Equation from "Programming Pearls" - can somebody explain me? - algorithm

It's feel like I'm stuck, my friends. Can somebody explain me pick equations from "Pearls of Functional Algorithm Design", chapter 11 ("Not the maximum segment sum").
Here is the problem (a little bit simplified)
Let us have some states with given transitions:
data State = E | S | M | N
deriving (Show, Eq)
step E False = E
step E True = S
step S False = M
step S True = S
step M False = M
step M True = N
step N False = N
step N True = N
Now, let's define pick:
pick q = map snd . filter ((== q) . fst) . map (\a -> (foldl step E a, a))
The author claims that the following seven equations hold:
pick E xs = [[]]
pick S [ ] = [ ]
pick S (xs ++ [x]) = map (++[x ]) (pick S xs ++ pick E xs)
pick M [ ] = [ ]
pick M (xs ++ [x ]) = pick M xs ++ pick S xs
pick N [ ] = [ ]
pick N (xs ++ [x]) = pick N xs ++ map (++[x]) (pick N xs ++ pick M xs)
Can somebody explain me in simple words, why these equations are true, how can we prove an obvious proof? I feel like I almost understand S-equations, but altogether this remains elusive.

Ok, I needed to visualize your state graph:
And give a type signature for pick :: State -> [[Bool]] -> [(State, [Bool]).
Now, this doesn't jive with your first equation pick E xs = [[]] - it'd have to be pick E xs = [(E,[])].
Perhaps you meant to define pick this way:
pick :: State -> [[Bool]] -> [[Bool]]
pick q = map snd . filter ((== q) . fst) . map (\a -> (foldl step E a, a))
Assuming that definition, the first equation now makes sense. It claims that if you start at E, the only sequence of booleans in xs that will end at E is the empty list.
Note that this assumes that [] ∈ xs.
Also, if ys = replicate n False, pick E [ys] = [ys], so this implies that ∀ n, ys ∉ xs.
The second, fourth, and sixth equations are all of the form pick _ [ ] = [ ], which is trivially true by the definition of map and filter.
The third equation, pick S (xs ++ [x]) = map (++[x ]) (pick S xs ++ pick E xs) doesn't really make sense either. What I'm guessing it's trying to say is:
pick S (map (++[True] xs) = map (++[True]) (pick S xs ++ pick E xs)
Which is to say - any path starting at E and ending at S can be constructed by taking an existing path to E or S and appending True. Equivalently, that every path that ends at S must end with True.
The fifth equation is similarly nonsensical, and should be stated as:
pick S (map (++[False] xs) = map (++[False]) (pick S xs ++ pick M xs)
And the seventh equation should be restated as:
pick N (map (++ [True]) xs) = pick N xs ++ map (++[True]) (pick N xs ++ pick M xs)

Related

Generalizing a combinatoric function?

I've been solving a few combinatoric problems on Haskell, so I wrote down those 2 functions:
permutations :: (Eq a) => [a] -> [[a]]
permutations [] = [[]]
permutations list = do
x <- list
xs <- permutations (filter (/= x) list)
return (x : xs)
combinations :: (Eq a, Ord a) => Int -> [a] -> [[a]]
combinations 0 _ = [[]]
combinations n list = do
x <- list
xs <- combinations (n-1) (filter (> x) list)
return (x : xs)
Which works as follows:
*Main> permutations [1,2,3]
[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
*Main> combinations 2 [1,2,3,4]
[[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
Those were uncomfortably similar, so I had to abstract it. I wrote the following abstraction:
combinatoric next [] = [[]]
combinatoric next list = do
x <- list
xs <- combinatoric next (next x list)
return (x : xs)
Which receives a function that controls how to filter the elements of the list. It can be used to easily define permutations:
permutations :: (Eq a) => [a] -> [[a]]
permutations = combinatoric (\ x ls -> filter (/= x) ls)
But I couldn't define combinations this way since it carries an state (n). I could extend the combinatoric with an additional state argument, but that'd become too clunky and I remember such approach was not necessary in a somewhat similar situation. Thus, I wonder: is it possible to define combinations using combinatorics? If not, what is a better abstraction of combinatorics which successfully subsumes both functions?
This isn't a direct answer to your question (sorry), but I don't think your code is correct. The Eq and Ord constraints tipped me off - they shouldn't be necessary - so I wrote a couple of QuickCheck properties.
prop_numberOfPermutations xs = length (permutations xs) === factorial (length xs)
where _ = (xs :: [Int]) -- force xs to be instantiated to [Int]
prop_numberOfCombinations (Positive n) (NonEmpty xs) = n <= length xs ==>
length (combinations n xs) === choose (length xs) n
where _ = (xs :: [Int])
factorial :: Int -> Int
factorial x = foldr (*) 1 [1..x]
choose :: Int -> Int -> Int
choose n 0 = 1
choose 0 r = 0
choose n r = choose (n-1) (r-1) * n `div` r
The first property checks that the number of permutations of a list of length n is n!. The second checks that the number of r-combinations of a list of length n is C(n, r). Both of these properties fail when I run them against your definitions:
ghci> quickCheck prop_numberOfPermutations
*** Failed! Falsifiable (after 5 tests and 4 shrinks):
[0,0,0]
3 /= 6
ghci> quickCheck prop_numberOfCombinations
*** Failed! Falsifiable (after 4 tests and 1 shrink):
Positive {getPositive = 2}
NonEmpty {getNonEmpty = [3,3]}
0 /= 1
It looks like your functions fail when the input list contains duplicate elements. Writing an abstraction for an incorrect implementation isn't a good idea - don't try and run before you can walk! You might find it helpful to read the source code for the standard library's definition of permutations, which does not have an Eq constraint.
First let's improve the original functions. You assume that all elements are distinct wrt their equality for permutations, and that they're distinct and have an ordering for combinations. These constraints aren't necessary and as described in the other answer, the code can produce wrong results. Following the robustness principle, let's accept just unconstrained lists. For this we'll need a helper function that produces all possible splits of a list:
split :: [a] -> [([a], a, [a])]
split = loop []
where
loop _ [] = []
loop rs (x:xs) = (rs, x, xs) : loop (x:rs) xs
Note that the implementation causes prefixes returned by this function to be reversed, but it's nothing we require.
This allows us to write generic permutations and combinations.
permutations :: [a] -> [[a]]
permutations [] = [[]]
permutations list = do
(pre, x, post) <- split list
-- reversing 'pre' isn't really necessary, but makes the output
-- order natural
xs <- permutations (reverse pre ++ post)
return (x : xs)
combinations :: Int -> [a] -> [[a]]
combinations 0 _ = [[]]
combinations n list = do
(_, x, post) <- split list
xs <- combinations (n-1) post
return (x : xs)
Now what they have in common:
At each step they pick an element to output,
update the list of elements to pick from and
stop after some condition is met.
The last point is a bit problematic, as for permutations we end once the list to choose from is empty, while for combinations we have a counter. This is probably the reason why it was difficult to generalize. We can work around this by realizing that for permutations the number of steps is equal to the length of the input list, so we can express the condition in the number of repetitions.
For such problems it's often very convenient to express them using StateT s [] monad, where s is the state we're working with. In our case it'll be the list of elements to choose from. The core of our combinatorial functions can be then expressed with StateT [a] [] a: pick an element from the state and update the state for the next step. Since the stateful computations all happen in the [] monad, we automatically branch all possibilities. With that, we can define a generic function:
import Control.Monad.State
combinatoric :: Int -> StateT [a] [] b -> [a] -> [[b]]
combinatoric n k = evalStateT $ replicateM n k
And then define permutations and combinations by specifying the appropriate number of repetitions and what's the core StateT [a] [] a function:
permutations' :: [a] -> [[a]]
permutations' xs = combinatoric (length xs) f xs
where
f = StateT $ map (\(pre, x, post) -> (x, reverse pre ++ post)) . split
combinations' :: Int -> [a] -> [[a]]
combinations' n xs = combinatoric n f xs
where
f = StateT $ map (\(_, x, post) -> (x, post)) . split

Slower execution when using an infinite list

I'm beginning to try and get my head round haskell performance, and what makes things fast and slow, and I'm a little confused by this.
I have two implementations of a function that generates a list of primes up to a certain value. The first is straight off the Haskell wiki:
primesTo :: (Ord a, Num a, Enum a) => a -> [a]
primesTo m = eratos [2..m] where
eratos [] = []
eratos (p:xs) = p : eratos (xs `minus` [p*p, p*p+p..m])
The second is the same, but using an infinite list internally:
primes2 :: (Ord a, Num a, Enum a) => a -> [a]
primes2 m = takeWhile (<= m) (eratos [2..]) where
eratos [] = []
eratos (p:xs) = p : eratos (xs `minus` [p*p, p*p+p..])
In both cases, the minus function is:
minus :: (Ord a) => [a] -> [a] -> [a]
minus (x:xs) (y:ys) = case (compare x y) of
LT -> x : minus xs (y:ys)
EQ -> minus xs ys
GT -> minus (x:xs) ys
minus xs _ = xs
The latter implementation is significantly (~100x) slower than the former, and I don't get why. I would have thought that haskell's lazy evalutation would make them fairly equivalent under the hood.
This is obviously a reduced test case for the purposes of the question - in real life the optimisation would be no problem (although I don't understand why it is needed), but to me a function that just generates an infinite list of primes is more generically useful than a finite list, but appears slower to work with.
Looks like to me that there's a big difference between
(xs `minus` [p*p, p*p+p..m]) -- primesTo
(xs `minus` [p*p, p*p+p..]) -- primes2
The function minus steps through lists pairwise and terminates when one list reaches the end. In the first minus expression above, this occurs in no more than (m-p*p)/p steps when the latter list is exhausted. In the second one, it will always take steps on the order of length xs.
So your infinite lists have disabled at least one meaningful optimization.
One difference is that in the second case you need to generate one extra prime. You need to generate the first prime greater than m before takeWhile knows its time to stop.
Additionally, the [..m] bounds on both the list to filter and the lists of multiples help reduce the number of calculations. Whenever one of these lists gets empty minus immediately returns via its secons clause while in the infinite case the minus gets stuck in the first case. You can explore this a bit better if you also test the cases where only one of the lists is infinite:
--this is also slow
primes3 :: (Ord a, Num a, Enum a) => a -> [a]
primes3 m = takeWhile (<= m) (eratos [2..m]) where
eratos [] = []
eratos (p:xs) = p : eratos (xs `minus` [p*p, p*p+p..])
--this fast
primes4 :: (Ord a, Num a, Enum a) => a -> [a]
primes4 m = takeWhile (<= m) (eratos [2..]) where
eratos [] = []
eratos (p:xs) = p : eratos (xs `minus` [p*p, p*p+p..m])

How to find a second largest number in a list in Haskell?

The question is like this:
Write a function that takes an integer list and returns its length and the
second largest integer in the list.
I can solve this with two functions but is there any solution that use only one function to do it?
Any help is appreciated!
Thanks!
Don't make it complicated.
f xs = (sort xs !! 1, length xs)
If you choose to make it complicated, make it complicated in the right way.
Edited to use #ThomasM.DuBuisson's suggestion
You can solve this the same way that you could finding the max: using a fold. Max can be pretty trivially implemented with
mymaximum :: Ord a => [a] -> a
mymaximum xs = foldl searcher (head xs) xs
where
searcher :: Ord a => a -> a -> a
searcher a b
| a > b = a
| otherwise = b
So we can implement it similarly by just keeping up with the two largest values (notice that we have to "seed" the fold with a tuple as well):
nextmaximum :: Ord a => [a] -> a
nextmaximum xs = fst $ foldl searcher (h, h) xs
where
h = head xs
searcher :: (Ord a) => (a, a) -> a -> (a, a)
searcher (s, f) x = (min f (max s x), max f x)
You can just compose individual functions together. This is neither efficient nor robust, but it's sure easy to write:
f xs = maximum . filter (< maximum xs) $ xs
head . (!!1) . group . sortBy (flip compare) $ [1,1,2,3,4,4,4,5,5,6,6,6,6]
5

most idiomatic way to implement recursive list comprehension in F#

the question in short: What is the most idiomatic way to do "recursive List comprehension" in F#?
more detailed: As I have learned so far (I am new to F#) we have essentially the following tools to "build up" lists: List.map and list comprehension. Imho they both do more or less the same thing, they generate a list by "altering" the elements of a given list (in case of comprehension the given list is of the form [k..n]).
What I want to do is to inductively build up lists (before people ask: for no other reason than curiosity) i.e. is there any built in function with the behavior one would expect from a function called something like "List.maplist" that might take as arguments
a function f : 'a List -> 'a and an n : int,
returning the list
[... ; f (f []) ; f [] ] of length n.
To illustrate what I mean I wrote such a function on my own (as an exercise)
let rec recListComprehension f n =
if n=0 then []
else
let oldList = recListComprehension f (n-1)
f (oldList) :: oldList
or a bit less readable but in turn tail recursive:
let rec tailListComprehension f n list =
if n=0 then list
else tailListComprehension f (n-1) ((f list)::list)
let trecListComprehension f n = tailListComprehension f n []
for example, a list containing the first 200 fibonacci numbers can be generated by
let fiboGen =
function
| a::b::tail -> a+b
| _ -> 1UL
trecListComprehension (fiboGen) 200
to sum up the question: Is there a build in function in F# that behaves more or less like "trecListComprehension" and if not what is the most idiomatic way to achieve this sort of functionality?
PS: sorry for being a bit verbose..
What is the most idiomatic way to do "recursive List comprehension" in F#?
It's the matter of style. You will encounter high-order functions more often. For certain situations e.g. expressing nested computation or achieving laziness, using sequence expression seems more natural.
To illustrate, your example is written in sequence expression:
let rec recListComprehension f n = seq {
if n > 0 then
let oldList = recListComprehension f (n-1)
yield f oldList
yield! oldList }
recListComprehension fiboGen 200 |> Seq.toList
You have a very readable function with both laziness and tail-recursiveness which you can't easily achieve by using Seq.unfold.
Similarly, nested computation of cartesian product is more readable to use sequence expression / list comprehension:
let cartesian xs ys =
[ for x in xs do
for y in ys do
yield (x, y) ]
than to use high-order functions:
let cartesian xs ys =
List.collect (fun x -> List.map (fun y -> (x, y)) ys) xs
I once asked about differences between list comprehension and high-order functions which might be of your interest.
You're basically folding over the numeric range. So it could be written:
let listComp f n = List.fold (fun xs _ -> f xs :: xs) [] [1 .. n]
This has the added benefit of gracefully handling negative values of n.
You could do a Seq.unfold and then do Seq.toList.
See the example from here:
let seq1 = Seq.unfold (fun state -> if (state > 20) then None else Some(state, state + 1)) 0
printfn "The sequence seq1 contains numbers from 0 to 20."
for x in seq1 do printf "%d " x
let fib = Seq.unfold (fun state ->
if (snd state > 1000) then None
else Some(fst state + snd state, (snd state, fst state + snd state))) (1,1)
printfn "\nThe sequence fib contains Fibonacci numbers."
for x in fib do printf "%d " x

Calculating permutations in F#

Inspired by this question and answer, how do I create a generic permutations algorithm in F#? Google doesn't give any useful answers to this.
EDIT: I provide my best answer below, but I suspect that Tomas's is better (certainly shorter!)
you can also write something like this:
let rec permutations list taken =
seq { if Set.count taken = List.length list then yield [] else
for l in list do
if not (Set.contains l taken) then
for perm in permutations list (Set.add l taken) do
yield l::perm }
The 'list' argument contains all the numbers that you want to permute and 'taken' is a set that contains numbers already used. The function returns empty list when all numbers all taken.
Otherwise, it iterates over all numbers that are still available, gets all possible permutations of the remaining numbers (recursively using 'permutations') and appends the current number to each of them before returning (l::perm).
To run this, you'll give it an empty set, because no numbers are used at the beginning:
permutations [1;2;3] Set.empty;;
I like this implementation (but can't remember the source of it):
let rec insertions x = function
| [] -> [[x]]
| (y :: ys) as l -> (x::l)::(List.map (fun x -> y::x) (insertions x ys))
let rec permutations = function
| [] -> seq [ [] ]
| x :: xs -> Seq.concat (Seq.map (insertions x) (permutations xs))
Tomas' solution is quite elegant: it's short, purely functional, and lazy. I think it may even be tail-recursive. Also, it produces permutations lexicographically. However, we can improve performance two-fold using an imperative solution internally while still exposing a functional interface externally.
The function permutations takes a generic sequence e as well as a generic comparison function f : ('a -> 'a -> int) and lazily yields immutable permutations lexicographically. The comparison functional allows us to generate permutations of elements which are not necessarily comparable as well as easily specify reverse or custom orderings.
The inner function permute is the imperative implementation of the algorithm described here. The conversion function let comparer f = { new System.Collections.Generic.IComparer<'a> with member self.Compare(x,y) = f x y } allows us to use the System.Array.Sort overload which does in-place sub-range custom sorts using an IComparer.
let permutations f e =
///Advances (mutating) perm to the next lexical permutation.
let permute (perm:'a[]) (f: 'a->'a->int) (comparer:System.Collections.Generic.IComparer<'a>) : bool =
try
//Find the longest "tail" that is ordered in decreasing order ((s+1)..perm.Length-1).
//will throw an index out of bounds exception if perm is the last permuation,
//but will not corrupt perm.
let rec find i =
if (f perm.[i] perm.[i-1]) >= 0 then i-1
else find (i-1)
let s = find (perm.Length-1)
let s' = perm.[s]
//Change the number just before the tail (s') to the smallest number bigger than it in the tail (perm.[t]).
let rec find i imin =
if i = perm.Length then imin
elif (f perm.[i] s') > 0 && (f perm.[i] perm.[imin]) < 0 then find (i+1) i
else find (i+1) imin
let t = find (s+1) (s+1)
perm.[s] <- perm.[t]
perm.[t] <- s'
//Sort the tail in increasing order.
System.Array.Sort(perm, s+1, perm.Length - s - 1, comparer)
true
with
| _ -> false
//permuation sequence expression
let c = f |> comparer
let freeze arr = arr |> Array.copy |> Seq.readonly
seq { let e' = Seq.toArray e
yield freeze e'
while permute e' f c do
yield freeze e' }
Now for convenience we have the following where let flip f x y = f y x:
let permutationsAsc e = permutations compare e
let permutationsDesc e = permutations (flip compare) e
My latest best answer
//mini-extension to List for removing 1 element from a list
module List =
let remove n lst = List.filter (fun x -> x <> n) lst
//Node type declared outside permutations function allows us to define a pruning filter
type Node<'a> =
| Branch of ('a * Node<'a> seq)
| Leaf of 'a
let permutations treefilter lst =
//Builds a tree representing all possible permutations
let rec nodeBuilder lst x = //x is the next element to use
match lst with //lst is all the remaining elements to be permuted
| [x] -> seq { yield Leaf(x) } //only x left in list -> we are at a leaf
| h -> //anything else left -> we are at a branch, recurse
let ilst = List.remove x lst //get new list without i, use this to build subnodes of branch
seq { yield Branch(x, Seq.map_concat (nodeBuilder ilst) ilst) }
//converts a tree to a list for each leafpath
let rec pathBuilder pth n = // pth is the accumulated path, n is the current node
match n with
| Leaf(i) -> seq { yield List.rev (i :: pth) } //path list is constructed from root to leaf, so have to reverse it
| Branch(i, nodes) -> Seq.map_concat (pathBuilder (i :: pth)) nodes
let nodes =
lst //using input list
|> Seq.map_concat (nodeBuilder lst) //build permutations tree
|> Seq.choose treefilter //prune tree if necessary
|> Seq.map_concat (pathBuilder []) //convert to seq of path lists
nodes
The permutations function works by constructing an n-ary tree representing all possible permutations of the list of 'things' passed in, then traversing the tree to construct a list of lists. Using 'Seq' dramatically improves performance as it makes everything lazy.
The second parameter of the permutations function allows the caller to define a filter for 'pruning' the tree before generating the paths (see my example below, where I don't want any leading zeros).
Some example usage: Node<'a> is generic, so we can do permutations of 'anything':
let myfilter n = Some(n) //i.e., don't filter
permutations myfilter ['A';'B';'C';'D']
//in this case, I want to 'prune' leading zeros from my list before generating paths
let noLeadingZero n =
match n with
| Branch(0, _) -> None
| n -> Some(n)
//Curry myself an int-list permutations function with no leading zeros
let noLZperm = permutations noLeadingZero
noLZperm [0..9]
(Special thanks to Tomas Petricek, any comments welcome)
If you need distinct permuations (when the original set has duplicates), you can use this:
let rec insertions pre c post =
seq {
if List.length post = 0 then
yield pre # [c]
else
if List.forall (fun x->x<>c) post then
yield pre#[c]#post
yield! insertions (pre#[post.Head]) c post.Tail
}
let rec permutations l =
seq {
if List.length l = 1 then
yield l
else
let subperms = permutations l.Tail
for sub in subperms do
yield! insertions [] l.Head sub
}
This is a straight-forward translation from this C# code. I am open to suggestions for a more functional look-and-feel.
Take a look at this one:
http://fsharpcode.blogspot.com/2010/04/permutations.html
let length = Seq.length
let take = Seq.take
let skip = Seq.skip
let (++) = Seq.append
let concat = Seq.concat
let map = Seq.map
let (|Empty|Cons|) (xs:seq<'a>) : Choice<Unit, 'a * seq<'a>> =
if (Seq.isEmpty xs) then Empty else Cons(Seq.head xs, Seq.skip 1 xs)
let interleave x ys =
seq { for i in [0..length ys] ->
(take i ys) ++ seq [x] ++ (skip i ys) }
let rec permutations xs =
match xs with
| Empty -> seq [seq []]
| Cons(x,xs) -> concat(map (interleave x) (permutations xs))
If you need permutations with repetitions, this is the "by the book" approach using List.indexed instead of element comparison to filter out elements while constructing a permutation.
let permutations s =
let rec perm perms carry rem =
match rem with
| [] -> carry::perms
| l ->
let li = List.indexed l
let permutations =
seq { for ci in li ->
let (i, c) = ci
(perm
perms
(c::carry)
(li |> List.filter (fun (index, _) -> i <> index) |> List.map (fun (_, char) -> char))) }
permutations |> Seq.fold List.append []
perm [] [] s

Resources