I have the following matrix in my SWI prolog;
matrix(1,[ [*,*,*,*,*,*,*,*,*,*,*,*],
[*,*,*,spots(2,4),spots(2,5),*,*,*,*,spots(2,10),spots(2,11),*],
[*,*,*,spots(3,4),spots(3,5),spots(3,6),spots(3,7),*,*,spots(3,10),spots(3,11),*],
[*,*,spots(4,3),spots(4,4),*,spots(4,6),spots(4,7),spots(4,8),spots(4,9),*,spots(4,11),spots(4,12)],
[*,spots(5,2),spots(5,3),spots(5,4),spots(5,5),*,*,spots(5,8),spots(5,9),*,spots(5,11),spots(5,12)],
[*,spots(6,2),spots(6,3),*,spots(6,5),spots(6,6),spots(6,7),spots(6,8),*,spots(6,10),spots(6,11),spots(6,12)],
[*,*,spots(7,3),spots(7,4),*,spots(7,6),spots(7,7),spots(7,8),*,spots(7,10),spots(7,11),*],
[*,spots(8,2),spots(8,3),spots(8,4),*,spots(8,6),spots(8,7),spots(8,8),spots(8,9),*,spots(8,11),spots(8,12)],
[*,spots(9,2),spots(9,3),*,spots(9,5),spots(9,6),*,*,spots(9,9),spots(9,10),spots(9,11),spots(9,12)],
[*,spots(10,2),spots(10,3),*,spots(10,5),spots(10,6),spots(10,7),spots(10,8),*,spots(10,10),spots(10,11),*]
[*,*,spots(11,3),spots(11,4),*,*,spots(11,7),spots(11,8),spots(11,9),spots(11,10),*,*],
[*,*,spots(12,3),spots(12,4),*,*,*,*,spots(12,9),spots(12,10),*,*]]).
I want to use a findall/3 predicate so that I can get a list of all the spot(X,Y) facts like >>>
findall(spots(X,Y),matrix(1,Map),X).
Which should return something like the following;
X = (spots(2,4), spots(2,5), spots(2,10), spots(2,11), spots(3,4) etc .... spots(12,10)).
However, I'm very confused in how to implement this, due to the matrix being composed of a list within a list. Would appreciate if someone could show me a configured predicate in order to achieve a list like stated.
Thanks for any help!!! - really appreciate it!
Edit - may be able to use this code found below and unable to see how I could implement this into a second findall/3 statement. Really stuck so appreciate any help on this.
at(Mat, Row, Col, Val) :- nth1(Row, Mat, ARow), nth1(Col, ARow, Val).
Just think what your predicate should describe: You want to find all terms of the form spots(_,_) in a list of lists that otherwise consists of atoms *.
:- use_module(library(lists)).
matrix_spots([],[]). % no spots in the empty matrix
matrix_spots([R|Rs],S) :-
row_spots(R,RSs), % RSs ... spots in row R
matrix_spots(Rs,S1), % S1 ... spots in the remaining rows
append(RSs,S1,S). % S ... RSs followed by S1
row_spots([],[]). % no spots in an empty row
row_spots([E|Es],[E|RSs]) :- % E is in the list of spots
E=spots(_,_), % if it is a spot
row_spots(Es,RSs). % RSs ... spots in rest of row
row_spots([*|Es],RSs) :- % * is not in the list of spots
row_spots(Es,RSs). % Rss ... spots in rest of row
Now you can query your matrix for all its spots:
?- matrix(1,M), matrix_spots(M,S).
M = [[*,*,*,*,*,*,*,*,*,*,*,*],[*,*,*,spots(2,4),spots(2,5),*,*,*,*,spots(2,10),spots(2,11),*],[*,*,*,spots(3,4),spots(3,5),spots(3,6),spots(3,7),*,*,spots(3,10),spots(3,11),*],[*,*,spots(4,3),spots(4,4),*,spots(4,6),spots(4,7),spots(4,8),spots(4,9),*,spots(4,11),spots(4,12)],[*,spots(5,2),spots(5,3),spots(5,4),spots(5,5),*,*,spots(5,8),spots(5,9),*,spots(5,11),spots(5,12)],[*,spots(6,2),spots(6,3),*,spots(6,5),spots(6,6),spots(6,7),spots(6,8),*,spots(6,10),spots(6,11),spots(6,12)],[*,*,spots(7,3),spots(7,4),*,spots(7,6),spots(7,7),spots(7,8),*,spots(7,10),spots(7,11),*],[*,spots(8,2),spots(8,3),spots(8,4),*,spots(8,6),spots(8,7),spots(8,8),spots(8,9),*,spots(8,11),spots(8,12)],[*,spots(9,2),spots(9,3),*,spots(9,5),spots(9,6),*,*,spots(9,9),spots(9,10),spots(9,11),spots(9,12)],[*,spots(10,2),spots(10,3),*,spots(10,5),spots(10,6),spots(10,7),spots(10,8),*,spots(10,10),spots(10,11),*],[*,*,spots(11,3),spots(11,4),*,*,spots(11,7),spots(11,8),spots(11,9),spots(11,10),*,*],[*,*,spots(12,3),spots(12,4),*,*,*,*,spots(12,9),spots(12,10),*,*]],
S = [spots(2,4),spots(2,5),spots(2,10),spots(2,11),spots(3,4),spots(3,5),spots(3,6),spots(3,7),spots(3,10),spots(3,11),spots(4,3),spots(4,4),spots(4,6),spots(4,7),spots(4,8),spots(4,9),spots(4,11),spots(4,12),spots(5,2),spots(5,3),spots(5,4),spots(5,5),spots(5,8),spots(5,9),spots(5,11),spots(5,12),spots(6,2),spots(6,3),spots(6,5),spots(6,6),spots(6,7),spots(6,8),spots(6,10),spots(6,11),spots(6,12),spots(7,3),spots(7,4),spots(7,6),spots(7,7),spots(7,8),spots(7,10),spots(7,11),spots(8,2),spots(8,3),spots(8,4),spots(8,6),spots(8,7),spots(8,8),spots(8,9),spots(8,11),spots(8,12),spots(9,2),spots(9,3),spots(9,5),spots(9,6),spots(9,9),spots(9,10),spots(9,11),spots(9,12),spots(10,2),spots(10,3),spots(10,5),spots(10,6),spots(10,7),spots(10,8),spots(10,10),spots(10,11),spots(11,3),spots(11,4),spots(11,7),spots(11,8),spots(11,9),spots(1ts(12,4),spots(12,9),spots(12,10)] ? ;
no
Note that you have a typo in your example matrix: at the end of the 10th list the comma is missing: ...spots(10,11),*],
Edit:
Here is a dcg version as suggested by #mat in the comments. It is indeed much easier readable:
matrix_spots(M,S) :-
phrase(rows(M),S).
rows([]) --> % no spots in the empty matrix
[].
rows([R|Rs]) -->
row(R), % all spots in row R
rows(Rs). % all spots in the remaining rows
row([]) --> % no spots in an empty row
[].
row([*|Xs]) --> % no spot at this position in the row
row(Xs). % but there might be in the remainder
row([spots(A,B)|Xs]) --> % spot at this position
[spots(A,B)], % is in the list
row(Xs). % and the spots in the rest of the row
The query above can be used one-to-one with this dcg-version.
Concerning your (#User15388472) findall/3 question in the comments: Imagine you had a predicate matrix_spot/2 that is matching one term of the form spots(A,B) as second argument instead of a list of all spots. That predicate could look something like that:
matrix_spot([R|Rs],S) :-
row_spot(R,S). % S is in row R
matrix_spot([R|Rs],S) :- % S is not in R but
matrix_spot(Rs,S). % in one of the other rows Rs
row_spot([spots(A,B)|Xs],spots(A,B)). % head of the list is the spot
row_spot([X|Xs],S) :-
row_spot(Xs,S). % S is in the tail of the list
If you query this predicate you get one spots(A,B) at a time as an answer:
?- matrix(1,M), matrix_spot(M,S).
M = [[*,*,*,*,*,*,*,*,*,*,*,*],[*,*,*,spots(2,4),spots(2,5),*,*,*,*,spots(2,10),spots(2,11),*],[*,*,*,spots(3,4),spots(3,5),spots(3,6),spots(3,7),*,*,spots(3,10),spots(3,11),*],[*,*,spots(4,3),spots(4,4),*,spots(4,6),spots(4,7),spots(4,8),spots(4,9),*,spots(4,11),spots(4,12)],[*,spots(5,2),spots(5,3),spots(5,4),spots(5,5),*,*,spots(5,8),spots(5,9),*,spots(5,11),spots(5,12)],[*,spots(6,2),spots(6,3),*,spots(6,5),spots(6,6),spots(6,7),spots(6,8),*,spots(6,10),spots(6,11),spots(6,12)],[*,*,spots(7,3),spots(7,4),*,spots(7,6),spots(7,7),spots(7,8),*,spots(7,10),spots(7,11),*],[*,spots(8,2),spots(8,3),spots(8,4),*,spots(8,6),spots(8,7),spots(8,8),spots(8,9),*,spots(8,11),spots(8,12)],[*,spots(9,2),spots(9,3),*,spots(9,5),spots(9,6),*,*,spots(9,9),spots(9,10),spots(9,11),spots(9,12)],[*,spots(10,2),spots(10,3),*,spots(10,5),spots(10,6),spots(10,7),spots(10,8),*,spots(10,10),spots(10,11),*],[*,*,spots(11,3),spots(11,4),*,*,spots(11,7),spots(11,8),spots(11,9),spots(11,10),*,*],[*,*,spots(12,3),spots(12,4),*,*,*,*,spots(12,9),spots(12,10),*,*]],
S = spots(2,4) ? ;
M = [[*,*,*,*,*,*,*,*,*,*,*,*],[*,*,*,spots(2,4),spots(2,5),*,*,*,*,spots(2,10),spots(2,11),*],[*,*,*,spots(3,4),spots(3,5),spots(3,6),spots(3,7),*,*,spots(3,10),spots(3,11),*],[*,*,spots(4,3),spots(4,4),*,spots(4,6),spots(4,7),spots(4,8),spots(4,9),*,spots(4,11),spots(4,12)],[*,spots(5,2),spots(5,3),spots(5,4),spots(5,5),*,*,spots(5,8),spots(5,9),*,spots(5,11),spots(5,12)],[*,spots(6,2),spots(6,3),*,spots(6,5),spots(6,6),spots(6,7),spots(6,8),*,spots(6,10),spots(6,11),spots(6,12)],[*,*,spots(7,3),spots(7,4),*,spots(7,6),spots(7,7),spots(7,8),*,spots(7,10),spots(7,11),*],[*,spots(8,2),spots(8,3),spots(8,4),*,spots(8,6),spots(8,7),spots(8,8),spots(8,9),*,spots(8,11),spots(8,12)],[*,spots(9,2),spots(9,3),*,spots(9,5),spots(9,6),*,*,spots(9,9),spots(9,10),spots(9,11),spots(9,12)],[*,spots(10,2),spots(10,3),*,spots(10,5),spots(10,6),spots(10,7),spots(10,8),*,spots(10,10),spots(10,11),*],[*,*,spots(11,3),spots(11,4),*,*,spots(11,7),spots(11,8),spots(11,9),spots(11,10),*,*],[*,*,spots(12,3),spots(12,4),*,*,*,*,spots(12,9),spots(12,10),*,*]],
S = spots(2,5) ? ;
...
In a scenario like this you can use findall/3 to find all terms spots(A,B) in the matrix:
?- matrix(1,M), findall(S,matrix_spot(M,S),Spots).
M = [[*,*,*,*,*,*,*,*,*,*,*,*],[*,*,*,spots(2,4),spots(2,5),*,*,*,*,spots(2,10),spots(2,11),*],[*,*,*,spots(3,4),spots(3,5),spots(3,6),spots(3,7),*,*,spots(3,10),spots(3,11),*],[*,*,spots(4,3),spots(4,4),*,spots(4,6),spots(4,7),spots(4,8),spots(4,9),*,spots(4,11),spots(4,12)],[*,spots(5,2),spots(5,3),spots(5,4),spots(5,5),*,*,spots(5,8),spots(5,9),*,spots(5,11),spots(5,12)],[*,spots(6,2),spots(6,3),*,spots(6,5),spots(6,6),spots(6,7),spots(6,8),*,spots(6,10),spots(6,11),spots(6,12)],[*,*,spots(7,3),spots(7,4),*,spots(7,6),spots(7,7),spots(7,8),*,spots(7,10),spots(7,11),*],[*,spots(8,2),spots(8,3),spots(8,4),*,spots(8,6),spots(8,7),spots(8,8),spots(8,9),*,spots(8,11),spots(8,12)],[*,spots(9,2),spots(9,3),*,spots(9,5),spots(9,6),*,*,spots(9,9),spots(9,10),spots(9,11),spots(9,12)],[*,spots(10,2),spots(10,3),*,spots(10,5),spots(10,6),spots(10,7),spots(10,8),*,spots(10,10),spots(10,11),*],[*,*,spots(11,3),spots(11,4),*,*,spots(11,7),spots(11,8),spots(11,9),spots(11,10),*,*],[*,*,spots(12,3),spots(12,4),*,*,*,*,spots(12,9),spots(12,10),*,*]],
Spots = [spots(2,4),spots(2,5),spots(2,10),spots(2,11),spots(3,4),spots(3,5),spots(3,6),spots(3,7),spots(3,10),spots(3,11),spots(4,3),spots(4,4),spots(4,6),spots(4,7),spots(4,8),spots(4,9),spots(4,11),spots(4,12),spots(5,2),spots(5,3),spots(5,4),spots(5,5),spots(5,8),spots(5,9),spots(5,11),spots(5,12),spots(6,2),spots(6,3),spots(6,5),spots(6,6),spots(6,7),spots(6,8),spots(6,10),spots(6,11),spots(6,12),spots(7,3),spots(7,4),spots(7,6),spots(7,7),spots(7,8),spots(7,10),spots(7,11),spots(8,2),spots(8,3),spots(8,4),spots(8,6),spots(8,7),spots(8,8),spots(8,9),spots(8,11),spots(8,12),spots(9,2),spots(9,3),spots(9,5),spots(9,6),spots(9,9),spots(9,10),spots(9,11),spots(9,12),spots(10,2),spots(10,3),spots(10,5),spots(10,6),spots(10,7),spots(10,8),spots(10,10),spots(10,11),spots(11,3),spots(11,4),spots(11,7),spots(11,8),spots(11,9),spots(11,10),spots(12,3),spots(12,4),spots(12,9),spots(12,10)]
I have a script to solve a Sudoku with size= 9*9
i have 81 variables and i define the rules for them,
How can change this code to solve a sudoku with any size?
for example for a sudoku 16*16, the rules will be for subsquares 4*4.
go(L) :-
L=[A1,A2,A3,A4,A5,A6,A7,A8,A9,
B1,B2,B3,B4,B5,B6,B7,B8,B9,
C1,C2,C3,C4,C5,C6,C7,C8,C9,
D1,D2,D3,D4,D5,D6,D7,D8,D9,
E1,E2,E3,E4,E5,E6,E7,E8,E9,
F1,F2,F3,F4,F5,F6,F7,F8,F9,
G1,G2,G3,G4,G5,G6,G7,G8,G9,
H1,H2,H3,H4,H5,H6,H7,H8,H9,
I1,I2,I3,I4,I5,I6,I7,I8,I9],
fd_domain(L,1,9),
fd_alldifferent([A1,A2,A3,A4,A5,A6,A7,A8,A9]),
fd_alldifferent([B1,B2,B3,B4,B5,B6,B7,B8,B9]),
fd_alldifferent([C1,C2,C3,C4,C5,C6,C7,C8,C9]),
fd_alldifferent([D1,D2,D3,D4,D5,D6,D7,D8,D9]),
fd_alldifferent([E1,E2,E3,E4,E5,E6,E7,E8,E9]),
fd_alldifferent([F1,F2,F3,F4,F5,F6,F7,F8,F9]),
fd_alldifferent([G1,G2,G3,G4,G5,G6,G7,G8,G9]),
fd_alldifferent([H1,H2,H3,H4,H5,H6,H7,H8,H9]),
fd_alldifferent([I1,I2,I3,I4,I5,I6,I7,I8,I9]),
fd_alldifferent([A1,B1,C1,D1,E1,F1,G1,H1,I1]),
fd_alldifferent([A2,B2,C2,D2,E2,F2,G2,H2,I2]),
fd_alldifferent([A3,B3,C3,D3,E3,F3,G3,H3,I3]),
fd_alldifferent([A4,B4,C4,D4,E4,F4,G4,H4,I4]),
fd_alldifferent([A5,B5,C5,D5,E5,F5,G5,H5,I5]),
fd_alldifferent([A6,B6,C6,D6,E6,F6,G6,H6,I6]),
fd_alldifferent([A7,B7,C7,D7,E7,F7,G7,H7,I7]),
fd_alldifferent([A8,B8,C8,D8,E8,F8,G8,H8,I8]),
fd_alldifferent([A9,B9,C9,D9,E9,F9,G9,H9,I9]),
fd_alldifferent([A1,A2,A3,B1,B2,B3,C1,C2,C3]),
fd_alldifferent([A4,A5,A6,B4,B5,B6,C4,C5,C6]),
fd_alldifferent([A7,A8,A9,B7,B8,B9,C7,C8,C9]),
fd_alldifferent([D1,D2,D3,E1,E2,E3,F1,F2,F3]),
fd_alldifferent([D4,D5,D6,E4,E5,E6,D4,D5,D6]),
fd_alldifferent([D7,D8,D9,E7,E8,E9,D7,D8,D9]),
fd_alldifferent([G1,G2,G3,H1,H2,H3,I1,I2,I3]),
fd_alldifferent([G4,G5,G6,H4,H5,H6,I4,I5,I6]),
fd_alldifferent([G7,G8,G9,H7,H8,H9,I7,I8,I9]),
fd_labeling([A1,A2,A3,A4,A5,A6,A7,A8,A9,
B1,B2,B3,B4,B5,B6,B7,B8,B9,
C1,C2,C3,C4,C5,C6,C7,C8,C9,
D1,D2,D3,D4,D5,D6,D7,D8,D9,
E1,E2,E3,E4,E5,E6,E7,E8,E9,
F1,F2,F3,F4,F5,F6,F7,F8,F9,
G1,G2,G3,G4,G5,G6,G7,G8,G9,
H1,H2,H3,H4,H5,H6,H7,H8,H9,
I1,I2,I3,I4,I5,I6,I7,I8,I9]).
should i write another script or just i can change this one?
Thanks,
The code will need a rewrite to work for a general case. It is currently completely hard-coded for all the dimensions, so it can't be just tweaked to generalize it.
Here is an example to show you how you can use maplist as a tool for a problem like this. It is not a complete solution to your problem, but should get you started.
% Auxiliary predicates that will be maplist-friendly (the list is the last argument)
%
length_(N, L) :- length(L, N).
fd_domain_(Min, Max, L) :- fd_domain(L, Min, Max).
constrained_matrix(N, Matrix) :-
length(Matrix, N), % Matrix has N elements
maplist(length_(N), Matrix), % Each element of Matrix has N elements
maplist(fd_domain_(1, N), Matrix), % The domain of each sublist is 1 to N
maplist(fd_all_different, Matrix), % Each sublist must have elements all different
maplist(fd_labeling, Matrix).
And run a query like this:
| ?- constrained_matrix(3, L).
L = [[1,2,3],[1,2,3],[1,2,3]] ? ;
L = [[1,2,3],[1,2,3],[1,3,2]] ? ;
L = [[1,2,3],[1,2,3],[2,1,3]] ? ;
L = [[1,2,3],[1,2,3],[2,3,1]] ? ;
...
As you can see, the solution set is all 3x3 matrices which have rows with unique elements, but columns can be anything. You can add more constraints by writing/using Prolog predicates that can transpose a matrix (interchange rows versus columns in Matrix) and use maplist again to constrain the columns. You can add even more constraints for subsquares as needed (write a predicate to extract a submatrix, for example, and make good use of maplist).