Lloyd's algorithm - algorithm

Is it possible to run Lloyd's algorithm to find the k-means in one-dimension in polynomial-time?
I know that that the k-means problem is NP-hard for anything more than one-dimensions.
Any if you have a fixed dimension, Lloyd's algorithm will run in polynomial time, right?

I wouldn't worry too much about the running times of k means in practice. You can construct distributions that make it take exponential time to run, but if those inputs are noised up a little bit, the running time will be polynomial. http://theory.stanford.edu/~sergei/papers/kMeans-socg.pdf

A true k-means algorithm is in NP hard and always results in the optimum. Lloyd's algorithm is a Heuristic k-means algorithm that "likely" produces the optimum but is often preferable since it can be run in poly-time.

Related

I need to solve an NP-hard problem. Is there hope?

There are a lot of real-world problems that turn out to be NP-hard. If we assume that P ≠ NP, there aren't any polynomial-time algorithms for these problems.
If you have to solve one of these problems, is there any hope that you'll be able to do so efficiently? Or are you just out of luck?
If a problem is NP-hard, under the assumption that P ≠ NP there is no algorithm that is
deterministic,
exactly correct on all inputs all the time, and
efficient on all possible inputs.
If you absolutely need all of the above guarantees, then you're pretty much out of luck. However, if you're willing to settle for a solution to the problem that relaxes some of these constraints, then there very well still might be hope! Here are a few options to consider.
Option One: Approximation Algorithms
If a problem is NP-hard and P ≠ NP, it means that there's is no algorithm that will always efficiently produce the exactly correct answer on all inputs. But what if you don't need the exact answer? What if you just need answers that are close to correct? In some cases, you may be able to combat NP-hardness by using an approximation algorithm.
For example, a canonical example of an NP-hard problem is the traveling salesman problem. In this problem, you're given as input a complete graph representing a transportation network. Each edge in the graph has an associated weight. The goal is to find a cycle that goes through every node in the graph exactly once and which has minimum total weight. In the case where the edge weights satisfy the triangle inequality (that is, the best route from point A to point B is always to follow the direct link from A to B), then you can get back a cycle whose cost is at most 3/2 optimal by using the Christofides algorithm.
As another example, the 0/1 knapsack problem is known to be NP-hard. In this problem, you're given a bag and a collection of objects with different weights and values. The goal is to pack the maximum value of objects into the bag without exceeding the bag's weight limit. Even though computing an exact answer requires exponential time in the worst case, it's possible to approximate the correct answer to an arbitrary degree of precision in polynomial time. (The algorithm that does this is called a fully polynomial-time approximation scheme or FPTAS).
Unfortunately, we do have some theoretical limits on the approximability of certain NP-hard problems. The Christofides algorithm mentioned earlier gives a 3/2 approximation to TSP where the edges obey the triangle inequality, but interestingly enough it's possible to show that if P ≠ NP, there is no polynomial-time approximation algorithm for TSP that can get within any constant factor of optimal. Usually, you need to do some research to learn more about which problems can be well-approximated and which ones can't, since many NP-hard problems can be approximated well and many can't. There doesn't seem to be a unified theme.
Option Two: Heuristics
In many NP-hard problems, standard approaches like greedy algortihms won't always produce the right answer, but often do reasonably well on "reasonable" inputs. In many cases, it's reasonable to attack NP-hard problems with heuristics. The exact definition of a heuristic varies from context to context, but typically a heuristic is either an approach to a problem that "often" gives back good answers at the cost of sometimes giving back wrong answers, or is a useful rule of thumb that helps speed up searches even if it might not always guide the search the right way.
As an example of the first type of heuristic, let's look at the graph-coloring problem. This NP-hard problem asks, given a graph, to find the minimum number of colors necessary to paint the nodes in the graph such that no edge's endpoints are the same color. This turns out to be a particularly tough problem to solve with many other approaches (the best known approximation algorithms have terrible bounds, and it's not suspected to have a parameterized efficient algorithm). However, there are many heuristics for graph coloring that do quite well in practice. Many greedy coloring heuristics exist for assigning colors to nodes in a reasonable order, and these heuristics often do quite well in practice. Unfortunately, sometimes these heuristics give terrible answers back, but provided that the graph isn't pathologically constructed the heuristics often work just fine.
As an example of the second type of heuristic, it's helpful to look at SAT solvers. SAT, the Boolean satisfiability problem, was the first problem proven to be NP-hard. The problem asks, given a propositional formula (often written in conjunctive normal form), to determine whether there is a way to assign values to the variables such that the overall formula evaluates to true. Modern SAT solvers are getting quite good at solving SAT in many cases by using heuristics to guide their search over possible variable assignments. One famous SAT-solving algorithm, DPLL, essentially tries all possible assignments to see if the formula is satisfiable, using heuristics to speed up the search. For example, if it finds that a variable is either always true or always false, DPLL will try assigning that variable its forced value before trying other variables. DPLL also finds unit clauses (clauses with just one literal) and sets those variables' values before trying other variables. The net effect of these heuristics is that DPLL ends up being very fast in practice, even though it's known to have exponential worst-case behavior.
Option Three: Pseudopolynomial-Time Algorithms
If P ≠ NP, then no NP-hard problem can be solved in polynomial time. However, in some cases, the definition of "polynomial time" doesn't necessarily match the standard intuition of polynomial time. Formally speaking, polynomial time means polynomial in the number of bits necessary to specify the input, which doesn't always sync up with what we consider the input to be.
As an example, consider the set partition problem. In this problem, you're given a set of numbers and need to determine whether there's a way to split the set into two smaller sets, each of which has the same sum. The naive solution to this problem runs in time O(2n) and works by just brute-force testing all subsets. With dynamic programming, though, it's possible to solve this problem in time O(nN), where n is the number of elements in the set and N is the maximum value in the set. Technically speaking, the runtime O(nN) is not polynomial time because the numeric value N is written out in only log2 N bits, but assuming that the numeric value of N isn't too large, this is a perfectly reasonable runtime.
This algorithm is called a pseudopolynomial-time algorithm because the runtime O(nN) "looks" like a polynomial, but technically speaking is exponential in the size of the input. Many NP-hard problems, especially ones involving numeric values, admit pseudopolynomial-time algorithms and are therefore easy to solve assuming that the numeric values aren't too large.
For more information on pseudopolynomial time, check out this earlier Stack Overflow question about pseudopolynomial time.
Option Four: Randomized Algorithms
If a problem is NP-hard and P ≠ NP, then there is no deterministic algorithm that can solve that problem in worst-case polynomial time. But what happens if we allow for algorithms that introduce randomness? If we're willing to settle for an algorithm that gives a good answer on expectation, then we can often get relatively good answers to NP-hard problems in not much time.
As an example, consider the maximum cut problem. In this problem, you're given an undirected graph and want to find a way to split the nodes in the graph into two nonempty groups A and B with the maximum number of edges running between the groups. This has some interesting applications in computational physics (unfortunately, I don't understand them at all, but you can peruse this paper for some details about this). This problem is known to be NP-hard, but there's a simple randomized approximation algorithm for it. If you just toss each node into one of the two groups completely at random, you end up with a cut that, on expectation, is within 50% of the optimal solution.
Returning to SAT, many modern SAT solvers use some degree of randomness to guide the search for a satisfying assignment. The WalkSAT and GSAT algorithms, for example, work by picking a random clause that isn't currently satisfied and trying to satisfy it by flipping some variable's truth value. This often guides the search toward a satisfying assignment, causing these algorithms to work well in practice.
It turns out there's a lot of open theoretical problems about the ability to solve NP-hard problems using randomized algorithms. If you're curious, check out the complexity class BPP and the open problem of its relation to NP.
Option Five: Parameterized Algorithms
Some NP-hard problems take in multiple different inputs. For example, the long path problem takes as input a graph and a length k, then asks whether there's a simple path of length k in the graph. The subset sum problem takes in as input a set of numbers and a target number k, then asks whether there's a subset of the numbers that dds up to exactly k.
Interestingly, in the case of the long path problem, there's an algorithm (the color-coding algorithm) whose runtime is O((n3 log n) · bk), where n is the number of nodes, k is the length of the requested path, and b is some constant. This runtime is exponential in k, but is only polynomial in n, the number of nodes. This means that if k is fixed and known in advance, the runtime of the algorithm as a function of the number of nodes is only O(n3 log n), which is quite a nice polynomial. Similarly, in the case of the subset sum problem, there's a dynamic programming algorithm whose runtime is O(nW), where n is the number of elements of the set and W is the maximum weight of those elements. If W is fixed in advance as some constant, then this algorithm will run in time O(n), meaning that it will be possible to exactly solve subset sum in linear time.
Both of these algorithms are examples of parameterized algorithms, algorithms for solving NP-hard problems that split the hardness of the problem into two pieces - a "hard" piece that depends on some input parameter to the problem, and an "easy" piece that scales gracefully with the size of the input. These algorithms can be useful for finding exact solutions to NP-hard problems when the parameter in question is small. The color-coding algorithm mentioned above, for example, has proven quite useful in practice in computational biology.
However, some problems are conjectured to not have any nice parameterized algorithms. Graph coloring, for example, is suspected to not have any efficient parameterized algorithms. In the cases where parameterized algorithms exist, they're often quite efficient, but you can't rely on them for all problems.
For more information on parameterized algorithms, check out this earlier Stack Overflow question.
Option Six: Fast Exponential-Time Algorithms
Exponential-time algorithms don't scale well - their runtimes approach the lifetime of the universe for inputs as small as 100 or 200 elements.
What if you need to solve an NP-hard problem, but you know the input is reasonably small - say, perhaps its size is somewhere between 50 and 70. Standard exponential-time algorithms are probably not going to be fast enough to solve these problems. What if you really do need an exact solution to the problem and the other approaches here won't cut it?
In some cases, there are "optimized" exponential-time algorithms for NP-hard problems. These are algorithms whose runtime is exponential, but not as bad an exponential as the naive solution. For example, a simple exponential-time algorithm for the 3-coloring problem (given a graph, determine if you can color the nodes one of three colors each so that no edge's endpoints are the same color) might work checking each possible way of coloring the nodes in the graph, testing if any of them are 3-colorings. There are 3n possible ways to do this, so in the worst case the runtime of this algorithm will be O(3n · poly(n)) for some small polynomial poly(n). However, using more clever tricks and techniques, it's possible to develop an algorithm for 3-colorability that runs in time O(1.3289n). This is still an exponential-time algorithm, but it's a much faster exponential-time algorithm. For example, 319 is about 109, so if a computer can do one billion operations per second, it can use our initial brute-force algorithm to (roughly speaking) solve 3-colorability in graphs with up to 19 nodes in one second. Using the O((1.3289n)-time exponential algorithm, we could solve instances of up to about 73 nodes in about a second. That's a huge improvement - we've grown the size we can handle in one second by more than a factor of three!
As another famous example, consider the traveling salesman problem. There's an obvious O(n! · poly(n))-time solution to TSP that works by enumerating all permutations of the nodes and testing the paths resulting from those permutations. However, by using a dynamic programming algorithm similar to that used by the color-coding algorithm, it's possible to improve the runtime to "only" O(n2 2n). Given that 13! is about one billion, the naive solution would let you solve TSP for 13-node graphs in roughly a second. For comparison, the DP solution lets you solve TSP on 28-node graphs in about one second.
These fast exponential-time algorithms are often useful for boosting the size of the inputs that can be exactly solved in practice. Of course, they still run in exponential time, so these approaches are typically not useful for solving very large problem instances.
Option Seven: Solve an Easy Special Case
Many problems that are NP-hard in general have restricted special cases that are known to be solvable efficiently. For example, while in general it’s NP-hard to determine whether a graph has a k-coloring, in the specific case of k = 2 this is equivalent to checking whether a graph is bipartite, which can be checked in linear time using a modified depth-first search. Boolean satisfiability is, generally speaking, NP-hard, but it can be solved in polynomial time if you have an input formula with at most two literals per clause, or where the formula is formed from clauses using XOR rather than inclusive-OR, etc. Finding the largest independent set in a graph is generally speaking NP-hard, but if the graph is bipartite this can be done efficiently due to König’s theorem.
As a result, if you find yourself needing to solve what might initially appear to be an NP-hard problem, first check whether the inputs you actually need to solve that problem on have some additional restricted structure. If so, you might be able to find an algorithm that applies to your special case and runs much faster than a solver for the problem in its full generality.
Conclusion
If you need to solve an NP-hard problem, don't despair! There are lots of great options available that might make your intractable problem a lot more approachable. No one of the above techniques works in all cases, but by using some combination of these approaches, it's usually possible to make progress even when confronted with NP-hardness.

Confused about the definition of "Exact Algorithm"

What does it mean by saying "an algorithm is exact" in terms of Optimization and/or Computer Science? I need a precisely logical/epistemological definition.
Exact and approximate algorithms are methods for solving optimization problems.
Exact algorithms are algorithms that always find the optimal solution to a given optimization problem.
However, in combinatorial problems or total optimization problems, conventional methods are usually not effective enough, especially when the problem search area is large and complex. Among other methods we can use heuristics to solve that problems. Heuristics tend to give suboptimal solutions. A subset of heuristics are approximation algorithms.
When we use approximation algorithms we can prove a bound on the ratio between the optimal solution and the solution produced by the algorithm.
E.g. In some NP-hard problems there are some polynomial-time approximation algorithms while the best known exact algorithms need exponential time.
For example while there is a polynomial-time approximation algorithm for Vertex Cover, the best exact algorithm (using memoization) runs in O(1.1889n) pp 62-63.
The term exact is usually used to mean "the opposite of approximate". An approximation algorithm finds a solution to a slight variation of an optimzation problem that admits soltions that are "close" to the optimum in some sense, but nonetheless are desirable. As #Sirko said in the comments, the approximation is usually of interest because the exact problem is intractable or undecidable, where the approximate version is not. Often, more than one kind of approximation may be of interest.
Here are examples:
An exact algorithm for the Traveling Salesman problem is NP Complete. The TSP is to find a route of minimum length L for visiting each of N cities on a map. NP Completeness says the best known algorithms still need time that is an exponential function of N. An approximation algorithm for TSP finds a route of length no more than cL for some fixed c > 1. For example, you can easily construct the minimum spanning tree of the cities in time that is a polynomial in N and walk around the tree, covering each edge twice, to obtain an approximatoin algorithm for the case c = 2. The implied goal is to find algorithms for constants c as close to one as possible.
An exact algorithm for compiling a program that produces correct results in minimum time from any given source code is - under reasonable assumptions - undecidable. Yet of course we use "optimizing compilers" every day that improve the speed of code with no promise of true optimality.
In optimization, there are two kinds of algorithms. Exact and approximate algorithms.
Exact algorithms can find the optimum solution with precision.
Approximate algorithms can find a near optimum solution.
The main difference is that exact algorithms apply in "easy" problems.
What makes a problem "easy" is that it can be solved in reasonable time and the computation time doesn't scale up exponentially if the problem gets bigger. This class of problems is known as P(Deterministic Polynomial Time). Problems of this class are used to be optimized using exact algorithms.
For every other class of problems approximate algorithms are preferred.

Can 1 approximation algorithm be used for multiple NP-Hard problems?

Since any NP Hard problem be reduced to any other NP Hard problem by mapping, my question is 1 step forward;
for example every step of that algo : could that also be mapped to the other NP hard?
Thanks in advance
From http://en.wikipedia.org/wiki/Approximation_algorithm we see that
NP-hard problems vary greatly in their approximability; some, such as the bin packing problem, can be approximated within any factor greater than 1 (such a family of approximation algorithms is often called a polynomial time approximation scheme or PTAS). Others are impossible to approximate within any constant, or even polynomial factor unless P = NP, such as the maximum clique problem.
(end quote)
It follows from this that a good approximation in one NP-complete problem is not necessarily a good approximation in another NP-complete problem. In that fortunate world we could use easily-approximated NP-complete problems to find good approximate algorithms for all other NP-complete problems, which is not the case here, as there are hard-to-approximate NP-complete problems.
When proving a problem is NP-Hard, we usually consider the decision version of the problem, whose output is either yes or no. However, when considering approximation algorithms, we consider the optimization version of the problem.
If you use one problem's approximation algorithm to solve another problem by using the reduction in the proof of NP-Hard, the approximation ratio may change. For example, if you have a 2-approximation algorithm for problem A and you use it to solve problem B, then you may get a O(n)-approximation algorithm for problem B, since the reduction does not preserve approximation ratio. Hence, if you want to use an approximation algorithm for one problem to solve another problem, you need to ensure that the reduction will not change approximation ratio too much in order to get a useful algorithm. For example, you can use L-reduction or PTAS reduction.

Minimum Bandwidth Problem

I'm interesting the NP-complete "minimum bandwidth" problem for finding the minimum bandwidth of a graph. For those not familiar, here is a link about it...
http://en.wikipedia.org/wiki/Graph_bandwidth
I've implemented the Cuthill-McKee algorithm, and this was very successful at giving me a permutation of the vertices in which the bandwidth was reduced; however, I'm looking for the minimum bandwidth, not just a reduced bandwidth that is close. If any of you have experience with this problem, what algorithms provide solutions that are the minimum and not just reduced? I don't need actual implementation of any algorithm, I just want suggestions for what algorithms to research that yield actual minimum bandwidths.
That's interesting problem, but when I read Wiki (your link):
Both the unweighted and weighted
versions are special cases of the
quadratic bottleneck assignment
problem. The bandwidth problem is
NP-hard, even for some special
cases.[4] Regarding the existence of
efficient approximation algorithms, it
is known that the bandwidth is NP-hard
to approximate within any constant,
and this even holds when the input
graphs are restricted to caterpillar
trees (Dubey, Feige & Unger 2010). On
the other hand, a number of
polynomially-solvable special cases
are known.
So wiki says it's NP-Hard to approximate it with any constant (So there is no PTAS for this problem) and your chance is just use heuristic algorithms, sure brute force algorithm works, (numbering node with numbers between 1..n randomly in startup, after that use brute force) but you should spend 1000 year to solve it for caterpillar.
You should search for heuristic algorithms, not approximation and exact algorithms.
As it is NP complete you have to use some kind of "brute force" algorith. So mainly you have the different brute force as option, e.g. like branch-and-bound or linear programming (its LIP, so its in NP).
As it is NP complete you can also take every solution to a different NP complete problem (TSP, SAT,...) by transforming the problem instance from the NP-completeness proof, apply the algorith, and transform it back.
The simplest improvement you can do, is probably to take the result of your Cuthill-McKee algorithm and throw Tabu Search on it.
See this answer for an overview on some of the algorithms that can be applied.

Should we used k-means++ instead of k-means?

The k-means++ algorithm helps in two following points of the original k-means algorithm:
The original k-means algorithm has the worst case running time of super-polynomial in input size, while k-means++ has claimed to be O(log k).
The approximation found can yield a not so satisfactory result with respect to objective function compared to the optimal clustering.
But are there any drawbacks of k-means++? Should we always used it instead of k-means from now on?
Nobody claims k-means++ runs in O(lg k) time; it's solution quality is O(lg k)-competitive with the optimal solution. Both k-means++ and the common method, called Lloyd's algorithm, are approximations to an NP-hard optimization problem.
I'm not sure what the worst case running time of k-means++ is; note that in Arthur & Vassilvitskii's original description, steps 2-4 of the algorithm refer to Lloyd's algorithm. They do claim that it works both better and faster in practice because it starts from a better position.
The drawbacks of k-means++ are thus:
It too can find a suboptimal solution (it's still an approximation).
It's not consistently faster than Lloyd's algorithm (see Arthur & Vassilvitskii's tables).
It's more complicated than Lloyd's algo.
It's relatively new, while Lloyd's has proven it's worth for over 50 years.
Better algorithms may exist for specific metric spaces.
That said, if your k-means library supports k-means++, then by all means try it out.
Not your question, but an easy speedup to any kmeans method for large N:
1) first do k-means on a random sample of say sqrt(N) of the points
2) then run full k-means from those centres.
I've found this 5-10 times faster than kmeans++ for N 10000, k 20, with similar results.
How well it works for you will depend on how well a sqrt(N) sample
approximates the whole, as well as on N, dim, k, ninit, delta ...
What are your N (number of data points), dim (number of features), and k ?
The huge range in users' N, dim, k, data noise, metrics ...
not to mention the lack of public benchmarks, make it tough to compare methods.
Added: Python code for kmeans() and kmeanssample() is
here on SO; comments are welcome.

Resources