I am writing an Operating System. I am currently stuck at not being able to compile C code into output files, then further linking them with ld
When I run my make file, this error pops up:
/usr/local/i386elfgcc/bin/i386-elf-gcc -g -ffreestanding -c kernel/kernel.c -o kernel/kernel.o
/usr/local/i386elfgcc/bin/i386-elf-gcc: /usr/local/i386elfgcc/bin/i386-elf-gcc: cannot execute binary file
make: *** [kernel/kernel.o] Error 126
This is the makefile
C_SOURCES = $(wildcard kernel/*.c drivers/*.c)
HEADERS = $(wildcard kernel/*.h drivers/*.h)
# Nice syntax for file extension replacement
OBJ = ${C_SOURCES:.c=.o}
# Change this if your cross-compiler is somewhere else
CC = /usr/local/i386elfgcc/bin/i386-elf-gcc
GDB = /usr/local/i386elfgcc/bin/i386-elf-gdb
LD = /usr/local/i386elfgcc/bin/i386-elf-ld
# -g: Use debugging symbols in gcc
CFLAGS = -g
# First rule is run by default
os-image.bin: boot/boot.bin kernel.bin
cat $^ > os-image.bin
# '--oformat binary' deletes all symbols as a collateral, so we don't need
# to 'strip' them manually on this case
kernel.bin: boot/kernelStart32.o ${OBJ}
${LD} -o $# -Ttext 0x1000 $^ --oformat binary
# Used for debugging purposes
kernel.elf: boot/boot_32bit_kernel_entry.o ${OBJ}
${LD} -o $# -Ttext 0x1000 $^
run: os-image.bin
qemu-system-i386 -fda os-image.bin
# Open the connection to qemu and load our kernel-object file with symbols
debug: os-image.bin kernel.elf
qemu-system-i386 -s -fda os-image.bin &
${GDB} -ex "target remote localhost:1234" -ex "symbol-file kernel.elf"
# Generic rules for wildcards
# To make an object, always compile from its .c
%.o: %.c ${HEADERS}
${CC} ${CFLAGS} -ffreestanding -c $< -o $#
%.o: %.asm
nasm $< -f elf -o $#
%.bin: %.asm
nasm $< -f bin -o $#
clean:
rm -rf *.bin *.dis *.o os-image.bin *.elf
rm -rf kernel/*.o boot/*.bin drivers/*.o boot/*.o
I have built GCC etc to the path: /usr/local/i386-elf-gcc
I am on macOS Monterey 12.4 (Intel - x86_64) and have all dependencies installed
I have tried looking everywhere for this problem, trying different flags and everything, however the problem still persisted
It means that the compiler you built doesn't run on the system you are running it on. You have to decide whether you want to do native compiling in which case you would build a compiler that runs on the target and also generates output for the target. This is how the compilers you usually use always work.
If you create that kind of compiler then you have to run make on the target since that's where you build the compiler to run.
Or, you can create a cross-compiler. A cross-compiler runs on your local system, but builds output that runs on the target system.
In your case, if you want to compile code on your MacOS system but generate binary files that run on a different system, you need a cross-compiler.
I have created a Makefile for the below code structure
work
├── code
| |
| ├──inc/
| | └── main.h and test.h files here
| |
| ├──src/
│ └── main.c and test.c files here
├── _Build/
│ └── Makefile here
Here is the Makefile
# All path are referenced with the directory path of Makefile
# Directory Path for workspace
WORKSPACE = ..
# Directory path for code
PATH_DIR_CODE = $(WORKSPACE)/code
# Directory path for c source files
PATH_DIR_C_SOURCES = $(PATH_DIR_CODE)/src
# Directory path for c header files
DIR_PATH_C_HEADERS = $(PATH_DIR_CODE)/inc
# Directory path for obj files
DIR_PATH_OBJ = $(WORKSPACE)/obj
# Directory path for executables
DIR_PATH_BIN = $(WORKSPACE)/bin
# Executable name declaration
FILE_PATH_EXE = $(DIR_PATH_BIN)/main
# Command mkdir
MKDIR = mkdir
FILE_PATH_C_HEADER = $(shell find $(PATH_DIR_CODE) -name *.h)
DIR_PATH_C_HEADER = $(patsubst %/,%,$(sort $(dir $(FILE_PATH_C_HEADER))))
FILE_PATH_C_SRC = $(shell find $(PATH_DIR_CODE) -name *.c)
DIR_PATH_C_SRC = $(patsubst %/,%,$(sort $(dir $(FILE_PATH_C_SRC))))
INC_FILE_C_HEADER = $(addprefix -I, $(DIR_PATH_C_HEADER))
FILE_PATH_OBJ = $(patsubst $(DIR_PATH_C_SRC)/%.c, $(DIR_PATH_OBJ)/%.o, $(FILE_PATH_C_SRC))
CC = gcc
CFLAGS = -Werror -Wall
CDEPS = -MMD -MP -MF $(#:.o=.d)
LDFLAGS = -Llib
LDLIBS = -lm
MKDIR = mkdir
-include $(FILE_PATH_OBJ:.o=.d)
all : $(FILE_PATH_EXE)
.PHONY : all
$(FILE_PATH_EXE) : $(FILE_PATH_OBJ) | $(DIR_PATH_BIN)
$(CC) $(LDFLAGS) $^ $(LDLIBS) -o $#
$(DIR_PATH_OBJ)/%.o : $(DIR_PATH_C_SRC)/%.c | $(DIR_PATH_OBJ)
$(CC) $(CFLAGS) -c $< $(CDEPS) -o $#
$(DIR_PATH_BIN) $(DIR_PATH_OBJ):
$(MKDIR) -p $#
clean :
$(RM) -rv $(DIR_PATH_BIN) $(DIR_PATH_OBJ)
Based on tutorial for dependencies I have used the flags
CDEPS = -MMD -MP -MF $(#:.o=.d)
and
-include $(FILE_PATH_OBJ:.o=.d)
still I am getting the following error
mkdir -p ../obj
gcc -Werror -Wall -c ../code/src/main.c -MMD -MP -MF ../obj/main.d -o ../obj/main.o
../code/src/main.c:4:10: fatal error: test.h: No such file or directory
#include "test.h"
^~~~~~~~
compilation terminated.
make: *** [Makefile:56: ../obj/main.o] Error 1
To remove this error what should be included in the Makefile?
Dependencies should be removed by this logic or some other logic should be used?
You are conflating two different things.
The .d files tell make where to look for prerequisites of the target. In this case the target is an object file (.o) and the prerequisite is a header file, but to make they're just "targets" and "prerequisites". Make is not restricted to just compiling C programs: it can do essentially any task where changing some files means that some other files need to be updated: compiling programs (not just C programs) is one common use but it can build documentation, web sites, run tests, etc. Make does its job by running commands, just as you would do it yourself from the command line (except make never forgets to add an option and doesn't make typos). It doesn't really know anything about "compilers" and "linkers", internally.
The error you are getting is from the compiler (or to be pedantic, the preprocessor), not make, and the compiler has to be told where to look for the header files it needs to include. Those are two completely different things and require different operations: the compiler requires that you provide the directories to search using the -I command line option.
I suppose it might be nice if the compiler could parse make's .d files and figure out where to look for headers, but it can't. You have to specify the flags yourself.
In your situation it's even more clear: you are actually using the compiler to generate the .d files! So there's a chicken-and-egg problem: if the compiler could get the paths from the .d files, but the .d files are being created from the compiler, then where do the paths come from in the first place?
Makefile specified in this question, compiling all the cpp programs in a folder but not with python embedded cpp programs.
all: myUB
sourcesC := $(wildcard ../src/*.cpp)
objectsC := $(patsubst %.cpp,%.o,$(sourcesC))
INPATH=-I"C:/Python27/include"
LIBPATH=-L"C:/Python27/libs"-lpython27
myUB:
#echo 'Building target $#'
g++ -O0 -Wall -c -g3 -fmessage-length=0 \
$(sourcesC)
del *.o
clean:
Your final makefile could look somthing like:
all: myUB
sourcesC := $(wildcard ../src/*.cpp)
# Not used
#objectsC := $(patsubst %.cpp,%.o,$(sourcesC))
INC = -IC:\Python27\include
LIBS = -LC:\Python27\libs -lpython27
myUB:
#echo 'Building target $#'
g++ -O0 -Wall -g3 -fmessage-length=0 -o myprog.out $(sourcesC) $(INC) $(LIBS)
clean:
rm myprog.out
update
For the undefined ref to WinMain(), it means the linker can't find this function in your code. Either you need to include a library/object that contains it or you can define it yourself in a cpp file like:
#include <windows.h>
int WINAPI (*MyDummyReferenceToWinMain)(HINSTANCE hInstance, ..., int
nShowCmd ) = &WinMain;
I got the function template from here.
But this seems to mean that you are creating a windows application instead of a console app which uses int main(...) entry point.
Update2
I have made a new makefile to do what you have asked for in your latest comment which seems to be to create one executable per source file - I am assuming each source file has its own main.
# Build vars
CXX = g++
CXX_FLAGS = -O0 -Wall -g3
INC = -IC:\Python27\includ
LIBS = -LC:\Python27\libs -lpython27
# Sources
SRC_DIR=src
SOURCES = $(wildcard $(SRC_DIR)/*.cpp)
$(info SOURCES: $(SOURCES))
# Executables
EXE_DIR=bin
EXECUTABLES = $(subst $(SRC_DIR)/,$(EXE_DIR)/,$(subst cpp,out,$(SOURCES)))
$(info EXECUTABLES: $(EXECUTABLES))
$(info ----)
# Directories
DIRS = $(EXE_DIR)
# Rule to create folders and compile executables
all: $(DIRS) $(EXECUTABLES)
# Pattern rule to build each executable
$(EXE_DIR)/%.out : $(SRC_DIR)/%.cpp
#echo "compiling $< --> $#"
#$(CXX) $(CXX_FLAGS) -o $# $< $(INC) $(LIBS)
# Rule to create output dirs
$(DIRS):
#echo "Creating output folders"
#mkdir -p $(EXE_DIR)
# Rule to clean up
clean:
#echo "Cleaning"
#rm -rf $(EXE_DIR)
This should create one executable in the folder bin/ for each source file (.cpp) in folder src/.
I'm trying to compile the following code with SDCC, in Debian using only VIM and a Makefile:
void main(void) {
}
Yes, that simple, it's not working yet. I'm using a Makefile like this :
# GNU/Linux specific Make directives.
# Declare tools.
SHELL = /bin/sh
CC = sdcc
LD = gplink
ECHO = #echo
MCU = 16f88
ARCH = pic14
CFLAGS = -m$(ARCH) -p$(MCU)
LDFLAGS = -c -r -w -m I /usr/share/sdcc/lib/$(ARCH)/
EXECUTABLE = t1
SOURCES = test2.c
OBJECTS = $(SOURCES:.c=.o)
CLEANFILES = test2.o test2.asm test2.map test2.lst
.SUFFIXES: .c .o
.PHONY: clean
# Compile
all: $(EXECUTABLE)
.c.o:
$(AT) $(CC) $(CFLAGS) -o $*.o -c $<
$(EXECUTABLE): $(OBJECTS)
$(AT) $(LD) $(LDFLAGS) $(OBJECTS) -o $(EXECUTABLE)
clean:
$(AT) rm -rf $(CLEANFILES)
After all of this the output after running the makefile is:
sdcc -mpic14 -p16f88 -o test2.o -c test2.c
gplink -c -r -w -m I /usr/share/sdcc/lib/pic14/ test2.o -o t1
make: *** [t1] Segmentation fault
I have tried more complex code with the same result,
I can't see what's wrong, anyone ?
I see several things that can be causing you problems:
When you compile for PICs using SDCC, you need the option --use-non-free because some PIC header files have a special Microchip Licence which is not GPL compatible. Furthermore, --use-non-free might not be available on Debian because of their freedom policy if you installed SDCC from repositories. You would need to install the latest SDCC from the official website.
On the linking stage, you should include the PIC libraries needed to run. Try executing sdcc -mpic14 -p16f88 --use-non-free -V test2.c. This way, SDCC links automatically and With -V (verbose) you can see the calls to assembler and linker and can see the libraries that are added on linkage.
I routinely work on several different computers and several different operating systems, which are Mac OS X, Linux, or Solaris. For the project I'm working on, I pull my code from a remote git repository.
I like to be able to work on my projects regardless of which terminal I'm at. So far, I've found ways to get around the OS changes by changing the makefile every time I switch computers. However, this is tedious and causes a bunch of headaches.
How can I modify my makefile so that it detects which OS I'm using and modifies syntax accordingly?
Here is the makefile:
cc = gcc -g
CC = g++ -g
yacc=$(YACC)
lex=$(FLEX)
all: assembler
assembler: y.tab.o lex.yy.o
$(CC) -o assembler y.tab.o lex.yy.o -ll -l y
assembler.o: assembler.c
$(cc) -o assembler.o assembler.c
y.tab.o: assem.y
$(yacc) -d assem.y
$(CC) -c y.tab.c
lex.yy.o: assem.l
$(lex) assem.l
$(cc) -c lex.yy.c
clean:
rm -f lex.yy.c y.tab.c y.tab.h assembler *.o *.tmp *.debug *.acts
There are many good answers here already, but I wanted to share a more complete example that both:
doesn't assume uname exists on Windows
also detects the processor
The CCFLAGS defined here aren't necessarily recommended or ideal; they're just what the project to which I was adding OS/CPU auto-detection happened to be using.
ifeq ($(OS),Windows_NT)
CCFLAGS += -D WIN32
ifeq ($(PROCESSOR_ARCHITEW6432),AMD64)
CCFLAGS += -D AMD64
else
ifeq ($(PROCESSOR_ARCHITECTURE),AMD64)
CCFLAGS += -D AMD64
endif
ifeq ($(PROCESSOR_ARCHITECTURE),x86)
CCFLAGS += -D IA32
endif
endif
else
UNAME_S := $(shell uname -s)
ifeq ($(UNAME_S),Linux)
CCFLAGS += -D LINUX
endif
ifeq ($(UNAME_S),Darwin)
CCFLAGS += -D OSX
endif
UNAME_P := $(shell uname -p)
ifeq ($(UNAME_P),x86_64)
CCFLAGS += -D AMD64
endif
ifneq ($(filter %86,$(UNAME_P)),)
CCFLAGS += -D IA32
endif
ifneq ($(filter arm%,$(UNAME_P)),)
CCFLAGS += -D ARM
endif
endif
The uname command (http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/uname.1.html) with no parameters should tell you the operating system name. I'd use that, then make conditionals based on the return value.
Example
UNAME := $(shell uname)
ifeq ($(UNAME), Linux)
# do something Linux-y
endif
ifeq ($(UNAME), Solaris)
# do something Solaris-y
endif
Detect the operating system using two simple tricks:
First the environment variable OS
Then the uname command
ifeq ($(OS),Windows_NT) # is Windows_NT on XP, 2000, 7, Vista, 10...
detected_OS := Windows
else
detected_OS := $(shell uname) # same as "uname -s"
endif
Or a more safe way, if not on Windows and uname unavailable:
ifeq ($(OS),Windows_NT)
detected_OS := Windows
else
detected_OS := $(shell sh -c 'uname 2>/dev/null || echo Unknown')
endif
Ken Jackson proposes an interesting alternative if you want to distinguish Cygwin/MinGW/MSYS/Windows. See his answer that looks like that:
ifeq '$(findstring ;,$(PATH))' ';'
detected_OS := Windows
else
detected_OS := $(shell uname 2>/dev/null || echo Unknown)
detected_OS := $(patsubst CYGWIN%,Cygwin,$(detected_OS))
detected_OS := $(patsubst MSYS%,MSYS,$(detected_OS))
detected_OS := $(patsubst MINGW%,MSYS,$(detected_OS))
endif
Then you can select the relevant stuff depending on detected_OS:
ifeq ($(detected_OS),Windows)
CFLAGS += -D WIN32
endif
ifeq ($(detected_OS),Darwin) # Mac OS X
CFLAGS += -D OSX
endif
ifeq ($(detected_OS),Linux)
CFLAGS += -D LINUX
endif
ifeq ($(detected_OS),GNU) # Debian GNU Hurd
CFLAGS += -D GNU_HURD
endif
ifeq ($(detected_OS),GNU/kFreeBSD) # Debian kFreeBSD
CFLAGS += -D GNU_kFreeBSD
endif
ifeq ($(detected_OS),FreeBSD)
CFLAGS += -D FreeBSD
endif
ifeq ($(detected_OS),NetBSD)
CFLAGS += -D NetBSD
endif
ifeq ($(detected_OS),DragonFly)
CFLAGS += -D DragonFly
endif
ifeq ($(detected_OS),Haiku)
CFLAGS += -D Haiku
endif
Notes:
Command uname is same as uname -s because option -s (--kernel-name) is the default. See why uname -s is better than uname -o.
The use of OS (instead of uname) simplifies the identification algorithm. You can still use solely uname, but you have to deal with if/else blocks to check all MinGW, Cygwin, etc. variations.
The environment variable OS is always set to "Windows_NT" on different Windows versions (see %OS% environment variable on Wikipedia).
An alternative of OS is the environment variable MSVC (it checks the presence of MS Visual Studio, see example using Visual C++).
Below I provide a complete example using make and gcc to build a shared library: *.so or *.dll depending on the platform. The example is as simplest as possible to be more understandable.
To install make and gcc on Windows see Cygwin or MinGW.
My example is based on five files
├── lib
│ └── Makefile
│ └── hello.h
│ └── hello.c
└── app
└── Makefile
└── main.c
Reminder: Makefile is indented using tabulation. Caution when copy-pasting below sample files.
The two Makefile files
1. lib/Makefile
ifeq ($(OS),Windows_NT)
uname_S := Windows
else
uname_S := $(shell uname -s)
endif
ifeq ($(uname_S), Windows)
target = hello.dll
endif
ifeq ($(uname_S), Linux)
target = libhello.so
endif
#ifeq ($(uname_S), .....) #See https://stackoverflow.com/a/27776822/938111
# target = .....
#endif
%.o: %.c
gcc -c $< -fPIC -o $#
# -c $< => $< is first file after ':' => Compile hello.c
# -fPIC => Position-Independent Code (required for shared lib)
# -o $# => $# is the target => Output file (-o) is hello.o
$(target): hello.o
gcc $^ -shared -o $#
# $^ => $^ expand to all prerequisites (after ':') => hello.o
# -shared => Generate shared library
# -o $# => Output file (-o) is $# (libhello.so or hello.dll)
2. app/Makefile
ifeq ($(OS),Windows_NT)
uname_S := Windows
else
uname_S := $(shell uname -s)
endif
ifeq ($(uname_S), Windows)
target = app.exe
endif
ifeq ($(uname_S), Linux)
target = app
endif
#ifeq ($(uname_S), .....) #See https://stackoverflow.com/a/27776822/938111
# target = .....
#endif
%.o: %.c
gcc -c $< -I ../lib -o $#
# -c $< => compile (-c) $< (first file after :) = main.c
# -I ../lib => search headers (*.h) in directory ../lib
# -o $# => output file (-o) is $# (target) = main.o
$(target): main.o
gcc $^ -L../lib -lhello -o $#
# $^ => $^ (all files after the :) = main.o (here only one file)
# -L../lib => look for libraries in directory ../lib
# -lhello => use shared library hello (libhello.so or hello.dll)
# -o $# => output file (-o) is $# (target) = "app.exe" or "app"
To learn more, read Automatic Variables documentation as pointed out by cfi.
The source code
- lib/hello.h
#ifndef HELLO_H_
#define HELLO_H_
const char* hello();
#endif
- lib/hello.c
#include "hello.h"
const char* hello()
{
return "hello";
}
- app/main.c
#include "hello.h" //hello()
#include <stdio.h> //puts()
int main()
{
const char* str = hello();
puts(str);
}
The build
Fix the copy-paste of Makefile (replace leading spaces by one tabulation).
> sed 's/^ */\t/' -i */Makefile
The make command is the same on both platforms. The given output is on Unix-like OSes:
> make -C lib
make: Entering directory '/tmp/lib'
gcc -c hello.c -fPIC -o hello.o
# -c hello.c => hello.c is first file after ':' => Compile hello.c
# -fPIC => Position-Independent Code (required for shared lib)
# -o hello.o => hello.o is the target => Output file (-o) is hello.o
gcc hello.o -shared -o libhello.so
# hello.o => hello.o is the first after ':' => Link hello.o
# -shared => Generate shared library
# -o libhello.so => Output file (-o) is libhello.so (libhello.so or hello.dll)
make: Leaving directory '/tmp/lib'
> make -C app
make: Entering directory '/tmp/app'
gcc -c main.c -I ../lib -o main.o
# -c main.c => compile (-c) main.c (first file after :) = main.cpp
# -I ../lib => search headers (*.h) in directory ../lib
# -o main.o => output file (-o) is main.o (target) = main.o
gcc main.o -L../lib -lhello -o app
# main.o => main.o (all files after the :) = main.o (here only one file)
# -L../lib => look for libraries in directory ../lib
# -lhello => use shared library hello (libhello.so or hello.dll)
# -o app => output file (-o) is app.exe (target) = "app.exe" or "app"
make: Leaving directory '/tmp/app'
The run
The application requires to know where is the shared library.
On Windows, a simple solution is to copy the library where the application is:
> cp -v lib/hello.dll app
`lib/hello.dll' -> `app/hello.dll'
On Unix-like OSes, you can use the LD_LIBRARY_PATH environment variable:
> export LD_LIBRARY_PATH=lib
Run the command on Windows:
> app/app.exe
hello
Run the command on Unix-like OSes:
> app/app
hello
I was recently experimenting in order to answer this question I was asking myself. Here are my conclusions:
Since in Windows, you can't be sure that the uname command is available, you can use gcc -dumpmachine. This will display the compiler target.
There may be also a problem when using uname if you want to do some cross-compilation.
Here's a example list of possible output of gcc -dumpmachine:
mingw32
i686-pc-cygwin
x86_64-redhat-linux
You can check the result in the makefile like this:
SYS := $(shell gcc -dumpmachine)
ifneq (, $(findstring linux, $(SYS)))
# Do Linux things
else ifneq(, $(findstring mingw, $(SYS)))
# Do MinGW things
else ifneq(, $(findstring cygwin, $(SYS)))
# Do Cygwin things
else
# Do things for others
endif
It worked well for me, but I'm not sure it's a reliable way of getting the system type. At least it's reliable about MinGW and that's all I need since it does not require to have the uname command or MSYS package in Windows.
To sum up, uname gives you the system on which you're compiling, and gcc -dumpmachine gives you the system for which you are compiling.
The git makefile contains numerous examples of how to manage without autoconf/automake, yet still work on a multitude of unixy platforms.
Update: I now consider this answer to be obsolete. I posted a new perfect solution further down.
If your makefile may be running on non-Cygwin Windows, uname may not be available. That's awkward, but this is a potential solution. You have to check for Cygwin first to rule it out, because it has WINDOWS in its PATH environment variable too.
ifneq (,$(findstring /cygdrive/,$(PATH)))
UNAME := Cygwin
else
ifneq (,$(findstring WINDOWS,$(PATH)))
UNAME := Windows
else
UNAME := $(shell uname -s)
endif
endif
That's the job that GNU's automake/autoconf are designed to solve. You might want to investigate them.
Alternatively you can set environment variables on your different platforms and make you Makefile conditional against them.
I ran into this problem today and I needed it on Solaris so here is a POSIX standard way to do (something very close to) this.
#Detect OS
UNAME = `uname`
# Build based on OS name
DetectOS:
-#make $(UNAME)
# OS is Linux, use GCC
Linux: program.c
#SHELL_VARIABLE="-D_LINUX_STUFF_HERE_"
rm -f program
gcc $(SHELL_VARIABLE) -o program program.c
# OS is Solaris, use c99
SunOS: program.c
#SHELL_VARIABLE="-D_SOLARIS_STUFF_HERE_"
rm -f program
c99 $(SHELL_VARIABLE) -o program program.c
I finally found the perfect solution that solves this problem for me.
ifeq '$(findstring ;,$(PATH))' ';'
UNAME := Windows
else
UNAME := $(shell uname 2>/dev/null || echo Unknown)
UNAME := $(patsubst CYGWIN%,Cygwin,$(UNAME))
UNAME := $(patsubst MSYS%,MSYS,$(UNAME))
UNAME := $(patsubst MINGW%,MSYS,$(UNAME))
endif
The UNAME variable is set to Linux, Cygwin, MSYS, Windows, FreeBSD, NetBSD (or presumably Solaris, Darwin, OpenBSD, AIX, HP-UX), or Unknown. It can then be compared throughout the remainder of the Makefile to separate any OS-sensitive variables and commands.
The key is that Windows uses semicolons to separate paths in the PATH variable whereas everyone else uses colons. (It's possible to make a Linux directory with a ';' in the name and add it to PATH, which would break this, but who would do such a thing?) This seems to be the least risky method to detect native Windows because it doesn't need a shell call. The Cygwin and MSYS PATH use colons so uname is called for them.
Note that the OS environment variable can be used to detect Windows, but not to distinguish between Cygwin and native Windows. Testing for the echoing of quotes works, but it requires a shell call.
Unfortunately, Cygwin adds some version information to the output of uname, so I added the 'patsubst' calls to change it to just 'Cygwin'. Also, uname for MSYS actually has three possible outputs starting with MSYS or MINGW, but I use also patsubst to transform all to just 'MSYS'.
If it's important to distinguish between native Windows systems with and without some uname.exe on the path, this line can be used instead of the simple assignment:
UNAME := $(shell uname 2>NUL || echo Windows)
Of course in all cases GNU make is required, or another make which supports the functions used.
Here's a simple solution that checks if you are in a Windows or posix-like (Linux/Unix/Cygwin/Mac) environment:
ifeq ($(shell echo "check_quotes"),"check_quotes")
WINDOWS := yes
else
WINDOWS := no
endif
It takes advantage of the fact that echo exists on both posix-like and Windows environments, and that in Windows the shell does not filter the quotes.
Note that Makefiles are extremely sensitive to spacing. Here's an example of a Makefile that runs an extra command on OS X and which works on OS X and Linux. Overall, though, autoconf/automake is the way to go for anything at all non-trivial.
UNAME := $(shell uname -s)
CPP = g++
CPPFLAGS = -pthread -ansi -Wall -Werror -pedantic -O0 -g3 -I /nexopia/include
LDFLAGS = -pthread -L/nexopia/lib -lboost_system
HEADERS = data_structures.h http_client.h load.h lock.h search.h server.h thread.h utility.h
OBJECTS = http_client.o load.o lock.o search.o server.o thread.o utility.o vor.o
all: vor
clean:
rm -f $(OBJECTS) vor
vor: $(OBJECTS)
$(CPP) $(LDFLAGS) -o vor $(OBJECTS)
ifeq ($(UNAME),Darwin)
# Set the Boost library location
install_name_tool -change libboost_system.dylib /nexopia/lib/libboost_system.dylib vor
endif
%.o: %.cpp $(HEADERS) Makefile
$(CPP) $(CPPFLAGS) -c $
Another way to do this is by using a "configure" script. If you are already using one with your makefile, you can use a combination of uname and sed to get things to work out. First, in your script, do:
UNAME=uname
Then, in order to put this in your Makefile, start out with Makefile.in which should have something like
UNAME=##UNAME##
in it.
Use the following sed command in your configure script after the UNAME=uname bit.
sed -e "s|##UNAME##|$UNAME|" < Makefile.in > Makefile
Now your makefile should have UNAME defined as desired. If/elif/else statements are all that's left!
I had a case where I had to detect the difference between two versions of Fedora, to tweak the command-line options for inkscape:
- in Fedora 31, the default inkscape is 1.0beta which uses --export-file
- in Fedora < 31, the default inkscape is 0.92 which uses --export-pdf
My Makefile contains the following
# set VERSION_ID from /etc/os-release
$(eval $(shell grep VERSION_ID /etc/os-release))
# select the inkscape export syntax
ifeq ($(VERSION_ID),31)
EXPORT = export-file
else
EXPORT = export-pdf
endif
# rule to convert inkscape SVG (drawing) to PDF
%.pdf : %.svg
inkscape --export-area-drawing $< --$(EXPORT)=$#
This works because /etc/os-release contains a line
VERSION_ID=<value>
so the shell command in the Makefile returns the string VERSION_ID=<value>, then the eval command acts on this to set the Makefile variable VERSION_ID.
This can obviously be tweaked for other OS's depending how the metadata is stored. Note that in Fedora there is not a default environment variable that gives the OS version, otherwise I would have used that!
An alternate way that I have not seen anyone talking about is using the built-in variable SHELL. The program used as the shell is taken from the variable SHELL. On MS-Windows systems, it is most likely to be an executable file with .exe extension (like sh.exe).
In that case, the following conditional test:
ifeq ($(suffix $(SHELL)),.exe)
# Windows system
else
# Non-Windows system
endif
Would have the same result as using the environment variable OS:
ifeq ($(OS),Windows_NT)
# Windows system
else
# Non-Windows system
endif
However, it seems the latter is the most popular solution, so I would recommend you stick with it.