I want to use an accelerometer to measure displacement on a table, so to build a table mouse based on it.
I have been trying a few devices and the most suitable seems to be Kionix KXTF9 (12bit) and Freescale MMA8451 (14bit), this last expecially.
I have also tried several data processing chains and filtering combinations: in particular a) simple thresholding for eliminating the noise floor, b) integration with constancy check to avoid drift, c) Kalman filtering, d) running averages, e) straight LP and HP filtering, etc..
My main issue is not actually estimating distance int he direction of movement, but the noise that originates on the other axis (like an increased noise floor) and which causes a significant "movement" to be "felt" also on the axis other than the one it's moving along.
Have you ever faced such an issue and have any hint to share?
Related
I'm working on a project in which a rod is attached at one end to a rotating shaft. So, as the shaft rotates from 0 to ~100 degrees back-and-forth (in the xy plane), so does the rod. I mounted a 3-axis accelerometer at the end of the moving rod, and I measured the distance of the accelerometer from the center of rotation (i.e., the length of the rod) to be about 38 cm. I have collected a lot of data, but I'm in need of help to find the best method to filter it. First, here's a plot of the raw data:
I think the data makes sense: if it's ramping up, then then I think at that point the acceleration should be linearly increasing, and then when it's ramping down, it should linearly decrease. If its moving constantly, the acceleration will be ~zero. Keep in mind though that sometimes the speed changes (is higher) from one "trial" to the other. In this case, there were ~120 "trials" or movements/sweeps, data sampled at 148 Hz.
For filtering, I've tried a low pass filter and then an exponentially decreasing moving average, and both plots weren't too hot. And although I'm not good at interpreting these: here is what I got when coding a power frequency plot:
What I was hoping to get help with here is, attain a really good method by which I can filter this data. The one thing that keeps coming up again time and time again (especially on this site) is the Kalman filter. While there's lots of code online that helps implementing these in MATLAB, I haven't been able to actually understand it that great, and therefore neglect to include my work on it here. So, is a kalman filter appropriate here, for rotational acceleration? If so, can someone help me implement one in matlab and interpret it? Is there something I'm not seeing that may be just as good/better that is relatively simple?
Here's the data I'm talking about. Looking at it more closely/zooming in gives a better appreciation for what's going on in the movement, I think:
http://cl.ly/433B1h3m1L0t?_ga=1.81885205.2093327149.1426657579
Edit: OK, here is the plot of both relavent dimensions collected from the accelerometer. I am neglecting to include the up and down dimension as the accelerometer shows a near constant ~1 G, so I think its safe to say its not capturing much rotational motion. Red is what I believe is the centripetal component, and blue is tangential. I have no idea how to combine them though, which is why I (maybe wrongfully?) ignored it in my post.
And here is the data for the other dimension:
http://cl.ly/1u133033182V?_ga=1.74069905.2093327149.1426657579
Forget the Kalman filter, see the note at the end of the answer for the reason why.
Using a simple moving average filter (like I showed you on an earlier reply if i recall) which is in essence a low-pass filter :
n = 30 ; %// length of the filter
kernel = ones(1,n)./n ;
ysm = filter( kernel , 1 , flipud(filter( kernel , 1 , flipud(y) )) ) ;
%// assuming your data "y" are in COLUMN (otherwise change 'flipud' to 'fliplr')
note: if you have access to the curvefit toolbox, you can simply use: ys = smooth(y,30) ; to get nearly the same result.
I get:
which once zoomed look like:
You can play with the parameter n to increase or decrease the smoothing.
The gray signal is your original signal. I strongly suspect that the noise spikes you are getting are just due to the vibrations of your rod. (depending on the ratio length/cross section of your rod, you can get significant vibrations at the end of your 38 cm rod. These vibrations will take the shape of oscillations around the main carrier signal, which definitely look like what I am seeing in your signal).
Note:
The Kalman filter is way overkill to do a simple filtering of noisy data. Kalman filter is used when you want to calculate a value (a position if I follow your example) based on some noisy measurement, but to refine the calculations, the Kalman filter will also use a prediction of the position based on the previous state (position) and the inertial data (how fast you were rotating for example). For that prediction you need a "model" of the behavior of your system, which you do not seem to have.
In your case, you would need to calculate the acceleration seen by the accelerometer based on the (known or theoretical) rotation speed of the shaft at any point of time, the distance of the accell to the center of rotation, and probably to make it more precise, a dynamic model of the main vibration modes of your rod. Then for each step, compare that to the actual measurement... seems a bit heavy for your case.
Look at the quick figure explaining the Kalman filter process in this wikipedia entry : Kalman filter, and read on if you want to understand it more.
I will propose for you low-pass filter, but ordinary first-order inertial model instead of Kalman. I designed filter with pass-band till 10 Hz (~~0,1 of your sample frequency). Discrete model has following equation:
y[k] = 0.9418*y[k-1] + 0.05824*u[k-1]
where u is your measured vector, and y is vector after filtering. This equation starts at sample number 1, so you can just assign 0 to the sample number 0.
We can retrieve the acceleration data from CMAcceleration.
It provides 3 values, namely x, y and , z.
I have been reading up on this and I seem to have gotten different explanation for these values.
Some say they are the acceleration values in respect to gravity.
Others have said they are not, they are the acceleration values in respect to the axis as they turn around on its axis.
Which is the correct version here? For example, does x represent the acceleration rate for pitch or does it for from left to right?
In addition, let say if we want to get the acceleration rate (how fast) for yaw, how could we be able to derive that value when the call back is feeding us constantly with values? Would we need to set up another timer for the calculation?
Edit (in response to #Kay):
Yes, it was basically it - I just wanted to make sure x, y, z and respectively pitch, roll and yaw and represented differently by the frame.
1.)
How are these related in certain situations? Would there be a need that besides getting a value, for example, for yaw that needs addition information from the use of x, y, z?
2.)
Can you explain a little more on this:
(deviceMotion.rotationRate.z - previousRotationRateZ) / (currentTime - previousTime)
Would we need to use a timer for the time values? And how would making use of the above generate an angular acceleration? I thought angular acceleration entail more complex maths.
3.)
In a real world situation, we can barely only rely on a single value from pitch, roll and yaw because that would be impossible to for us to make a rotation only on one axis (our hand is not that "stable". Especially after 5 cups of coffee...)
Let say I would like to get the values of yaw (yes, rotation on the z-axis) but at the time as yaw spins I wanted to check it against pitch (x-axis).
Yes, 2 motions combine here (imagine the phone is rotating around z with slight movement going towards and away from the user's face).
So: Is there is mathematical model (or one that is from your own personal experience) to derive a value from calculating values of different axis? (sample case: if the user is spinning on z-axis and at the same time also making a movement of x-axis - good. If not, not a good motion we need). Sample case just off the top of my head.
I hope my sample case above with both yaw and pitch makes sense to you. If not, please feel free to cite a better use case for explanation.
4.)
Lastly time. How can we get time as a reference frame to check how fast a movement is since the last? Should we provide a tolerance (Example: "less than 1/50 of a second since last movement - do something. If not, do nothing.")? Where and when do we set a timer?
The class reference of CMAccelerometerData says:
X-axis acceleration in G's (gravitational force)
The acceleration is measured in local coordinates like shown in figure 4-1 in the Event Handling Guide. It's always a translation und must not be confused with radial or circular motions which are measured in angles.
Anyway, every rotation even with a constant angular velocity is related to a change in the direction and thus an acceleration is reported as well s. Circular Motion
What do you mean by get the acceleration rate (how fast) for yaw?
Based on figure 4-2 in Handling Rotation Rate Data the yaw rotation occurs around the Z axis. That means there is a continuous linear acceleration in the X,Y plane. If you are interested in angular acceleration, you need to take CMDeviceMotion.rotationRate and divide it by the time delta e.g.:
(deviceMotion.rotationRate.z - previousRotationRateZ) / (currentTime - previousTime)
Update:
It depends on what you want to do and which motions you are interested in to track. I hope you don't want to get the exact device position in x,y,z when doing a translation as this is impossible. The orientation i.e. the rotation relativ to g can be determined very well of course.
I think in >99% of all cases you won't need additional information from accelerations when working with angles.
Don't use your own timer. CMDeviceMotion inherits from CMLogItem and thus provides a perfect matching timestamp of the sensor data or respectivly the interpolated time for the result of the sensor fusion algorithm.
I assume that you don't need angular acceleration.
You are totally right even without coffee ;-) If you look at the motions shown in this video there is exactly the situation you describe. Maths and algorithms were the result of some heavy R&D and I am bound to NDA.
But the most use cases are covered with the properties available in CMAttitude. Be cautious with Euler angles when doing calculation because of Gimbal Lock
Again this totally depends on what you are up to.
I have an image processing problem. I have pictures of yarn:
The individual strands are partly (but not completely) aligned. I would like to find the predominant direction in which they are aligned. In the center of the example image, this direction is around 30-34 degrees from horizontal. The result could be the average/median direction for the whole image, or just the average in each local neighborhood (producing a vector map of local directions).
What I've tried: I rotated the image in small steps (1 degree) and calculated statistics in the vertical vs horizontal direction of the rotated image (for example: standard deviation of summed rows or summed columns). I reasoned that when the strands are oriented exactly vertically or exactly horizontally the difference in statistics would be greatest, and so that angle of rotation is the correct direction in the original image. However, for at least several kinds of statistical properties I tried, this did not work.
I further thought that perhaps this wasn't working because there were too many different directions at the same time in the whole image, so I tired it in a small neighborhood. In this case, there is always a very clear preferred direction (different for each neighborhood), but it is not the direction that the fibers really go... I can post my sample code but it is basically useless.
I keep thinking there has to be some kind of simple linear algebra/statistical property of the whole image, or some value derived from the 2D FFT that would give the correct direction in one step... but how?
What probably won't work: detecting individual fibers. They are not necessarily the same color, and the image can shade from light to dark so edge detectors don't work well, and the image may not even be in focus sometimes. Because of that, it is not always even possible to see individual fibers for a human (see top-right in the example), they kinda have to be detected as preferred direction in a statistical sense.
You might try doing this in the frequency domain. The output of a Fourier Transform is orientation dependent so, if you have some kind of oriented pattern, you can apply a 2D FFT and you will see a clustering around a specific orientation.
For example, making a greyscale out of your image and performing FFT (with ImageJ) gives this:
You can see a distinct cluster that is oriented orthogonally with respect to the orientation of your yarn. With some pre-processing on your source image, to remove noise and maybe enhance the oriented features, you can probably achieve a much stronger signal in the FFT. Once you have a cluster, you can use something like PCA to determine the vector for the major axis.
For info, this is a technique that is often used to enhance oriented features, such as fingerprints, by applying a selective filter in the FFT and then taking the inverse to obtain a clearer image.
An alternative approach is to try a series of Gabor filters see here pre-built with a selection of orientations and frequencies and use the resulting features as a metric for identifying the most likely orientation. There is a scikit article that gives some examples here.
UPDATE
Just playing with ImageJ to give an idea of some possible approaches to this - I started with the FFT shown above, then - in the following image, I performed these operations (clockwise from top left) - Threshold => Close => Holefill => Erode x 3:
Finally, rather than using PCA, I calculated the spatial moments of the lower left blob using this ImageJ Plugin which handily calculates the orientation of the longest axis based on the 2nd order moment. The result gives an orientation of approximately -38 degrees (with respect to the X axis):
Depending on your frame of reference you can calculate the approximate average orientation of your yarn from this rather than from PCA.
I tried to use Gabor filters to enhance the orientations of your yarns. The parameters I used are:
phi = x*pi/16; % x = 1, 3, 5, 7
theta = 3;
sigma = 0.65*theta;
filterSize = 3;
And the imag part of the convoluted image are shown below:
As you mentioned, the most orientations lies between 30-34 degrees, thus the filter with phi = 5*pi/16 in left bottom yields the best contrast among the four.
I would consider using a Hough Transform for this type of problem, there is a nice write-up here.
Not sure if this may or may not be valid here on SO, but I was hoping someone can advise of the correct algorithm to use.
I have the following RAW data.
In the image you can see "steps". Essentially I wish to get these steps, but then get a moving average of all the data between. In the following image, you can see the moving average:
However you will notice that at the "steps", the moving average decreases the gradient where I wish to keep the high vertical gradient.
Is there any smoothing technique that will take into account a large vertical "offset", but smooth the other data?
Yup, I had to do something similar with images from a spacecraft.
Simple technique #1: use a median filter with a modest width - say about 5 samples, or 7. This provides an output value that is the median of the corresponding input value and several of its immediate neighbors on either side. It will get rid of those spikes, and do a good job preserving the step edges.
The median filter is provided in all number-crunching toolkits that I know of such as Matlab, Python/Numpy, IDL etc., and libraries for compiled languages such as C++, Java (though specific names don't come to mind right now...)
Technique #2, perhaps not quite as good: Use a Savitzky-Golay smoothing filter. This works by effectively making least-square polynomial fits to the data, at each output sample, using the corresponding input sample and a neighborhood of points (much like the median filter). The SG smoother is known for being fairly good at preserving peaks and sharp transistions.
The SG filter is usually provided by most signal processing and number crunching packages, but might not be as common as the median filter.
Technique #3, the most work and requiring the most experience and judgement: Go ahead and use a smoother - moving box average, Gaussian, whatever - but then create an output that blends between the original with the smoothed data. The blend, controlled by a new data series you create, varies from all-original (blending in 0% of the smoothed) to all-smoothed (100%).
To control the blending, start with an edge detector to detect the jumps. You may want to first median-filter the data to get rid of the spikes. Then broaden (dilation in image processing jargon) or smooth and renormalize the the edge detector's output, and flip it around so it gives 0.0 at and near the jumps, and 1.0 everywhere else. Perhaps you want a smooth transition joining them. It is an art to get this right, which depends on how the data will be used - for me, it's usually images to be viewed by Humans. An automated embedded control system might work best if tweaked differently.
The main advantage of this technique is you can plug in whatever kind of smoothing filter you like. It won't have any effect where the blend control value is zero. The main disadvantage is that the jumps, the small neighborhood defined by the manipulated edge detector output, will contain noise.
I recommend first detecting the steps and then smoothing each step individually.
You know how to do the smoothing, and edge/step detection is pretty easy also (see here, for example). A typical edge detection scheme is to smooth your data and then multiply/convolute/cross-corelate it with some filter (for example the array [-1,1] that will show you where the steps are). In a mathematical context this can be viewed as studying the derivative of your plot to find inflection points (for some of the filters).
An alternative "hackish" solution would be to do a moving average but exclude outliers from the smoothing. You can decide what an outlier is by using some threshold t. In other words, for each point p with value v, take x points surrounding it and find the subset of those points which are between v - t and v + t, and take the average of these points as the new value of p.
I have an accelerometer with 3 axes and I need to detect acceleration's change frequency. It's ok when object is moving straight, without rotation - in that case I can simply ignore g (acceleration due to gravity), it would have constant direction and won't affect frequency. But what can I do when object is rotating while moving? Is it even possible to (somehow) substract g only with accelerometer, without gyroscope? May be there are some methods of rough calculation, approximation?
The following could work if your accelerometer's gain is the same in all x, y and z directions.
You don't know the orientation of the car so you cannot subtract the gravity from the sensor readings. However, when the car starts moving or there is a sharp break or acceleration then the length of the measured acceleration vector changes too.
I would use a low-pass filter to filter out the very high frequency noise that you certainly get in a car. It requires some tweaking and testing but it should not be too difficult.
Of course it is rather a workaround, the true solution would be to use gyroscopes. Good luck anyway!