I am trying to implement AssemblyInitialize/AssemblyCleanup attributes in my Microsoft Visual Studio 2010 for the exact purpose as stated here. That link even describes the process which I need to follow to implement the code.
A quick summary of that purpose is to create an initial block of code which will run right before any test no matter which of the codedUITests I run in the solution and then a block of code which will run after the last codedUITest is completed. Example: I need to open up a specific application, then run a series of codedUITests which all start at that application and which are executed in any order, then close the application after everything is finished; this is more efficient than opening/closing the application for each codedUITest.
What I don't understand is where I need to place the code laid out at the bottom of that page (also shown below). I stuck all that code right under my 'public partial class UIMap' and the code runs except it runs the 'OpenApplication' and 'CloseApplication' commands before/after each CodedUITest instead of sandwiching the entire group of CodedUITests.
How do I implement the code correctly?
Update:
I discovered AssemblyI/C last night and I spent 3 hours trying to
figure out where to put the code so it works. If I put the
AssemblyInitialize at the beginning of a specific test method then:
1) It still wouldn't run - it was giving me some error saying that
UIMap.OpenWindow() and UIMap.CloseWindow() methods need to be static
and I couldn't figure out how to make them static.
2) Wouldn't the specific [TestMethod] which has the AssemblyI/C on it
need to be in the test set? In my situation I have a dozen
CodedUITests which need to run either individually or in a larger
group and I need to get the AssemblyI/C to Open/Close the window I am
testing.
You've added the methods to the wrong class. By putting then into the UIMap partial class, you are telling the runtime to run those methods every time you create a new UIMap instance, which it sounds like you're doing every test.
The point of the ClassInitialize/ClassCleanup methods is to add them to the class with your test methods in it. You should have at least one class decorated with the TestClass attribute, which has at least one method decorated with a TestMethod attribute. This is the class that needs the ClassInitialize and ClassCleanup attributes applied to it. Those methods will run one time for each separate TestClass you have in your project.
You could also use the AssemblyInitialize and AssemblyCleanup attributes instead. There can only be one of these methods in any given assembly, and they will run first and last, respectively, before and after any test methods in any classes.
UPDATE:
AssemblyInitialize/Cleanup need to be in a class that has the TestClass attribute, but it doesn't matter which one. The single method with each attribute will get run before or after any tests in the assembly run. It can't be a test method, though; it has to be a static method and will not count as a "test".
Related
I very, very rarely have to use the Call Hierarchy window in Visual Studio but today is one of those days.
In this case, I need to explore the depths of the method calls within my application from within a specific method. Currently, this method only calls four other methods, but I need to hunt down and inspect all calls, to all subsequent methods within this method.
Supposedly, the best way to do this is to right-click on my method name in my code and click on the View Call Hierarchy option. The problem is that the results in the hierarchy window only show me the list of "Calls to ..." the method. There is no folder containing the "Calls from..." details. Do I need to configure something or run a process to see the calls from within the method?
A couple of notes, most of the methods being called from within this method are to other methods written in the same class. There's a moderate chance that as I explore the call tree, I'm going to run into 20-30 unique code paths and possibly 300-500 total lines of code I need to inspect, and potentially more. I am also only interested in the method calls from within our solution code base. In fact, from within the hierarchy window, the the drop-down solution is set to "My Solution" which is what I want. Last, just to be clear in case this makes a difference, this is a C#, .Net Framework 4.6.2 project.
Why am I only seeing calls to this method, and not the subsequent call from this method. It's my understanding that this tool should be able to do that.
I wrote this scraper script to extract the job list from a website. And then to in order to practice I decide to try to transform this script into a class object.
The correct approach is to just call the methods you need as it is below.
teste = InfoJobs.new
teste.build_url
teste.get_page_values
teste.scraping
teste.writing
but I want to know if is ok to have a run method inside of my class and use self. to make the flow of the scrape program.
def run
self.build_url
self.parsing(#url)
self.get_page_values
self.scraping
self.writing
end
teste.run
If you're asking "should I create an abstraction layer around the numerous steps required to perform the operation so that the caller doesn't need to care about the particulars" then the answer is that's fine.
I'd prefer to write code that says scraper.run than five lines of confusing boilerplate which doesn't afford me any more control than the equivalent run method does.
I am constructing a prototype for robot using Test driven development ( C#, Console Application). First, I have created a test project and a class RobotTest. Here, I have written test methods to fail and to pass I construct the Robot class. Then, I have created a class RobertPrototype in which Robot class object is created to use methods in the Robot class. Along with that, I added some other methods (to parse input) in RobertPrototype.
I don't know if this is the way I have to follow while developing through TDD. Do I have to include all methods in Robot class itself ?
Please guide me. Thanks.
Do I have to include all methods in Robot class itself ?
I don't understand the question. you already said your tests are in a separate project and that you are writing a separate client class RobotPrototype that uses the Robot class.
At this point it seems like a reasonable design.
I think you're confusing yourself by writing bits of all of your classes for each bit of "working" test that you write for some Robot class method. This is not the way to think about TDD. It DOES NOT mean write a failing test to create a Robot object, then write a shell of a Robot constructor, write a shell of a class that uses a robot, write a shell of a client that uses a RobotPrototype. Then write a failing test, then write an empty Robot method, write RobotPrototype code that uses that method, write client code that uses what the RobotPrototype uses. no, no, no.
Each class in your robot design will have it's own corresponding Test class. Each method in each class will have it's own corresponding method in it's corresponding test class. The TDD cycle is performed on a method-by-method basis.
Try this:
Focus on one class and it's corresponding test class. Clearly you need a Robot before anything else. Start with the Robot class.
Using the TDD cycle, write functional methods.
When you have enough Robot functionality to do something, then you can start writing some Robot-using code (RobotPrototype class).
The RobotPrototype class has it's own corresponding Test class. Each of it's methods will have a corresponding Test method. You should have written enough Robot functionality to complete any given RobotPrototype method. If not, stop. Go back to Robot and write functioning methods there.
Given the above, the points to take away are:
You wrote complete "core" methods first. Each method has working tests when you're done.
As write new code using existing code, you know that existing code works because it's been tested. And, your new code has it's own tests.
Thus your application is built up upon layers of tested code.
As you write and re-write, you constantly re-run your tests. And periodically make sure you rerun ALL of them. If a previously working test fails, well you know you have a problem and you know where to look first.
As much as practicable every class has a test class and every method has (at least one) test method.
One implementation of TDD is Red-Green-Refactor.
As you write tests (Red), you will need to add methods to Robot in order to pass(Green). The next step is to organize the code, possibly into other classes (Refactor). The initial code used to pass the test may be in a different class than your final code.
In general you start by writing the skeleton of the class that you are willing to unit test and leaving all methods not implemented. Then you write the unit test about this class and all the methods that you are willing to test. Then you run the unit test which will fail because you haven't implemented the methods yet (you left them throw NotImplementedException) but at least your unit test can compile and execute. Then you go ahead and implement the methods and run the unit test which normally should pass. Then you refactor your code and when you run the unit test it should still pass. You move on to the next class and this process repeats.
Having written my Delphi Prism program enough to compile and run on Window and Linux (mono) without compilation errors, I am finding out that my constructors and load events are firing at different order than I expected. I thought, files get executed in the order that they are listed in the project file like in Delphi .dpr file. Speaking of .dpr file, is there a similar file for Delphi Prism that I am not looking into. I looked into program.pas file and properties. I didn't see anything there to give me a hint or clue.
How do you make sure that the project files get executed in right order in Delphi Prism?
Delphi Prism compiles in the order the files are defined in the project. However, there should not be anything that depends on the order of the files as there are no initialization sections.
As for your other question. Program.pas by default contains the entry point, it's a method called "Main", you could see this as the main begin/end.
.NET does not know about the order your classes are listed in your program file. It just sees classes.
Under normal circumstances you could think of this rule:
Static (class) constructors are executed immediately before the instance .ctor or another static (class) method is called on this class for the first time
While this is not true every time (they could be called earlier, but not later), this is a good approximation which works out most of the time.
So to ensure a certain order for static class initialization, I rely on the following:
I have one static class that has an Initialize() method. This method is the first thing I call in the Main() method of my program. In this method I call Initialize-Methods on other classes in the required order. This makes sure, that the initialization code is executed.
I have a class API which has full code coverage and uses DI to mock out all the logic in the main class function (Job.Run) which does all the work.
I found a bug in production where we werent doing some validation on one of the data input fields.
So, I added a stub function called ValidateFoo()... Wrote a unit test against this function to Expect a JobFailedException, ran the test - it failed obviously because that function was empty. I added the validation logic, and now the test passes.
Great, now we know the validation works. Problem is - how do I write the test to make sure that ValidateFoo() is actually called inside Job.Run()? ValidateFoo() is a private method of the Job class - so it's not an interface...
Is there anyway to do this with NMock2.0? I know TypeMock supports fakes of non interface types. But changing mock libs right now is not an option. At this point if NMock can't support it, I will simply just add the ValidateFoo() call to the Run() method and test things manually - which obviously I'd prefer not to do considering my Job.Run() method has 100% coverage right now. Any Advice? Thanks very much it is appreciated.
EDIT: the other option I have in mind is to just create an integration test for my Job.Run functionality (injecting to it true implementations of the composite objects instead of mocks). I will give it a bad input value for that field and then validate that the job failed. This works and covers my test - but it's not really a unit test but instead an integration test that tests one unit of functionality.... hmm..
EDIT2: IS there any way to do tihs? Anyone have ideas? Maybe TypeMock - or a better design?
The current version of NMock2 can mock concrete types (I don't remember exactly which version they added this, but we're using version 2.1) using the mostly familiar syntax:
Job job = mockery.NewMock<Job>(MockStyle.Transparent);
Stub.On(job).Method("ValidateFoo").Will(Return.Value(true));
MockStyle.Transparent specifies that anything you don't stub or expect should be handled by the underlying implementation - so you can stub and set expectations for methods on an instance you're testing.
However, you can only stub and set expectations on public methods (and properties), which must also be virtual or abstract. So to avoid relying on integration testing, you have two options:
Make Job.ValidateFoo() public and virtual.
Extract the validation logic into a new class and inject an instance into Job.
Since all private are all called by public methods (unless relying on reflection runtime execution), then those privates are being executed by public methods. Those private methods are causing changes to the object beyond simply executing code, such as setting class fields or calling into other objects. I'd find a way to get at those "results" of calling the private method. (Or mocking the things that shouldn't be executed in the private methods.)
I can't see the class under test. Another problem that could be pushing you to want access to the private methods is that it's a super big class with a boatload of private functionality. These classes may need to be broken down into smaller classes, and some of those privates may turn into simpler publics.