How to Visually Depict a Stack in Memory? - debugging

This is a two-part question:
I was wondering if anyone knew of any FREE tools/applications to design visual applications of memory stacks? Of which would include stack information (e.g. stack pointers, return addresses, variables, frame pointers...). I've heard Multi (Green Hills) might do this, but when I've checked their website it didn't seem as if they offered such a feature. If you can't think of a program that can do what I'm asking, then I would benefit from the best image you can find that includes stack information (I've Googled "memory stack images," but they are all very different looking).
I'm completely new to the C programming language and am trying to do the above. As such, a consequence of my first question is how do I find out all the stack information for me to put into a visual format? I'm doing this for a class assignment and believe that GDB might be able to accomplish this. I'm still learning how to use GDB (have read a couple of guides already), so if anyone knows how to use it to find out all the variables, return addresses, pointers, and so forth for each step in a program executing through each stack frame, that would be awesome. If you know another tool that can accomplish this simply however, then I'd be open to hearing about it and how to use it.
Thanks so much!
Note: I found some similar questions addressed on this site, but must of them either weren't answered or were vaguely answered. I hope someone out there has a few minutes to detail an explanation, particularly for question 2.
Operating System: Linux (Ubuntu)
Programming Language: C

A couple of points:
Basically you need a means to walk the stack
This is very platform dependent and it depends on the os and the hardware platform you are using. It looks like you are using linux. For windows there are native API's available
I assume this is for c programs, so you need to understand the C calling conventions (how are the parameters are put on the stack, where the return address is stored and so on
In addition there might be additional difficulties if ASLR is active.
For linux several APIs exist. One of them is
[http://pages.cs.wisc.edu/~bart/DynStackwalker.pdf][1]

Related

Your experience with LibSourcey

Just came across libsourcey when Googling libuv. It looks very featureful, but I haven't been able to find any solid reviews or benchmarks (in fact, this seems to be the first post here on stack overflow concerning LibSourcey.)
Has anybody yet to have any experience with this framework?
Thanks for your interest in LibSourcey! As the maintainer I can say the library is still under active development. There are a number of startups that currently use it in their proprietary code - and maybe some open source code too - so it will continue to be developed and will always remain open source.
Since it was open sourced in '14 it hasn't gained a huge amount of open source adoption, probably since it was never advertised there are already some great alternatives such as boost, but hopefully the power of modern stl and libuv will attract more developers over time.
I'll personally be happy to answer any questions regarding LibSourcey.

where to start linux kernel programming?

I have been programming in C for a couple of years in Linux. Now I want to work on linux kernel and contribute to kernel, if possible. I have been looking on the internet for the information about a starting point but I couldn't find one. So can any one please tell me where to begin?
I'm not a kernel person at all but I work with a lot of people who are very much into the kernel. They all recommend Linux Kernel Development by Robert Love as a good book on the subject. I've bought the book myself and plan to, in my copious free time, go through it.
The Kernel Mentors mailing list related resources at http://kernelnewbies.org/KernelMentors is also a good place to look at.
I would also recommend the site lxr.linux.no as a browsable source code repository.
It contains version 0.0.1 an up. With the help of this site, it is very easy to search for keywords in the kernel source on different versions.
Basically venturing into kernel programming starts off with a need to fiddle with services provided by the kernel....Me for example ..i had a need to fiddle with the IP packets generated and arriving on the kernel network stack....so started of writing LKMs,.,,kernel modules.And understand becomes easier if you have good understand of general Operating System Concepts.For example there was this book which i referred during my engineering undergraduation days...Operating System Concepts Author Silberschatz Galvin..even though i never cracked my head understanding user space and kernel space..that book did look into core concept at a more naive level...and it looked in from general OS point of view not specific to linux as such..now that i am more into kernel space programming that i realize how beautifully that book ventured into both user space and kernel space concepts....it just starts off with NEED to get into kernel side...from user space

Which debuggers support step back/time machine/back-in-time feature? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 5 years ago.
Improve this question
If possible, describe platforms/languages/symbolic formats supported and if full support is provided (historical states back) or partially (only code can rerun with no rescue for states).
Further information about performance or resources needed is welcome but optional.
The new IntelliTrace historical debugger feature in Visual Studio 2010 seems to fit what you're asking for. See Debugging With IntelliTrace:
Debugging with IntelliTrace, available
in Microsoft Visual Studio 2010
Ultimate, provides an enhanced picture
of your application compared with
traditional debuggers. Traditional
debuggers show you the state of your
application at the current time with
limited information about events that
occurred in the past. You must either
infer events that occurred in the
past, based on the state of your
application at the current time, or
restart the application to re-create
past events. With IntelliTrace, you
can actually see events that occurred
in the past and the context in which
they occurred. This reduces the number
of restarts that are required to debug
your application and the possibility
that an error will fail to reproduce
when you rerun the application.
GDB does, with reverse execution and checkpoint/restart.
Green Hills Time machine Debugger
Chronon for java supports full stepping back and seeing entire state info at any point in time.
PythonTutor (http://pythontutor.com/) Lets you do this for small code examples in several programming languages.
Dr. Scheme, also known as PLT Scheme, will let you step backwards and forwards in a Scheme program. Full support for maintaining the state, as far as I can tell, though I haven't used it much. Runs on Windows, Mac and Linux.
I have never used a debugger with the ability to step backward. I just did a Google search and didn't find much...
I did find this:
http://video.google.com/videoplay?docid=3897010229726822034
Searching for "Bill Lewis debugger" led me to:
http://undo-software.com/undodb_about.html
The ability to step backward implies preserving a lot of state: if you change a variable in one line of code, and then you want to step backward, presumably the variable should revert to its previous value. If you change a register, it should revert to its previous value, and that includes the flags register. If you allocated memory, presumably it should be de-allocated. And so on. It's a big job in general. It looks like this debugger is using copy-on-write technology to actually do all this. I guess if a virtual machine like VirtualBox is possible, so is this.
This is still not a mainstream feature. One feature I have commonly seen is the ability to "set the next line". Say you call a function and it returns a value that surprises you; you set the "next line" to the line before the function, and then single-step into the function. Microsoft Visual Studio debugger can do this and so can gdb (the jump command). This ability is of limited use if the function corrupted the stack. Then, you really need to start over!
Computers have gotten so fast, it's much less painful to start over from the beginning than it used to be. You can just set a breakpoint before the point where you want to go back, and re-run the program from the beginning.

Create a Debugging IDE for proprietary language

I am using a rather obsure, proprietary langauge called WIL/Winbatch that had an awful IDE (winbatch studio).
I would like to develop an alternative environment; however, without the ability to set breakpoints, step, and examine variables, there is really no point. How does one begin even researching how to implementing a debugger for a proprietary language? Is it even legal?
I guess I'm kind of locked in a mindset that the debugger portion must be able to examine the statements that are provided to it in WIL as they are executed, right? So somehow i have to trap the output of the interpreter? Or is it just a matter of reading locations in memory using whatever language?
Thanks in advance.
Having been there and successfully completed the task, here are the things to keep in mind:
Build it as a plug-in/extension to an IDE your team is already familiar with and likes. They'll thank you for providing an interface consistent with what they really know how to use, plus you can focus entirely on the features that make your language different from others.
You'll have to learn the debugging protocol for your language. In our case, we had source access to the runtime for the interpreted language. In other cases, you may find documentation for GDB local or remote debugging interface, a library you can link to for the language's debugging protocols, or maybe even figure out what the call stacks look like and wrap the Windows Debugging API to analyze it behind the scenes.
Don't build in excess of what the language provides. Adding debugging features takes a lot of time, and they have a rather annoying habit of needing to be significantly altered or completely rewritten as versions of the target language are updated.
Why are you tied so closely to this language? If it's not well supported, there are many others you can use. Anyway, to actually answer your question, the difficulty depends on whether it is a compiled or interpreted language and whether or not you have access to any source code (which it seems of course, that you don't). That said, this would be a very challenging project as you would have to reverse engineer the compiled code for it to have any meaning. Your time would be better spent learning another (better) language.
Perhaps if you can give us an idea of why you want to use this language we could give you some help?

Does it still make sense to learn low level WinAPI programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
Does it make sense, having all of the C#-managed-bliss, to go back to Petzold's Programming Windows and try to produce code w/ pure WinAPI?
What can be learn from it? Isn't it just too outdated to be useful?
This question is bordering on religious :) But I'll give my thoughts anyway.
I do see value in learing the Win32 API. Most, if not all, GUI libraries (managed or unmanaged) result in calls to the Win32 API. Even the most thorough libraries don't cover 100% of the API, and hence there are always gaps which need to be plugged by direct API calls or P/invoking. Some of the names of the wrappers around the API calls have similar names to the underlying API calls, but those names aren't exactly self-documenting. So understanding the underlying API, and the terminology used therein, will aid in understanding the wrapper APIs and what they actually do.
Plus, if you understand the nature of the underlying APIs that are used by frameworks, then you will make better choices with regards to which library functionality you should use in a given scenario.
Cheers!
I kept to standard C/C++ for years before learning Win32 API, and to be quite blunt, the "learning Win32 API" part is not the best technical experience of my life.
In one hand Win32 API is quite cool. It's like an extension of the C standard API (who needs fopen when you can have CreateFile. But I guess UNIX/Linux/WhateverOS have the same gizmo functions. Anyway, in Unix/Linux, they have the "Everything is a file". In Windows, they have the "Everything is a... Window" (no kidding! See CreateWindow!).
In the other hand, this is a legacy API. You will be dealing with raw C, and raw C madness.
Like telling one's structure its own size to pass through a void * pointer to some Win32 function.
Messaging can be quite confusing, too: Mixing C++ objects with Win32 windows lead to very interesting examples of Chicken or Egg problem (funny moments when you write a kind of delete this ; in a class method).
Having to subclass a WinProc when you're more familiar with object inheritance is head-splitting and less than optimal.
And of course, there is the joy of "Why in this fracking world they did this thing this way ??" moments when you strike your keyboard with your head once too many and get back home with keys engraved in your forehead, just because someone thought it more logical to write an API to enable the changing of the color of a "Window", not by changing one of its properties, but by asking it to its parent window.
etc.
In the last hand (three hands ???), consider that some people working with legacy APIs are themselves using legacy code styling. The moment you hear "const is for dummies" or "I don't use namespaces because they decrease the runtime speed", or the even better "Hey, who needs C++? I code in my own brand of object-oriented C!!!" (No kidding... In a professional environment, and the result was quite a sight...), you'll feel the kind of dread only condemned feel in front of the guillotine.
So... All in all, it's an interesting experience.
Edit
After re-reading this post, I see it could be seen as overly negative. It is not.
It is sometimes interesting (as well as frustrating) to know how the things work under the hood. You'll understand that, despite enormous (impossible?) constraints, the Win32 API team did wonderful work to be sure everything, from you "olde Win16 program" to your "last Win64 over-the-top application", can work together, in the past, now, and in the future.
The question is: Do you really want to?
Because spending weeks to do things that could be done (and done better) in other more high-level and/or object-oriented API can be quite de-motivational (real life experience: 3 weeks for Win API, against 4 hours in three other languages and/or libraries).
Anyway, you'll find Raymond Chen's Blog very interesting because of his insider's view on both Win API and its evolution through the years:
https://blogs.msdn.microsoft.com/oldnewthing/
Absolutely. When nobody knows the low level, who will update and write the high level languages? Also, when you understand the low level stuff, you can write more efficient code in a higher level language, and also debug more efficiently.
The native APIs are the "real" operating system APIs. The .NET library is (with few exceptions) nothing more than a fancy wrapper around them. So yes, I'd say that anybody who can understand .NET with all its complexity, can understand relatively mundane things like talking to the API without the benefit of a middle-man.
Just try to do DLL Injection from managed code. It can't be done. You will be forced to write native code for this, for windowing tweaks, for real subclassing, and a dozen other things.
So yes: you should (must) know both.
Edit: even if you plan to use P/Invoke.
On the assumption that you're building apps targeted at Windows:
it can sure be informative to understand lower levels of the system - how they work, how your code interacts with them (even if only indirectly), and where you have additional options that aren't available in the higher-level abstractions
there are times when your code might not be as efficient, high-performance or precise enough for your requirements
However, in more and more cases, folks like us (who never learned "unmanaged coding") will be able to pull off the programming we're trying to do without "learning" Win32.
Further, there's plenty of sites that provide working samples, code fragments and even fully-functional source code that you can "leverage" (borrow, plagiarize - but check that you're complying with any re-use license or copyright!) to fill in any gaps that aren't handled by the .NET framework class libraries (or the libraries that you can download or license).
If you can pull off the feats you need without messing around in Win32, and you're doing a good job of developing well-formed, readable managed code, then I'd say mastering .NET would be a better choice than spreading yourself thin over two very different environments.
If you frequently need to leverage those features of Windows that haven't received good Framework class library coverage, then by all means, learn the skills you need.
I've personally spent far too much time worrying about the "other areas" of coding that I'm supposed to understand to produce "good programs", but there's plenty of masochists out there that think everyone's needs and desires are like their own. Misery loves company. :)
On the assumption that you're building apps for the "Web 2.0" world, or that would be just as useful/beneficial to *NIX & MacOS users:
Stick with languages and compilers that target as many cross-platform environments as possible.
pure .NET in Visual Studio is better than Win32 obviously, but developing against the MONO libraries, perhaps using the Sharp Develop IDE, is probably an even better approach.
you could also spend your time learning Java, and those skills would transfer very well to C# programming (plus the Java code would theoretically run on any platform with the matching JRE). I've heard it said that Java is more like "write once, debug everywhere", but that's probably as true as (or even moreso than) C#.
Analogy: If you build cars for a living (programming), then its very pertinent to know how the engine works (Win32).
Simple answer, YES.
This is the answer to any question that is like.. "does it make sense to learn a low level language/api X even when a higher level language/api Y is there"
YES
You are able to boot up your Windows PC (or any other OS) and ask this question in SO because a couple of guys in Microsoft wrote 16-bit assembly code that loads your OS.
Your browser works because someone wrote an OS kernel in C that serves all your browser's requests.
It goes all the way up to scripting languages.
Big or small, there is always a market and opportunity to write something in any level of abstraction. You just have to like it and fit in the right job.
No api/language at any level of abstraction is irrelevent unless there is a better one competing at the same level.
Another way of looking at it: A good example from one of Michael Abrash's book: A C programmer was given the task of writing a function to clear the screen. Since C was a better (higher level) abstraction over assembly and all, the programmer only knew C and knew it well. He did his best - he moved the cursor to each location on the screen and cleared the character there. He optimized the loop and made sure it ran as fast as it could. But still it was slow... until some guy came in and said there was some BIOS/VGA instruction or something that could clear the screen instantly.
It always helps to know what you are walking on.
Yes, for a few reasons:
1) .net wraps Win32 code. .net is usually a superior system to code against, but having some knowledge of the underlying Win32 layer (oops, WinAPI now that there is 64-bit code too) bolsters your knowledge of what is really happening.
2) in this economy, it is better to have some advantages over the other guy when you are looking for a job. Some WinAPI experience may provide this for you.
3) some system aspects are not available through the .net framework yet, and if you want to access those features you will need to use p/invoke (see http://www.pinvoke.net for some help there). Having at least a smattering of WinAPI experience will make your p/invoke development effort a lot more efficient.
4) (added) Now that Win8 has been around for awhile, it is still built on top of the WinAPI. iOS, Android, OS/X, and Linux are all out there, but the WinAPI will still be out there for many many years.
Learning a new programming language or technology is for one of three reasons:
1. Need: you're starting a project for building a web application and you don't know anything about ASP.NET
2. Enthusiasm: you're very excited about ASP.NET MVC. why not try that?
3. Free time: but who has that anyway.
The best reason to learn something new is Need. If you need to do something that the .NET framework can't do (like performance for example) then WinAPI is your solution. Until then we keep ourself busy with learning about .NET
For most needs on the desktop you wont need to know the Win32, however there is a LOT of Win32 not in .NET, but it is in the outlaying stuff that may end up being less than 1% of your application.
USB support, HID support, Windows Media Foundation just off the top of my head. There are many cool Vista API's only available from Win32.
You will do yourself a large favor by learning how to do interop with a Win32 API, if you do desktop programing, because when you do need to call Win32, and you will, you won't spend weeks scratching your head.
Personally I don't really like the Win32 API but there's value in learning it as the API will allow more control and efficiency using the GUI than a language like Visual Basic, and I believe that if you're going to make a living writing software you should know the API even if you don't use it directly. This is for reasons similar to the reasons it's good to learn C, like how a strcpy takes more time than copying an integer, or why you should use pointers to arrays as function parameters instead of arrays by value.
Learning C or a lower level language can definitely be useful. However, I don't see any obvious advantage in using the unmanaged WinAPI.
I've seen low level Windows API code... it ain't pretty... I wish I could unlearn it. I think it benefits to learn low level as in C, as you gain a better understanding of the hardware architecture and how all that stuff works. Learning old Windows API... I think that stuff can be left to the people at Microsoft who may need to learn it to build higher level languages and API... they built it, let them suffer with it ;-)
However, if you happen to find a situation where you feel you just can't do what you need to do in a higher level language (few and far between), then perhaps start the dangerous dive into that world.
yes. take a look at uTorrent, an amazing piece of software efficiency. Half of it's small size is due to the fact that much of it's core components were re-written to not use gargatuian libraries.
Much of this couldn't be done without understanding how these libraries interface with the lower level API's
It's important to know what is available with the Windows API. I don't think you need to crank out code with it, but you should know how it works. The .NET Framework contains a lot of functionality, but it doesn't provide managed code equivalents for the entire Windows API. Sometimes you have to get a bit closer to the metal, and knowing what's down there and how it behaves will give you a better understanding of how to use it.
This is really the same as the question, should I learn a low level language like C (or even assembler).
Coding in it is certainly slower (though of course the result is much faster), but its true advantage is you gain an insight into what is happening at close to the system level, rather than than just understanding someone else's metaphor for what is going on.
It can also be better when things won't work well, or fast enough or with the sort of granularity that you need. (And do at least some subclassing and superclassing.)
I'll put it this way. I don't like programming to the Win32 API. It can be a pain compared to managed code. BUT, I'm glad I know it because I can write programs that otherwise I wouldn't be able to. I can write programs that other people can't. Plus it gives you more insight into what your managed code is doing behind the scenes.
The amount of value you get out of learning the Win32 API, (aside from the sorts of general insights you get from learning about how the nuts and bolts of the machine fit together) depends on what you're trying to achieve. A lot of the Win32 API has been wrapped nicely in .NET library classes, but not all of it. If for instance you're looking to do some serious audio programming, that portion of the Win32 API would be an excellent subject of study because only the most basic of operations are available from .NET classes. Last I checked even the managed DirectX DirectSound library was awful.
At the risk of shameless self-promotion....
I just came across a situation where the Win32 API was my only option. I want to have different tooltips on each item in a listbox. I wrote up how I did it on this question.
Even in very very high level languages you still make use of the API. Why? Well not every aspect of the API has been replicated by the various libraries, frameworks, etc. You need to learn the API for as long as you will need the API to accomplish what you are trying to do. (And no longer.)
Apart from some very special cases when you need direct access to APIs, I would say NO.
There is considerable time and effort required to learn to implement the native API calls correctly and the returning value is just not worth it. I would rather spend the time learning some new hot technology or framework that will make your life easier and programming less painful. Not decades-old obsolete COM libraries that nobody really uses anymore (sorry to COM users).
Please don't stone me for this view. I know a lot of engineers here have really curious souls and there is nothing wrong with learning how things work. Curiousity is good and really helps understanding. But from a managerial point of view, I would rather spend a week learning how to develop Android apps than how to calls OLEs or COMs.
If you planning to develop a cross platform application, If you use win32, then your application could easily run on linux through WINE. This results in a highly maintainable application. This is one of the advantages of learning win32.

Resources