This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Plain English explanation of Big O
I am reading an the " Introduction to Algorithms" Book, but dont understand this.
O(100), O(log(n)), O(n*log(n)), O(n2), O(n3)
Ok Thanks, i dident even know what it was, so i am going to read that Big O post now.
But if anyone can explain this any further in layman's terms it would be much appreciated.
Thanks
That is the big O notation and an order of efficiency of algorithms:
O(1), not O(100) - constant time - whatever the input, the algorithm executes in constant time
O(log(n)) - logarithmic time - as input gets larger, so will the time, but by a decreasing amount
O(n*log(n)) - linear * logarithmic - increases larger than linear, but not as fast as the following
O(n^2), or generally O(n^k) where k is a constant - polynomial time, probably the worst of feasible algorithms
There are worse algorithms, that are considered unfeasible for non-small inputs:
O(k^n) - exponential
O(n!) - factorial
Algorithms that follow an Ackerman function...
This notation is orientative. For example, some algorithms in O(n^2) can perform, on average, faster than O(n*log(n)) - see quicksort.
This notation is also an upper bound, meaning it describes a worst case scenario.
It can be used for space complexity or time complexity, where n is the size of the input provided.
Big O (simplifying) indicates how long will a given algorithm to complete, n being the amount of entry.
For example:
O(100) -> will take 100 units to complete no matter how much entry.
O(log(n)) -> will take log(n) to complete
O(n2) -> will take n^2 (n * n) to complete
Related
In the below 4 options, wasn't 3., i.e, O(n²) supposed to be the worst time complexity? Because it takes more time to run and log(n) takes lesser time to run? But unfortunately the answer given is option 4.
What's wrong with my logic?
O(log(n!))
O(n)
O(n²)
O(log(log(n)))
To answer the direct question, this is the order of the functions from best to worst, sorted by their worst-case time-complexities (what we would call big-O notation):
O(log(log(n))
O(n)
O(log(n!))
O(n^2)
This is pretty easy to see in a graphing of the functions:
(Note that O(log(log(n))) is nearly a constant function, an iterated logarithm. Thus it does not stray far from the x-axis).
Big-O notation describes the worst-case time complexity for any function, but the question likely originally asked for the best worst-case time complexity.
I am having trouble fully understanding this question:
Two O(n2) algorithms will always take the same amount of time for a given vale of n. True or false? Explain.
I think the answer is false, because from my understanding, I think that the asymptotic time complexity only measures the two algorithms running at O(n2) time, however one algorithm might take longer as perhaps it might have additional O(n) components to the algorithm. Like O(n2) vs (O(n2) + O(n)).
I am not sure if my logic is correct. Any help would be appreciated.
Yes, you are right. Big Oh notation depicts the upper bound of time complexity. There might some extra constant term c or smaller term of n like O(n) added to it which won't be considered for time complexity.
Moreover,
for i = 0 to n
for j = 0 to n
// some constant time operation
end
end
And
for i = 0 to n
for j = i to n
// some constant time operation
end
end
Both of these are O(n^2) asymptotically but won't take same time.
The concept of big Oh analysis is not to calculate the precise amount of time a program takes to execute, it's not about counting how many times a loop iterates. Rather it indicates the algorithm's growth rate with n.
The answer is correct but the explanation is lacking.
For one, the big O notation allows arbitrary constant factors. so both n2 and 100*n2 are in O(n2) but clearly the second is always larger.
Another reason is that the notation only gives an upper bound so even a runtime of n is in O(n2) so one of the algorithms may in fact be linear.
This question has appeared in my algorithms class. Here's my thought:
I think the answer is no, an algorithm with worst-case time complexity of O(n) is not always faster than an algorithm with worst-case time complexity of O(n^2).
For example, suppose we have total-time functions S(n) = 99999999n and T(n) = n^2. Then clearly S(n) = O(n) and T(n) = O(n^2), but T(n) is faster than S(n) for all n < 99999999.
Is this reasoning valid? I'm slightly skeptical that, while this is a counterexample, it might be a counterexample to the wrong idea.
Thanks so much!
Big-O notation says nothing about the speed of an algorithm for any given input; it describes how the time increases with the number of elements. If your algorithm executes in constant time, but that time is 100 billion years, then it's certainly slower than many linear, quadratic and even exponential algorithms for large ranges of inputs.
But that's probably not really what the question is asking. The question is asking whether an algorithm A1 with worst-case complexity O(N) is always faster than an algorithm A2 with worst-case complexity O(N^2); and by faster it probably refers to the complexity itself. In which case you only need a counter-example, e.g.:
A1 has normal complexity O(log n) but worst-case complexity O(n^2).
A2 has normal complexity O(n) and worst-case complexity O(n).
In this example, A1 is normally faster (i.e. scales better) than A2 even though it has a greater worst-case complexity.
Since the question says Always it means it is enough to find only one counter example to prove that the answer is No.
Example for O(n^2) and O(n logn) but the same is true for O(n^2) and O(n)
One simple example can be a bubble sort where you keep comparing pairs until the array is sorted. Bubble sort is O(n^2).
If you use bubble sort on a sorted array, it will be faster than using other algorithms of time complexity O(nlogn).
You're talking about worst-case complexity here, and for some algorithms the worst case never happen in a practical application.
Saying that an algorithm runs faster than another means it run faster for all input data for all sizes of input. So the answer to your question is obviously no because the worst-case time complexity is not an accurate measure of the running time, it measures the order of growth of the number of operations in a worst case.
In practice, the running time depends of the implementation, and is not only about this number of operations. For example, one has to care about memory allocated, cache-efficiency, space/temporal locality. And obviously, one of the most important thing is the input data.
If you want examples of when the an algorithm runs faster than another while having a higher worst-case complexity, look at all the sorting algorithms and their running time depending of the input.
You are correct in every sense, that you provide a counter example to the statement. If it is for exam, then period, it should grant you full mark.
Yet for a better understanding about big-O notation and complexity stuff, I will share my own reasoning below. I also suggest you to always think the following graph when you are confused, especially the O(n) and O(n^2) line:
Big-O notation
My own reasoning when I first learnt computational complexity is that,
Big-O notation is saying for sufficient large size input, "sufficient" depends on the exact formula (Using the graph, n = 20 when compared O(n) & O(n^2) line), a higher order one will always be slower than lower order one
That means, for small input, there is no guarantee a higher order complexity algorithm will run slower than lower order one.
But Big-O notation tells you an information: When the input size keeping increasing, keep increasing....until a "sufficient" size, after that point, a higher order complexity algorithm will be always slower. And such a "sufficient" size is guaranteed to exist*.
Worst-time complexity
While Big-O notation provides a upper bound of the running time of an algorithm, depends on the structure of the input and the implementation of the algorithm, it may generally have a best complexity, average complexity and worst complexity.
The famous example is sorting algorithm: QuickSort vs MergeSort!
QuickSort, with a worst case of O(n^2)
MergeSort, with a worst case of O(n lg n)
However, Quick Sort is basically always faster than Merge Sort!
So, if your question is about Worst Case Complexity, quick sort & merge sort maybe the best counter example I can think of (Because both of them are common and famous)
Therefore, combine two parts, no matter from the point of view of input size, input structure, algorithm implementation, the answer to your question is NO.
Question
Hi I am trying to understand what order of complexity in terms of Big O notation is. I have read many articles and am yet to find anything explaining exactly 'order of complexity', even on the useful descriptions of Big O on here.
What I already understand about big O
The part which I already understand. about Big O notation is that we are measuring the time and space complexity of an algorithm in terms of the growth of input size n. I also understand that certain sorting methods have best, worst and average scenarios for Big O such as O(n) ,O(n^2) etc and the n is input size (number of elements to be sorted).
Any simple definitions or examples would be greatly appreciated thanks.
Big-O analysis is a form of runtime analysis that measures the efficiency of an algorithm in terms of the time it takes for the algorithm to run as a function of the input size. It’s not a formal bench- mark, just a simple way to classify algorithms by relative efficiency when dealing with very large input sizes.
Update:
The fastest-possible running time for any runtime analysis is O(1), commonly referred to as constant running time.An algorithm with constant running time always takes the same amount of time
to execute, regardless of the input size.This is the ideal run time for an algorithm, but it’s rarely achievable.
The performance of most algorithms depends on n, the size of the input.The algorithms can be classified as follows from best-to-worse performance:
O(log n) — An algorithm is said to be logarithmic if its running time increases logarithmically in proportion to the input size.
O(n) — A linear algorithm’s running time increases in direct proportion to the input size.
O(n log n) — A superlinear algorithm is midway between a linear algorithm and a polynomial algorithm.
O(n^c) — A polynomial algorithm grows quickly based on the size of the input.
O(c^n) — An exponential algorithm grows even faster than a polynomial algorithm.
O(n!) — A factorial algorithm grows the fastest and becomes quickly unusable for even small values of n.
The run times of different orders of algorithms separate rapidly as n gets larger.Consider the run time for each of these algorithm classes with
n = 10:
log 10 = 1
10 = 10
10 log 10 = 10
10^2 = 100
2^10= 1,024
10! = 3,628,800
Now double it to n = 20:
log 20 = 1.30
20 = 20
20 log 20= 26.02
20^2 = 400
2^20 = 1,048,576
20! = 2.43×1018
Finding an algorithm that works in superlinear time or better can make a huge difference in how well an application performs.
Say, f(n) in O(g(n)) if and only if there exists a C and n0 such that f(n) < C*g(n) for all n greater than n0.
Now that's a rather mathematical approach. So I'll give some examples. The simplest case is O(1). This means "constant". So no matter how large the input (n) of a program, it will take the same time to finish. An example of a constant program is one that takes a list of integers, and returns the first one. No matter how long the list is, you can just take the first and return it right away.
The next is linear, O(n). This means that if the input size of your program doubles, so will your execution time. An example of a linear program is the sum of a list of integers. You'll have to look at each integer once. So if the input is an list of size n, you'll have to look at n integers.
An intuitive definition could define the order of your program as the relation between the input size and the execution time.
Others have explained big O notation well here. I would like to point out that sometimes too much emphasis is given to big O notation.
Consider matrix multplication the naïve algorithm has O(n^3). Using the Strassen algoirthm it can be done as O(n^2.807). Now there are even algorithms that get O(n^2.3727).
One might be tempted to choose the algorithm with the lowest big O but it turns for all pratical purposes that the naïvely O(n^3) method wins out. This is because the constant for the dominating term is much larger for the other methods.
Therefore just looking at the dominating term in the complexity can be misleading. Sometimes one has to consider all terms.
Big O is about finding an upper limit for the growth of some function. See the formal definition on Wikipedia http://en.wikipedia.org/wiki/Big_O_notation
So if you've got an algorithm that sorts an array of size n and it requires only a constant amount of extra space and it takes (for example) 2 n² + n steps to complete, then you would say it's space complexity is O(n) or O(1) (depending on wether you count the size of the input array or not) and it's time complexity is O(n²).
Knowing only those O numbers, you could roughly determine how much more space and time is needed to go from n to n + 100 or 2 n or whatever you are interested in. That is how well an algorithm "scales".
Update
Big O and complexity are really just two terms for the same thing. You can say "linear complexity" instead of O(n), quadratic complexity instead of O(n²), etc...
I see that you are commenting on several answers wanting to know the specific term of order as it relates to Big-O.
Suppose f(n) = O(n^2), we say that the order is n^2.
Be careful here, there are some subtleties. You stated "we are measuring the time and space complexity of an algorithm in terms of the growth of input size n," and that's how people often treat it, but it's not actually correct. Rather, with O(g(n)) we are determining that g(n), scaled suitably, is an upper bound for the time and space complexity of an algorithm for all input of size n bigger than some particular n'. Similarly, with Omega(h(n)) we are determining that h(n), scaled suitably, is a lower bound for the time and space complexity of an algorithm for all input of size n bigger than some particular n'. Finally, if both the lower and upper bound are the same complexity g(n), the complexity is Theta(g(n)). In other words, Theta represents the degree of complexity of the algorithm while big-O and big-Omega bound it above and below.
Constant Growth: O(1)
Linear Growth: O(n)
Quadratic Growth: O(n^2)
Cubic Growth: O(n^3)
Logarithmic Growth: (log(n)) or O(n*log(n))
Big O use Mathematical Definition of complexity .
Order Of use in industrial Definition of complexity .
What is the difference between O(n^2) and O(n.log(n))?
n^2 grows in complexity more quickly.
Big O calculates an upper limit of running time relative to the size of a data set (n).
An O(n*log(n)) is not always faster than a O(n^2) algorithm, but when considering the worst case it probably is. A O(n^2)-algorithm takes ~4 times longer when you duplicate the working set (worst case), for O(n*log(n))-algorithm it's less. The bigger your data set is the more it usually gets faster using an O(n*log(n))-algorithm.
EDIT: Thanks to 'harms', I'll correct a wrong statement in my first answer: I told that when considering the worst case O(n^2) would always be slower than O(n*log(n)), that's wrong since both are except for a constant factor!
Sample: Say we have the worst case and our data set has size 100.
O(n^2) --> 100*100 = 10000
O(n*log(n)) --> 100*2 = 200 (using log_10)
The problem is that both can be multiplied by a constant factor, say we multiply c to the latter one. The result will be:
O(n^2) --> 100*100 = 10000
O(n*log(n)) --> 100*2*c = 200*c (using log_10)
So for c > 50 we get O(n*log(n)) > O(n^2), for n=100.
I have to update my statement: For every problem, when considering the worst case, a O(n*log(n)) algorithm will be quicker than a O(n^2) algorithm for arbitrarily big data sets.
The reason is: The choice of c is arbitrary but constant. If you increase the data set large enough it will dominate the effect of every constant choice of c and when discussing two algorithms the cs for both are constant!
You'll need to be a bit more specific about what you are asking, but in this case O(n log(n)) is faster
Algorithms that run in O(nlog(n)) time are generally faster than those that run in O(n^2).
Big-O defines the upper-bound on performance. As the size of the data set grows (n) the length of time it takes to perform the task. You might be interested in the iTunes U algorithms course from MIT.
n log(n) grows significantly slower
"Big Oh" notation gives an estimated upper bound on the growth in the running time of an algorithm. If an algorithm is supposed to be O(n^2), in a naive way, it says that for n=1, it takes a max. time 1 units, for n=2 it takes max. time 4 units and so on. Similarly for O(n log(n)), it says the grown will be such that it obeys the upper bound of O(n log(n)).
(If I am more than naive here, please correct me in a comment).
I hope that helps.