I've had this problem for a few years. It was on an informatics contest in my town a while back. I failed to solve it, and my teacher failed to solve it. I haven't met anyone who was able to solve it. Nobody I know knows the right way to give the answer, so I decided to post it here:
Ze problem
Given a rectangle, X by Y, find the minimum amount of circles N with a fixed given radius R, necessary to fully cover every part of the rectangle.
I have thought of ways to solve it, but I have nothing definite. If each circle defines an inner rectangle, then R^2 = Wi^2 + Hi^2, where Wi and Hi are the width and height of the practical area covered by each circle i. At first I thought I should make Wi equal to Wj for any i=j, the same for H. That way, I could simplify the problem by making the width/height ratios equal with the main rectangle (Wi/Hi = X/Y). That way, N=X/Wi. But that solution is surely wrong in case X greatly exceeds Y or vice versa.
The second idea was that Wi=Hi for any given i. That way, squares fill space most efficiently. However if a very narrow strip remains, it's much more optimal to use rectangles to fill it, or better yet - use rectangles for the last row before that too.
Then I realized that none of the ideas are the optimal, since I can always find better ways of doing it. It will always be close to final, but not final.
Edit
In some cases (large rectangle) joining hexagons seem to be a better solution than joining squares.
Further Edit
Here's a comparison of 2 methods: clover vs hexagonal. Hexagonal is, obviously, better, for large surfaces. I do think however that when the rectangle is small enough, rectangular method may be more efficient. It's a hunch. Now, in the picture you see 14 circles on the left, and 13 circles on the right. Though the surface differs much greater (double) than one circle. It's because on the left they overlap less, thus waste less surface.
The questions still remain:
Is the regular hexagon pattern itself optimal? Or certain adjustments should be made in parts of the main rectangle.
Are there reasons not to use regular shapes as "ultimate solution"?
Does this question even have an answer? :)
For X and Y large compared to R, a hexagonal (honeycomb) pattern is near optimal. The distance between the centers of the circles in the X-direction is sqrt(3)*R. The distance between rows in the Y-direction is 3*R/2, so you need roughly X*Y/R^2 * 2*/(3*sqrt(3)) circles.
If you use a square pattern, the horizontal distance is larger (2*R), but the vertical distance is much smaller (R), so you'd need about X*Y/R^2 * 1/2 circles. Since 2/(3*sqrt(3) < 1/2, the hexagonal pattern is the better deal.
Note that this is only an approximation. It is usually possible to jiggle the regular pattern a bit to make something fit where the standard pattern wouldn't. This is especially true if X and Y are small compared to R.
In terms of your specific questions:
The hexagonal pattern is an optimal covering of the entire plane. With X and Y finite, I would think it is often possible to get a better result. The trivial example is when the height is less than the radius. In that case you can move the circles in the one row further apart until the distance between the intersecting points of every pair of circles equals Y.
Having a regular pattern imposes additional restrictions on the solution, and so the optimal solution under those restrictions may not be optimal with those restrictions removed. In general, somewhat irregular patterns may be better (see the page linked to by mbeckish).
The examples on that same page are all specific solutions. The solutions with more circles resemble the hexagonal pattern somewhat. Still, there does not appear to be a closed-form solution.
This site attacks the problem from a slightly different angle: Given n unit circles, what is the largest square they can cover?
As you can see, as the number of circles changes, so does the covering pattern.
For your problem, I believe this implies: different rectangle dimensions and circle sizes will dictate different optimal covering patterns.
The hexagon is better than the diamond. Consider the percent area of the unit circle covered by each:
#!/usr/bin/env ruby
include Math
def diamond
# The distance from the center to a corner is the radius.
# On a unit circle, that is 1.
radius = 1
# The edge of the nested diamond is the hypotenuse of a
# right triangle whose legs are both radii.
edge = sqrt(radius ** 2 + radius ** 2)
# The area of the diamond is the square of the edge
edge ** 2
end
def hexagon
# The hexagon is composed of 6 equilateral triangles.
# Since the inner edges go from the center to a hexagon
# corner, their length is the radius (1).
radius = 1
# The base and height of an equilateral triangle whose
# edge is 'radius'.
base = radius
height = sin(PI / 3) * radius
# The area of said triangle
triangle_area = 0.5 * base * height
# The area of the hexagon is 6 such triangles
triangle_area * 6
end
def circle
radius = 1
PI * radius ** 2
end
puts "diamond == #{sprintf "%2.2f", (100 * diamond / circle)}%"
puts "hexagon == #{sprintf "%2.2f", (100 * hexagon / circle)}%"
And
$ ./geometrons.rb
diamond == 63.66%
hexagon == 82.70%
Further, regular hexagons are highest-vertex polygon that form a regular tessellation of the plane.
According my calculations the right answer is:
D=2*R; X >= 2*D, Y >= 2*D,
N = ceil(X/D) + ceil(Y/D) + 2*ceil(X/D)*ceil(Y/D)
In particular case if the remainder for X/D and Y/D equal to 0, then
N = (X + Y + X*Y/R)/D
Case 1: R = 1, X = 2, Y = 2, then N = 4
Case 2: R = 1, X = 4, Y = 6, then N = 17
Case 3: R = 1, X = 5, Y = 7, then N = 31
Hope it helps.
When the circles are disposed as a clover with four leafs with a fifth circle in the middle, a circle will cover an area equal to R * 2 * R. In this arrangement, the question becomes: how many circles that cover an area of R * 2 * R will cover an area of W * H?, or N * R * 2 * R = W * H. So N = W * H / R * 2 * R.
Related
Given a list of points forming a polygonal line, and both height and width of a rectangle, how can I find the number and positions of all rectangles needed to cover all the points?
The rectangles should be rotated and may overlap, but must follow the path of the polyline (A rectangle may contain multiple segments of the line, but each rectangle must contain a segment that is contiguous with the previous one.)
Do the intersections on the smallest side of the rectangle, when it is possible, would be much appreciated.
All the solutions I found so far were not clean, here is the result I get:
You should see that it gives a good render in near-flat cases, but overlaps too much in big curbs. One rectangle could clearly be removed if the previous were offset.
Actually, I put a rectangle centered at width/2 along the line and rotate it using convex hull and modified rotating calipers algorithms, and reiterate starting at the intersection point of the previous rectangle and the line.
You may observe that I took inspiration from the minimum oriented rectangle bounding box algorithm, for the orientation, but it doesn't include the cutting aspect, nor the fixed size.
Thanks for your help!
I modified k-means to solve this. It's not fast, it's not optimal, it's not guaranteed, but (IMHO) it's a good start.
There are two important modifications:
1- The distance measure
I used a Chebyshev-distance-inspired measure to see how far points are from each rectangle. To find distance from points to each rectangle, first I transformed all points to a new coordinate system, shifted to center of rectangle and rotated to its direction:
Then I used these transformed points to calculate distance:
d = max(2*abs(X)/w, 2*abs(Y)/h);
It will give equal values for all points that have same distance from each side of rectangle. The result will be less than 1.0 for points that lie inside rectangle. Now we can classify points to their closest rectangle.
2- Strategy for updating cluster centers
Each cluster center is a combination of C, center of rectangle, and a, its rotation angle. At each iteration, new set of points are assigned to a cluster. Here we have to find C and a so that rectangle covers maximum possible number of points. I don’t now if there is an analytical solution for that, but I used a statistical approach. I updated the C using weighted average of points, and used direction of first principal component of points to update a. I used results of proposed distance, powered by 500, as weight of each point in weighted average. It moves rectangle towards points that are located outside of it.
How to Find K
Initiate it with 1 and increase it till all distances from points to their corresponding rectangles become less than 1.0, meaning all points are inside a rectangle.
The results
Iterations 0, 10, 20, 30, 40, and 50 of updating cluster centers (rectangles):
Solution for test case 1:
Trying Ks: 2, 4, 6, 8, 10, and 12 for complete coverage:
Solution for test case 2:
P.M: I used parts of Chalous Road as data. It was fun downloading it from Google Maps. The I used technique described here to sample a set of equally spaced points.
It’s a little late and you’ve probably figured this out. But, I was free today and worked on the constraint reflected in your last edit (continuity of segments). As I said before in the comments, I suggest using a greedy algorithm. It’s composed of two parts:
A search algorithm that looks for furthermost point from an initial point (I used binary search algorithm), so that all points between them lie inside a rectangle of given w and h.
A repeated loop that finds best rectangle at each step and advances the initial point.
The pseudo code of them are like these respectively:
function getBestMBR( P, iFirst, w, h )
nP = length(P);
iStart = iFirst;
iEnd = nP;
while iStart <= iEnd
m = floor((iStart + iEnd) / 2);
MBR = getMBR(P[iFirst->m]);
if (MBR.w < w) & (MBR.h < h) {*}
iStart = m + 1;
iLast = m;
bestMBR = MBR;
else
iEnd = m - 1;
end
end
return bestMBR, iLast;
end
function getRectList( P, w, h )
nP = length(P);
rects = [];
iFirst = 1;
iLast = iFirst;
while iLast < nP
[bestMBR, iLast] = getBestMBR(P, iFirst, w, h);
rects.add(bestMBR.x, bestMBR.y, bestMBR.a];
iFirst = iLast;
end
return rects;
Solution for test case 1:
Solution for test case 2:
Just keep in mind that it’s not meant to find the optimal solution, but finds a sub-optimal one in a reasonable time. It’s greedy after all.
Another point is that you can improve this a little in order to decrease number of rectangles. As you can see in the line marked with (*), I kept resulting rectangle in direction of MBR (Minimum Bounding Rectangle), even though you can cover larger MBRs with rectangles of same w and h if you rotate the rectangle. (1) (2)
For example, in a 2D space, with x [0 ; 1] and y [0 ; 1]. For p = 4, intuitively, I will place each point at each corner of the square.
But what can be the general algorithm?
Edit: The algorithm needs modification if dimensions are not orthogonal to eachother
To uniformly place the points as described in your example you could do something like this:
var combinedSize = 0
for each dimension d in d0..dn {
combinedSize += d.length;
}
val listOfDistancesBetweenPointsAlongEachDimension = new List
for each d dimension d0..dn {
val percentageOfWholeDimensionSize = d.length/combinedSize
val pointsToPlaceAlongThisDimension = percentageOfWholeDimensionSize * numberOfPoints
listOfDistancesBetweenPointsAlongEachDimension[d.index] = d.length/(pointsToPlaceAlongThisDimension - 1)
}
Run on your example it gives:
combinedSize = 2
percentageOfWholeDimensionSize = 1 / 2
pointsToPlaceAlongThisDimension = 0.5 * 4
listOfDistancesBetweenPointsAlongEachDimension[0] = 1 / (2 - 1)
listOfDistancesBetweenPointsAlongEachDimension[1] = 1 / (2 - 1)
note: The minus 1 deals with the inclusive interval, allowing points at both endpoints of the dimension
2D case
In 2D (n=2) the solution is to place your p points evenly on some circle. If you want also to define the distance d between points then the circle should have radius around:
2*Pi*r = ~p*d
r = ~(p*d)/(2*Pi)
To be more precise you should use circumference of regular p-point polygon instead of circle circumference (I am too lazy to do that). Or you can compute the distance of produced points and scale up/down as needed instead.
So each point p(i) can be defined as:
p(i).x = r*cos((i*2.0*Pi)/p)
p(i).y = r*sin((i*2.0*Pi)/p)
3D case
Just use sphere instead of circle.
ND case
Use ND hypersphere instead of circle.
So your question boils down to place p "equidistant" points to a n-D hypersphere (either surface or volume). As you can see 2D case is simple, but in 3D this starts to be a problem. See:
Make a sphere with equidistant vertices
sphere subdivision triangulation
As you can see there are quite a few approaches to do this (there are much more of them even using Fibonacci sequence generated spiral) which are more or less hard to grasp or implement.
However If you want to generalize this into ND space you need to chose general approach. I would try to do something like this:
Place p uniformly distributed place inside bounding hypersphere
each point should have position,velocity and acceleration vectors. You can also place the points randomly (just ensure none are at the same position)...
For each p compute acceleration
each p should retract any other point (opposite of gravity).
update position
just do a Newton D'Alembert physics simulation in ND. Do not forget to include some dampening of speed so the simulation will stop in time. Bound the position and speed to the sphere so points will not cross it's border nor they would reflect the speed inwards.
loop #2 until max speed of any p crosses some threshold
This will more or less accurately place p points on the circumference of ND hypersphere. So you got minimal distance d between them. If you got some special dependency between n and p then there might be better configurations then this but for arbitrary numbers I think this approach should be safe enough.
Now by modifying #2 rules you can achieve 2 different outcomes. One filling hypersphere surface (by placing massive negative mass into center of surface) and second filling its volume. For these two options also the radius will be different. For one you need to use surface and for the other volume...
Here example of similar simulation used to solve a geometry problem:
How to implement a constraint solver for 2-D geometry?
Here preview of 3D surface case:
The number on top is the max abs speed of particles used to determine the simulations stopped and the white-ish lines are speed vectors. You need to carefully select the acceleration and dampening coefficients so the simulation is fast ...
Hi sorry for the confusing title.
I'm trying to make a race track using points. I want to draw 3 rectangles which form my roads. However I don't want these rectangles to overlap, I want to leave an empty space between them to place my corners (triangles) meaning they only intersect at a single point. Since the roads have a common width I know the width of the rectangles.
I know the coordinates of the points A, B and C and therefore their length and the angles between them. From this I think I can say that the angles of the yellow triangle are the same as those of the outer triangle. From there I can work out the lengths of the sides of the blue triangles. However I don't know how to find the coordinates of the points of the blue triangles or the length of the sides of the yellow triangle and therefore the rectangles.
This is an X-Y problem (asking us how to accomplish X because you think it would help you solve a problem Y better solved another way), but luckily you gave us Y so I can just answer that.
What you should do is find the lines that are the edges of the roads, figure out where they intersect, and proceed to calculate everything else from that.
First, given 2 points P and Q, we can write down the line between them in parameterized form as f(t) = P + t(Q - P). Note that Q - P = v is the vector representing the direction of the line.
Second, given a vector v = (x_v, y_v) the vector (y_v, -x_v) is at right angles to it. Divide by its length sqrt(x_v**2 + y_v**2) and you have a unit vector at right angles to the first. Project P and Q a distance d along this vector, and you've got 2 points on a parallel line at distance d from your original line.
There are two such parallel lines. Given a point on the line and a point off of the line, the sign of the dot product of your normal vector with the vector between those two lines tells you whether you've found the parallel line on the same side as the other, or on the opposite side.
You just need to figure out where they intersect. But figuring out where lines P1 + t*v1 and P2 + s*v2 intersect can be done by setting up 2 equations in 2 variables and solving that. Which calculation you can carry out.
And now you have sufficient information to calculate the edges of the roads, which edges are inside, and every intersection in your diagram. Which lets you figure out anything else that you need.
Slightly different approach with a bit of trigonometry:
Define vectors
b = B - A
c = C - A
uB = Normalized(b)
uC = Normalized(c)
angle
Alpha = atan2(CrossProduct(b, c), DotProduct(b,c))
HalfA = Alpha / 2
HalfW = Width / 2
uB_Perp = (-uB.Y, ub.X) //unit vector, perpendicular to b
//now calculate points:
P1 = A + HalfW * (uB * ctg(HalfA) + uB_Perp) //outer blue triangle vertice
P2 = A + HalfW * (uB * ctg(HalfA) - uB_Perp) //inner blue triangle vertice, lies on bisector
(I did not consider extra case of too large width)
Given n squares with edge length l, how can I determine the minimum radius r of the circle so that I can distribute all squares evenly along the perimeter of the circle without them overlapping? (Constraint: the first square will always be positioned at 12 o'clock.)
Followup question: how can I place n identical rectangles with height h and width w?
(source: n3rd.org)
There may be a mathematically clever way to do this, but I wouldn't know.
I think it's complicated a bit by the fact that the geometry is different for every different number of squares; for 4 it's a rhombus, for 5 it's a pentagon and so on.
What I'd do is place those squares on a 1 unit circle (much too small, I know, bear with me) distributed equally on it. That's easy enough, just subtend (divide) your 360 degrees by the number of squares. Then just test all your squares for overlap against their neighbors; if they overlap, increase the radius.
You can make this procedure less stupid than it sounds by using an intelligent algorithm to approach the right size. I'm thinking of something like Newton's algorithm: Given two successive guesses, of which one is too small and one is too big, your next guess needs to be the average of those two.
You can iterate down to any precision you like. Stop whenever the distance between guesses is smaller than some arbitrary small margin of error.
EDIT I have a better solution:
I was thinking about what to tell you if you asked "how will I know if squares overlap?" This gave me an idea on how to calculate the circle size exactly, in one step:
Place your squares on a much-too-small circle. You know how: Calculate the points on the circle where your 360/n angles intersect it, and put the center of the square there. Actually, you don't need to place squares yet, the next steps only require midpoints.
To calculate the minimum distance of a square to its neighbor: Calculate the difference in X and the difference in Y of the midpoints, and take the minimum of those. The X's and Y's are actually just cosines and sines on the circle.
You'll want the minimum of any square against its neighbor (clockwise, say). So you need to work your way around the circle to find the very smallest one.
The minimum (X or Y) distance between the squares needs to become 1.0 . So just take the reciprocal of the minimum distance and multiply the circle's size by that. Presto, your circle is the right size.
EDIT
Without losing generality, I think it's possible to nail my solution down a bit so it's close to coding. Here's a refinement:
Assume the squares have size 1, i.e. each side has a length of 1 unit. In the end, your boxes will surely be larger than 1 pixel but it's just a matter of scaling.
Get rid of the corner cases:
if (n < 2) throw new IllegalArgumentException();
if (n == 2) return 0.5; // 2 squares will fit exactly on a circle of radius 0.5
Start with a circle size r of 0.5, which will surely be too small for any number of squares > 2.
r = 0.5;
dmin = 1.0; // start assuming minimum distance is fine
a = 2 * PI / n;
for (p1 = 0.0; p1 <= PI; p1+=a) { // starting with angle 0, try all points till halfway around
// (yeah, we're starting east, not north. doesn't matter)
p2 = p1 + a; // next point on the circle
dx = abs(r * cos(p2) - r * cos(p1))
dy = abs(r * sin(p2) - r * sin(p1))
dmin = min(dmin, dx, dy)
}
r = r / dmin;
EDIT
I turned this into real Java code and got something quite similar to this to run. Code and results here: http://ideone.com/r9aiu
I created graphical output using GnuPlot. I was able to create simple diagrams of boxes arranged in a circle by cut-and-pasting the point sets from the output into a data file and then running
plot '5.dat' with boxxyerrorbars
The .5's in the file serve to size the boxes... lazy but working solution. The .5 is applied to both sides of the center, so the boxes end up being exactly 1.0 in size.
Alas, my algorithm doesn't work. It makes the radii far too large, thus placing the boxes much further apart than necessary. Even scaling down by a factor of 2 (could have been a mistake to use 0.5 in some places) didn't help.
Sorry, I give up. Maybe my approach can be salvaged, but it doesn't work the way I had though it would. :(
EDIT
I hate giving up. I was about to leave my PC when I thought of a way to salvage my algorithm:
The algorithm was adjusting the smaller of the X or Y distances to be at least 1. It's easy to demonstrate that's just plain silly. When you have a lot of boxes then at the eastern and western edges of the circle you have boxes stacked almost directly on top of each other, with their X's very close to one another but they are saved from touching by having just enough Y distance between them.
So... to make this work, you must scale the maximum of dx and dy to be (for all cases) at least the radius (or was it double the radius?).
Corrected code is here: http://ideone.com/EQ03g http://ideone.com/VRyyo
Tested again in GnuPlot, it produces beautiful little circles of boxes where sometimes just 1 or 2 boxes are exactly touching. Problem solved! :)
(These images are wider than they are tall because GnuPlot didn't know I wanted proportional layout. Just imagine the whole works squeezed into a square shape :) )
I would calculate an upper bound of the minimum radius, by working with circles enclosing the squares instead of with the squares themselves.
My calculation results in:
Rmin <= X / (sqrt(2) * sin (180/N) )
Where:
X is the square side length, and N is the required number of squares.
I assume that the circles are positioned such that their centers fall on the big circle's circumference.
-- EDIT --
Using the idea of Dave in the comment below, we can also calculate a nice lower bound, by considering the circles to be inside the squares (thus having radius X/2). This bound is:
Rmin >= X / (2 * sin (180/N) )
As already noted, the problem of positioning n points equally spaced round the circumference of a circle is trivial. The (not-terribly) difficult part of the problem is to figure out the radius of the circle needed to give a pleasing layout of the squares. I suggest you follow one of the other answers and think of the squares being inside a circular 'buffer' big enough to contain the square and enough space to satisfy your aesthetic requirements. Then check the formula for the chord length between the centres of neighbouring squares. Now you have the angle, at the centre of the circle, subtended by the chord between square centres, and can easily compute the radius of the circle from the trigonometry of a triangle.
And, as to your follow up question: I suggest that you work out the problem for squares of side length min(h,w) on a circle, then transform the squares to rectangles and the circle to an ellipse with eccentricity h/w (or w/h).
I would solve it like this:
To find the relation between the radius r and length l let's analyze dimensionless representation
get the centres on a circle (x1,y1)..(xn,yn)
from each center get lower right corner of the i-th square and upper left corner of the i+1-th square
the two points should either have equal x or equal y, whichever yields smaller l
procedure should be repeated for each center and the one that yields smallest l is the final solution.
This is the optimal solution and can be solved it terms of r = f(l).
The solution can be adapted to rectangles by adjusting the formula for xLR[i] and yUL[i+1].
Will try to give some pseudo code.
EDIT:
There's a bug in the procedure, lower right and upper left are not necessary closest points for two neighbouring squares/rectangles.
Let's assume you solved the problem for 3 or 4 squares.
If you have n >= 5 squares, and position one square at the top of the circle, you'll have another square fall into the first quadrant of a cartesian plane concentric with your circle.
The problem is then to find a radius r for the circle such that the left side of the circle next to the top one, and the right side of the top circle do not 'cross' each other.
The x coordinate of the right side of the top circle is x1 = L/2, where L is the side of a square. The x coordinate of the left side of the circle next to the top one is x2 = r cos a - L/2, where r is the radius and a is the angle between each pair of square centres (a = 360/n degrees).
So we need to solve x1 <= x2, which leads to
r >= L / cos a.
L and a are known, so we're done :-)
You start with an arbitrary circle (e.g., with a diameter of (* n l)) and position the squares evenly on the circumference. Then you go through each pair of adjacent squares and:
calculate the straight line connecting their mid points,
calculate the intersection of this line with the intervening square sides (M1 and M2 are the mid points, S1 and S2 the corresponding intersections with the square side:
S2 S1
M1--------------*----------*---------------M2
------------------------
| |
| |
| |
| |
| M1 |
| \ |
| \ |
| -------*------- +--------
| | \ | |
| | \ | |
-------+---------*------ |
| \ |
| M2 |
| |
| |
| |
| |
-------------------------
calculate the scale factor you would need to make S1 and S2 fall together (simply the ratio of the sum of M1-S1 and S2-M2 to M1-M2), and
finally scale the circle by the maximum of the found scale factors.
Edit: This is the exact solution. However, a little thought can optimize this further for speed:
You only need to do this for the squares closest to 45° (if n is even) resp. 45° and 135° (if n is odd; actually, you might prove that only one of these is necessary).
For large n, the optimal spacing of the squares on the circle will quickly approach the length of a diagonal of a square. You could thus precompute the scaling factors for a few small n (up to a dozen or so), and then have a good enough approximation with the diagonal.
Actually this is a classic problem as SO user Victor put it (in another SO question regarding which tasks to ask during an interview).
I couldn't do it in an hour (sigh) so what is the algorithm that calculates the number of integer points within a triangle?
EDIT: Assume that the vertices are at integer coordinates. (otherwise it becomes a problem of finding all points within the triangle and then subtracting all the floating points to be left with only the integer points; a less elegant problem).
Assuming the vertices are at integer coordinates, you can get the answer by constructing a rectangle around the triangle as explained in Kyle Schultz's An Investigation of Pick's Theorem.
For a j x k rectangle, the number of interior points is
I = (j – 1)(k – 1).
For the 5 x 3 rectangle below, there are 8 interior points.
(source: uga.edu)
For triangles with a vertical leg (j) and a horizontal leg (k) the number of interior points is given by
I = ((j – 1)(k – 1) - h) / 2
where h is the number of points interior to the rectangle that are coincident to the hypotenuse of the triangles (not the length).
(source: uga.edu)
For triangles with a vertical side or a horizontal side, the number of interior points (I) is given by
(source: uga.edu)
where j, k, h1, h2, and b are marked in the following diagram
(source: uga.edu)
Finally, the case of triangles with no vertical or horizontal sides can be split into two sub-cases, one where the area surrounding the triangle forms three triangles, and one where the surrounding area forms three triangles and a rectangle (see the diagrams below).
The number of interior points (I) in the first sub-case is given by
(source: uga.edu)
where all the variables are marked in the following diagram
(source: uga.edu)
The number of interior points (I) in the second sub-case is given by
(source: uga.edu)
where all the variables are marked in the following diagram
(source: uga.edu)
Pick's theorem (http://en.wikipedia.org/wiki/Pick%27s_theorem) states that the surface of a simple polygon placed on integer points is given by:
A = i + b/2 - 1
Here A is the surface of the triangle, i is the number of interior points and b is the number of boundary points. The number of boundary points b can be calculated easily by summing the greatest common divisor of the slopes of each line:
b = gcd(abs(p0x - p1x), abs(p0y - p1y))
+ gcd(abs(p1x - p2x), abs(p1y - p2y))
+ gcd(abs(p2x - p0x), abs(p2y - p0y))
The surface can also be calculated. For a formula which calculates the surface see https://stackoverflow.com/a/14382692/2491535 . Combining these known values i can be calculated by:
i = A + 1 - b/2
My knee-jerk reaction would be to brute-force it:
Find the maximum and minimum extent of the triangle in the x and y directions.
Loop over all combinations of integer points within those extents.
For each set of points, use one of the standard tests (Same side or Barycentric techniques, for example) to see if the point lies within the triangle. Since this sort of computation is a component of algorithms for detecting intersections between rays/line segments and triangles, you can also check this link for more info.
This is called the "Point in the Triangle" test.
Here is an article with several solutions to this problem: Point in the Triangle Test.
A common way to check if a point is in a triangle is to find the vectors connecting the point to each of the triangle's three vertices and sum the angles between those vectors. If the sum of the angles is 2*pi (360-degrees) then the point is inside the triangle, otherwise it is not.
Ok I will propose one algorithm, it won't be brilliant, but it will work.
First, we will need a point in triangle test. I propose to use the "Barycentric Technique" as explained in this excellent post:
http://www.blackpawn.com/texts/pointinpoly/default.html
Now to the algorithm:
let (x1,y1) (x2,y2) (x3,y3) be the triangle vertices
let ymin = floor(min(y1,y2,y3)) ymax = ceiling(max(y1,y2,y3)) xmin = floor(min(x1,x2,x3)) ymax = ceiling(max(x1,x2,3))
iterating from xmin to xmax and ymin to ymax you can enumerate all the integer points in the rectangular region that contains the triangle
using the point in triangle test you can test for each point in the enumeration to see if it's on the triangle.
It's simple, I think it can be programmed in less than half hour.
I only have half an answer for a non-brute-force method. If the vertices were integer, you could reduce it to figuring out how to find how many integer points the edges intersect. With that number and the area of the triangle (Heron's formula), you can use Pick's theorem to find the number of interior integer points.
Edit: for the other half, finding the integer points that intersect the edge, I suspect that it's the greatest common denominator between the x and y difference between the points minus one, or if the distance minus one if one of the x or y differences is zero.
Here's another method, not necessarily the best, but sure to impress any interviewer.
First, call the point with the lowest X co-ord 'L', the point with the highest X co-ord 'R', and the remaining point 'M' (Left, Right, and Middle).
Then, set up two instances of Bresenham's line algorithm. Parameterize one instance to draw from L to R, and the second to draw from L to M. Run the algorithms simultaneously for X = X[L] to X[M]. But instead of drawing any lines or turning on any pixels, count the pixels between the lines.
After stepping from X[L] to X[M], change the parameters of the second Bresenham to draw from M to R, then continue to run the algorithms simultaneously for X = X[M] to X[R].
This is very similar to the solution proposed by Erwin Smout 7 hours ago, but using Bresenham instead of a line-slope formula.
I think that in order to count the columns of pixels, you will need to determine whether M lies above or below the line LR, and of course special cases will arise when two points have the same X or Y co-ordinate. But by the time this comes up, your interviewer will be suitably awed and you can move on to the next question.
Quick n'dirty pseudocode:
-- Declare triangle
p1 2DPoint = (x1, y1);
p2 2DPoint = (x2, y2);
p3 2DPoint = (x3, y3);
triangle [2DPoint] := [p1, p2, p3];
-- Bounding box
xmin float = min(triangle[][0]);
xmax float = max(triangle[][0]);
ymin float = min(triangle[][1]);
ymax float = max(triangle[][1]);
result [[float]];
-- Points in bounding box might be inside the triangle
for x in xmin .. xmax {
for y in ymin .. ymax {
if a line starting in (x, y) and going in any direction crosses one, and only one, of the lines between the points in the triangle, or hits exactly one of the corners of the triangle {
result[result.count] = (x, y);
}
}
}
I have this idea -
Let A(x1, y1), B(x2, y2) and C(x3, y3) be the vertices of the triangle. Let 'count' be the number of integer points forming the triangle.
If we need the points on the triangle edges then using Euclidean Distance formula http://en.wikipedia.org/wiki/Euclidean_distance, the length of all three sides can be ascertained.
The sum of length of all three sides - 3, would give that count.
To find the number of points inside the triangle we need to use a triangle fill algorithm and instead of doing the actual rendering i.e. executing drawpixel(x,y), just go through the loops and keep updating the count as we loop though.
A triangle fill algorithm from
Fundamentals of Computer Graphics by
Peter Shirley,Michael Ashikhmin
should help. Its referred here http://www.gidforums.com/t-20838.html
cheers
I'd go like this :
Take the uppermost point of the triangle (the one with the highest Y coordinate). There are two "slopes" starting at that point. It's not the general solution, but for easy visualisation, think of one of both "going to the left" (decreasing x coordinates) and the other one "going to the right".
From those two slopes and any given Y coordinate less than the highest point, you should be able to compute the number of integer points that appear within the bounds set by the slopes. Iterating over decreasing Y coordinates, add all those number of points together.
Stop when your decreasing Y coordinates reach the second-highest point of the triangle.
You have now counted all points "above the second-highest point", and you are now left with the problem of "counting all the points within some (much smaller !!!) triangle, of which you know that its upper side parallels the X-axis.
Repeat the same procedure, but now with taking the "leftmost point" instead of the "uppermost", and with proceedding "by increasing x", instead of by "decreasing y".
After that, you are left with the problem of counting all the integer points within a, once again much smaller, triangle, of which you know that its upper side parallels the X-axis, and its left side parallels the Y-axis.
Keep repeating (recurring), until you count no points in the triangle you're left with.
(Have I now made your homework for you ?)
(wierd) pseudo-code for a bit-better-than-brute-force (it should have O(n))
i hope you understand what i mean
n=0
p1,p2,p3 = order points by xcoordinate(p1,p2,p3)
for int i between p1.x and p2.x do
a = (intersection point of the line p1-p2 and the line with x==i).y
b = (intersection point of the line p1-p3 and the line with x==i).y
n += number of integers between floats (a, b)
end
for i between p2.x+1 and p3.x do
a = (intersection point of the line p2-p3 and the line with x==i).y
b = (intersection point of the line p1-p3 and the line with x==i).y
n += number of integers between floats (a, b)
end
this algorithm is rather easy to extend for vertices of type float (only needs some round at the "for i.." part, with a special case for p2.x being integer (there, rounded down=rounded up))
and there are some opportunities for optimization in a real implementation
Here is a Python implementation of #Prabhala's solution:
from collections import namedtuple
from fractions import gcd
def get_points(vertices):
Point = namedtuple('Point', 'x,y')
vertices = [Point(x, y) for x, y in vertices]
a, b, c = vertices
triangle_area = abs((a.x - b.x) * (a.y + b.y) + (b.x - c.x) * (b.y + c.y) + (c.x - a.x) * (c.y + a.y))
triangle_area /= 2
triangle_area += 1
interior = abs(gcd(a.x - b.x, a.y - b.y)) + abs(gcd(b.x - c.x, b.y - c.y)) + abs(gcd(c.x - a.x, c.y - a.y))
interior /= 2
return triangle_area - interior
Usage:
print(get_points([(-1, -1), (1, 0), (0, 1)])) # 1
print(get_points([[2, 3], [6, 9], [10, 160]])) # 289
I found a quite useful link which clearly explains the solution to this problem. I am weak in coordinate geometry so I used this solution and coded it in Java which works (at least for the test cases I tried..)
Link
public int points(int[][] vertices){
int interiorPoints = 0;
double triangleArea = 0;
int x1 = vertices[0][0], x2 = vertices[1][0], x3 = vertices[2][0];
int y1 = vertices[0][1], y2 = vertices[1][1], y3 = vertices[2][1];
triangleArea = Math.abs(((x1-x2)*(y1+y2))
+ ((x2-x3)*(y2+y3))
+ ((x3-x1)*(y3+y1)));
triangleArea /=2;
triangleArea++;
interiorPoints = Math.abs(gcd(x1-x2,y1-y2))
+ Math.abs(gcd(x2-x3, y2-y3))
+ Math.abs(gcd(x3-x1, y3-y1));
interiorPoints /=2;
return (int)(triangleArea - interiorPoints);
}