ~30 numbers in [0,255].
for real query, following code takes 2~10 minutes in my PC.
(Actual code,
very simple test)
My current (Pseudo)code:
-- generate set of sets required to compute n.
-- operater (+) on set is set union.
requiredNumbers 0 = { {} }
requiredNumbers 1 = { {} }
requiredNumbers n =
{ {j, k} | j^k == n, j >= 2, k >= 2 }
+ { {j, k} | j*k == n, j >= 2, k >= 2 }
+ { {j, k} | j+k == n, j >= 1, k >= 1 }
-- remember the smallest set of "computed" number
bestSet := {i | 1 <= i <= largeNumber}
-- backtracking algorithm
-- from: input
-- to: accumulator of "already computed" number
closure from to =
if (from is empty)
if (|bestSet| > |to|)
bestSet := to
return
else if (|from| + |to| >= |bestSet|)
-- cut branch
return
else
m := min(from)
from' := deleteMin(from)
foreach (req in (requiredNumbers m))
closure (from' + (req - to)) (to + {m})
-- recoverEquation is a function converts set of number to set of equation.
-- it can be done easily.
output = recoverEquation (closure input {})
Additional Note:
Answers like
There isn't a fast algorithm, because...
There is a heuristic algorithm, it is...
are also welcomed. Now I'm feeling that there is no fast and exact algorithm...
Answer #1 can be used as a heuristic, I think.
What if you worked backwards from the highest number in a sorted input, checking if/how to utilize the smaller numbers (and numbers that are being introduced) in its construction?
For example, although this may not guarantee the shortest sequence...
input: {7, 20, 17, 100}
(100) = (20) * 5 =>
(7) = 5 + 2 =>
(17) = 10 + (7) =>
(20) = 10 * 2 =>
10 = 5 * 2 =>
5 = 3 + 2 =>
3 = 2 + 1 =>
2 = 1 + 1
What I recommend is to transform it into some kind of graph shortest path algorithm.
For each number, you compute (and store) the shortest path of operations. Technically one step is enough: For each number you can store the operation and the two operands (left and right, because power operation is not commutative), and also the weight ("nodes")
Initially you register 1 with the weight of zero
Every time you register a new number, you have to generate all calculations with that number (all additions, multiplications, powers) with all already-registered numbers. ("edges")
Filter for the calculations: it the result of the calculation is already registered, you shouldn't store that, because there is an easier way to get to that number
Store only 1 operation for the commutative ones (1+2=2+1)
Prefilter the power operation because that may even cause overflow
You have to order this list to the shortest sum path (weight of the edge). Weight = (weight of operand1) + (weight of operand2) + (1, which is the weight of the operation)
You can exclude all resulting numbers which are greater than the maximum number that we have to find (e.g. if we found 100 already, anything greater that 20 can be excluded) - this can be refined so that you can check the members of the operations also.
If you hit one of your target numbers, then you found the shortest way of calculating one of your target numbers, you have to restart the generations:
Recalculate the maximum of the target numbers
Go back on the paths of the currently found number, set their weight to 0 (they will be given from now on, because their cost is already paid)
Recalculate the weight for the operations in the generation list, because the source operand weight may have been changed (this results reordering at the end) - here you can exclude those where either operand is greater than the new maximum
If all the numbers are hit, then the search is over
You can build your expression using the "backlinks" (operation, left and right operands) for each of your target numbers.
The main point is that we always keep our eye on the target function, which is that the total number of operation must be the minimum possible. In order to get this, we always calculate the shortest path to a certain number, then considering that number (and all the other numbers on the way) as given numbers, then extending our search to the remaining targets.
Theoretically, this algorithm processes (registers) each numbers only once. Applying the proper filters cuts the unnecessary branches, so nothing is calculated twice (except the weights of the in-queue elements)
I need a sorting algorithm which operates on a single, pre-populated array, and which is limited to perform only one type of write operation:
O=Move an item X to index Y. The elements on subsequent positions are shifted 1 position.
The algorithm must be optimized for the least possible number of operations O. Read operations are infinitely cheaper than write operations. Temporary helper lists are also cheap.
Edit: It might be more correct to call it a linked list, because of its behaviour, although the implementation is hidden for me.
Background:
The thing is I'm working against a Google API which only allows me to perform this operation on their lists. The operation is a web service call. I want to minimize the number of calls. You can assume the sorting program (the client) has a copy of the list in memory before starting, so there is no need to perform read operations against the service - only write. You can of course also do any amount of temporary list actions locally before performing the service calls, including duplicating the list or using existing .NET sort functions.
How do I proceed here? Is there a known algorithm I can use here?
Failed attempt:
I have already implemented a dumb algorithm, but it is not optimal for all cases. It works well when the list is like this:
List A = [2,3,4,5,6,7,8,9,1]
It goes like this:
Is list sorted? No
Find element that belongs at position 0: "1"
Move Element "1" to position 0
(New list state A1: [1,2,3,4,5,6,7,8,9])
Is list sorted? Yes. End
...But when the list is like this, I get into trouble:
List B = [9,1,2,3,4,5,6,7,8]
Is list sorted? No
Find element that belongs at position 0: "1"
Move Element "1" to position 0
(New list state B1: [1,9,2,3,4,5,6,7,8])
Is list sorted? No
Find element that belongs at position 1: "2"
Move Element "2" to position 1
(New list state B2: [1,2,9,3,4,5,6,7,8])
...you can see where I'm going here...
Compute the longest increasing subsequence of the array. Perform a write operation for each element that is not present in the sequence.
EDIT: Adding an example
Let the numbers in the input array be 1 3 2 7 4 8 6 5 9. A longest increasing sequence is 1 2 4 6 9. When computing this sequence store the indexes of the elements that occur in the sequence. Then it is straightforward to travel through the original array and find the elements not present in the sequence. In this case they are 3 7 8 5. For each of these elements perform a write operation that places them in the appropriate position. So the sequence of modifications of the array would be:
1 2 3 7 4 8 6 5 9 (after writing 3 to appropriate position)
1 2 3 4 8 6 7 5 9 (after writing 7 to appropriate position)
1 2 3 4 6 7 5 8 9 (after writing 8 to appropriate position)
1 2 3 4 5 6 7 8 9 (after writing 5 to appropriate position)
Sort the array locally. Keep a copy of the original.
Compute the optimal edit sequence between the original array and the sorted version using LCS distance; that's the variant of Levenshtein distance where substitutions are not allowed. A simplified version of the dynamic programming algorithm for Levenshtein can be used to compute LCS distance. Look at the source code for programs such as diff to see how the edit sequence can be obtained from the dynamic programming table.
You now have an edit sequence, meaning a list of insertions and deletions to be performed to transform the original array into the sorted version. Perform the insertions. (You can skip the deletions since they'll be performed by your operation O, but be aware that indices into the arrays change because of that, so you'll have to compensate for that.)
Search for the longest sorted subsequence, and shift each unsorted element into it's correct position.
For your examples:
start: 2,3,4,5,6,7,8,9,1 (O = 0)
LSS: 2,3,4,5,6,7,8,9
step: 1,2,3,4,5,6,7,8,9 (O = 1)
start: 9,1,2,3,4,5,6,7,8 (O = 0)
LSS: 1,2,3,4,5,6,7,8
step: 1,2,3,4,5,6,7,8,9 (O = 1)
One of mine:
start: 9,3,1,7,2,8,5,6,4 (O = 0)
LSS: 1,2,5,6
step: 3,1,7,2,8,5,6,9,4 (O = 1)
LSS: 1,2,5,6,9
step: 1,7,2,3,8,5,6,9,4 (O = 2)
LSS: 1,2,3,5,6,9
step: 1,2,3,8,5,6,7,9,4 (O = 3)
LSS: 1,2,3,5,6,7,9
step: 1,2,3,5,6,7,8,9,4 (O = 4)
LSS: 1,2,3,5,6,7,8,9
step: 1,2,3,4,5,6,7,8,9 (O = 5)
You'll need an algorithm to identify the LSS. You only need to use it once, after you have it, you can just insert elements into it as you sort.
Pseudocode:
function O(oldindex, newindex):
# removes oldindex from list, shifts elements, inserts at newindex
function lss(list):
# identifies the LSS of a list and returns it in a cheap temporary list
function insert(index, element, list):
# inserts specified specified element into specified index in specified list
# elements at and after specified index are shifted down to make room
function sort(input):
lss_temp_list = lss(input) # get lss of input list
do until lss == input:
old = any(index where (input[index] not in lss)# item in input; not in lss
# getting new index is uglier
nl = min(X where (X > input[old] and X in lss))# next lowest element in lss
nh = max(X where (X < input[old] and X in lss))# next highest element in lss
new = any(index # index of next lowest/highest
where ((input[index + 1] == nl and nl exists)
or (input[index + 1] == nh and nh exists))
O(old, new) # list shift
il = min(index where (lss[index] > input[new]))# index of next lowest in lss
ih = max(index where (lss[index] < input[new]))# index of next highest in lss
i = any(X where (X == il or X == (ih + 1))) # index to insert element
insert(i, input[new], lss) # add new element to lss
repeat
return input
Apologies for the wonky pseudocode style, I was trying to make it narrow enough to not make the code block need a scroll bar.
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Finding sorted sub-sequences in a permutation
Given an array A which holds a permutation of 1,2,...,n. A sub-block A[i..j]
of an array A is called a valid block if all the numbers appearing in A[i..j]
are consecutive numbers (may not be in order).
Given an array A= [ 7 3 4 1 2 6 5 8] the valid blocks are [3 4], [1,2], [6,5],
[3 4 1 2], [3 4 1 2 6 5], [7 3 4 1 2 6 5], [7 3 4 1 2 6 5 8]
So the count for above permutation is 7.
Give an O( n log n) algorithm to count the number of valid blocks.
Ok, I am down to 1 rep because I put 200 bounty on a related question: Finding sorted sub-sequences in a permutation
so I cannot leave comments for a while.
I have an idea:
1) Locate all permutation groups. They are: (78), (34), (12), (65). Unlike in group theory, their order and position, and whether they are adjacent matters. So, a group (78) can be represented as a structure (7, 8, false), while (34) would be (3,4,true). I am using Python's notation for tuples, but it is actually might be better to use a whole class for the group. Here true or false means contiguous or not. Two groups are "adjacent" if (max(gp1) == min(gp2) + 1 or max(gp2) == min(gp1) + 1) and contigous(gp1) and contiguos(gp2). This is not the only condition, for union(gp1, gp2) to be contiguous, because (14) and (23) combine into (14) nicely. This is a great question for algo class homework, but a terrible one for interview. I suspect this is homework.
Just some thoughts:
At first sight, this sounds impossible: a fully sorted array would have O(n2) valid sub-blocks.
So, you would need to count more than one valid sub-block at a time. Checking the validity of a sub-block is O(n). Checking whether a sub-block is fully sorted is O(n) as well. A fully sorted sub-block contains n·(n - 1)/2 valid sub-blocks, which you can count without further breaking this sub-block up.
Now, the entire array is obviously always valid. For a divide-and-conquer approach, you would need to break this up. There are two conceivable breaking points: the location of the highest element, and that of the lowest element. If you break the array into two at one of these points, including the extremum in the part that contains the second-to-extreme element, there cannot be a valid sub-block crossing this break-point.
By always choosing the extremum that produces a more even split, this should work quite well (average O(n log n)) for "random" arrays. However, I can see problems when your input is something like (1 5 2 6 3 7 4 8), which seems to produce O(n2) behaviour. (1 4 7 2 5 8 3 6 9) would be similar (I hope you see the pattern). I currently see no trick to catch this kind of worse case, but it seems that it requires other splitting techniques.
This question does involve a bit of a "math trick" but it's fairly straight forward once you get it. However, the rest of my solution won't fit the O(n log n) criteria.
The math portion:
For any two consecutive numbers their sum is 2k+1 where k is the smallest element. For three it is 3k+3, 4 : 4k+6 and for N such numbers it is Nk + sum(1,N-1). Hence, you need two steps which can be done simultaneously:
Create the sum of all the sub-arrays.
Determine the smallest element of a sub-array.
The dynamic programming portion
Build two tables using the results of the previous row's entries to build each successive row's entries. Unfortunately, I'm totally wrong as this would still necessitate n^2 sub-array checks. Ugh!
My proposition
STEP = 2 // amount of examed number
B [0,0,0,0,0,0,0,0]
B [1,1,0,0,0,0,0,0]
VALID(A,B) - if not valid move one
B [0,1,1,0,0,0,0,0]
VALID(A,B) - if valid move one and step
B [0,0,0,1,1,0,0,0]
VALID (A,B)
B [0,0,0,0,0,1,1,0]
STEP = 3
B [1,1,1,0,0,0,0,0] not ok
B [0,1,1,1,0,0,0,0] ok
B [0,0,0,0,1,1,1,0] not ok
STEP = 4
B [1,1,1,1,0,0,0,0] not ok
B [0,1,1,1,1,0,0,0] ok
.....
CON <- 0
STEP <- 2
i <- 0
j <- 0
WHILE(STEP <= LEN(A)) DO
j <- STEP
WHILE(STEP <= LEN(A) - j) DO
IF(VALID(A,i,j)) DO
CON <- CON + 1
i <- j + 1
j <- j + STEP
ELSE
i <- i + 1
j <- j + 1
END
END
STEP <- STEP + 1
END
The valid method check that all elements are consecutive
Never tested but, might be ok
The original array doesn't contain duplicates so must itself be a consecutive block. Lets call this block (1 ~ n). We can test to see whether block (2 ~ n) is consecutive by checking if the first element is 1 or n which is O(1). Likewise we can test block (1 ~ n-1) by checking whether the last element is 1 or n.
I can't quite mould this into a solution that works but maybe it will help someone along...
Like everybody else, I'm just throwing this out ... it works for the single example below, but YMMV!
The idea is to count the number of illegal sub-blocks, and subtract this from the total possible number. We count the illegal ones by examining each array element in turn and ruling out sub-blocks that include the element but not its predecessor or successor.
Foreach i in [1,N], compute B[A[i]] = i.
Let Count = the total number of sub-blocks with length>1, which is N-choose-2 (one for each possible combination of starting and ending index).
Foreach i, consider A[i]. Ignoring edge cases, let x=A[i]-1, and let y=A[i]+1. A[i] cannot participate in any sub-block that does not include x or y. Let iX=B[x] and iY=B[y]. There are several cases to be treated independently here. The general case is that iX<i<iY<i. In this case, we can eliminate the sub-block A[iX+1 .. iY-1] and all intervening blocks containing i. There are (i - iX + 1) * (iY - i + 1) such sub-blocks, so call this number Eliminated. (Other cases left as an exercise for the reader, as are those edge cases.) Set Count = Count - Eliminated.
Return Count.
The total cost appears to be N * (cost of step 2) = O(N).
WRINKLE: In step 2, we must be careful not to eliminate each sub-interval more than once. We can accomplish this by only eliminating sub-intervals that lie fully or partly to the right of position i.
Example:
A = [1, 3, 2, 4]
B = [1, 3, 2, 4]
Initial count = (4*3)/2 = 6
i=1: A[i]=1, so need sub-blocks with 2 in them. We can eliminate [1,3] from consideration. Eliminated = 1, Count -> 5.
i=2: A[i]=3, so need sub-blocks with 2 or 4 in them. This rules out [1,3] but we already accounted for it when looking right from i=1. Eliminated = 0.
i=3: A[i] = 2, so need sub-blocks with [1] or [3] in them. We can eliminate [2,4] from consideration. Eliminated = 1, Count -> 4.
i=4: A[i] = 4, so we need sub-blocks with [3] in them. This rules out [2,4] but we already accounted for it when looking right from i=3. Eliminated = 0.
Final Count = 4, corresponding to the sub-blocks [1,3,2,4], [1,3,2], [3,2,4] and [3,2].
(This is an attempt to do this N.log(N) worst case. Unfortunately it's wrong -- it sometimes undercounts. It incorrectly assumes you can find all the blocks by looking at only adjacent pairs of smaller valid blocks. In fact you have to look at triplets, quadruples, etc, to get all the larger blocks.)
You do it with a struct that represents a subblock and a queue for subblocks.
struct
c_subblock
{
int index ; /* index into original array, head of subblock */
int width ; /* width of subblock > 0 */
int lo_value;
c_subblock * p_above ; /* null or subblock above with same index */
};
Alloc an array of subblocks the same size as the original array, and init each subblock to have exactly one item in it. Add them to the queue as you go. If you start with array [ 7 3 4 1 2 6 5 8 ] you will end up with a queue like this:
queue: ( [7,7] [3,3] [4,4] [1,1] [2,2] [6,6] [5,5] [8,8] )
The { index, width, lo_value, p_above } values for subbblock [7,7] will be { 0, 1, 7, null }.
Now it's easy. Forgive the c-ish pseudo-code.
loop {
c_subblock * const p_left = Pop subblock from queue.
int const right_index = p_left.index + p_left.width;
if ( right_index < length original array ) {
// Find adjacent subblock on the right.
// To do this you'll need the original array of length-1 subblocks.
c_subblock const * p_right = array_basic_subblocks[ right_index ];
do {
Check the left/right subblocks to see if the two merged are also a subblock.
If they are add a new merged subblock to the end of the queue.
p_right = p_right.p_above;
}
while ( p_right );
}
}
This will find them all I think. It's usually O(N log(N)), but it'll be O(N^2) for a fully sorted or anti-sorted list. I think there's an answer to this though -- when you build the original array of subblocks you look for sorted and anti-sorted sequences and add them as the base-level subblocks. If you are keeping a count increment it by (width * (width + 1))/2 for the base-level. That'll give you the count INCLUDING all the 1-length subblocks.
After that just use the loop above, popping and pushing the queue. If you're counting you'll have to have a multiplier on both the left and right subblocks and multiply these together to calculate the increment. The multiplier is the width of the leftmost (for p_left) or rightmost (for p_right) base-level subblock.
Hope this is clear and not too buggy. I'm just banging it out, so it may even be wrong.
[Later note. This doesn't work after all. See note below.]
How would you implement a random number generator that, given an interval, (randomly) generates all numbers in that interval, without any repetition?
It should consume as little time and memory as possible.
Example in a just-invented C#-ruby-ish pseudocode:
interval = new Interval(0,9)
rg = new RandomGenerator(interval);
count = interval.Count // equals 10
count.times.do{
print rg.GetNext() + " "
}
This should output something like :
1 4 3 2 7 5 0 9 8 6
Fill an array with the interval, and then shuffle it.
The standard way to shuffle an array of N elements is to pick a random number between 0 and N-1 (say R), and swap item[R] with item[N]. Then subtract one from N, and repeat until you reach N =1.
This has come up before. Try using a linear feedback shift register.
One suggestion, but it's memory intensive:
The generator builds a list of all numbers in the interval, then shuffles it.
A very efficient way to shuffle an array of numbers where each index is unique comes from image processing and is used when applying techniques like pixel-dissolve.
Basically you start with an ordered 2D array and then shift columns and rows. Those permutations are by the way easy to implement, you can even have one exact method that will yield the resulting value at x,y after n permutations.
The basic technique, described on a 3x3 grid:
1) Start with an ordered list, each number may exist only once
0 1 2
3 4 5
6 7 8
2) Pick a row/column you want to shuffle, advance it one step. In this case, i am shifting the second row one to the right.
0 1 2
5 3 4
6 7 8
3) Pick a row/column you want to shuffle... I suffle the second column one down.
0 7 2
5 1 4
6 3 8
4) Pick ... For instance, first row, one to the left.
2 0 7
5 1 4
6 3 8
You can repeat those steps as often as you want. You can always do this kind of transformation also on a 1D array. So your result would be now [2, 0, 7, 5, 1, 4, 6, 3, 8].
An occasionally useful alternative to the shuffle approach is to use a subscriptable set container. At each step, choose a random number 0 <= n < count. Extract the nth item from the set.
The main problem is that typical containers can't handle this efficiently. I have used it with bit-vectors, but it only works well if the largest possible member is reasonably small, due to the linear scanning of the bitvector needed to find the nth set bit.
99% of the time, the best approach is to shuffle as others have suggested.
EDIT
I missed the fact that a simple array is a good "set" data structure - don't ask me why, I've used it before. The "trick" is that you don't care whether the items in the array are sorted or not. At each step, you choose one randomly and extract it. To fill the empty slot (without having to shift an average half of your items one step down) you just move the current end item into the empty slot in constant time, then reduce the size of the array by one.
For example...
class remaining_items_queue
{
private:
std::vector<int> m_Items;
public:
...
bool Extract (int &p_Item); // return false if items already exhausted
};
bool remaining_items_queue::Extract (int &p_Item)
{
if (m_Items.size () == 0) return false;
int l_Random = Random_Num (m_Items.size ());
// Random_Num written to give 0 <= result < parameter
p_Item = m_Items [l_Random];
m_Items [l_Random] = m_Items.back ();
m_Items.pop_back ();
}
The trick is to get a random number generator that gives (with a reasonably even distribution) numbers in the range 0 to n-1 where n is potentially different each time. Most standard random generators give a fixed range. Although the following DOESN'T give an even distribution, it is often good enough...
int Random_Num (int p)
{
return (std::rand () % p);
}
std::rand returns random values in the range 0 <= x < RAND_MAX, where RAND_MAX is implementation defined.
Take all numbers in the interval, put them to list/array
Shuffle the list/array
Loop over the list/array
One way is to generate an ordered list (0-9) in your example.
Then use the random function to select an item from the list. Remove the item from the original list and add it to the tail of new one.
The process is finished when the original list is empty.
Output the new list.
You can use a linear congruential generator with parameters chosen randomly but so that it generates the full period. You need to be careful, because the quality of the random numbers may be bad, depending on the parameters.