Why do we allocate 12 bytes for each variable? - visual-studio

In visual Studio 2010 Professional (x86, Windows 7):
... more
00DC1362 B9 39 00 00 00 mov ecx,39h
00DC1367 B8 CC CC CC CC mov eax,0CCCCCCCCh
00DC136C F3 AB rep stos dword ptr es:[edi]
20: int a = 3;
00DC136E C7 45 F8 03 00 00 00 mov dword ptr [ebp-8],3
21: int b = 10;
00DC1375 C7 45 EC 0A 00 00 00 mov dword ptr [ebp-14h],0Ah
22: int c;
23: c = a + b;
00DC137C 8B 45 F8 mov eax,dword ptr [ebp-8]
00DC137F 03 45 EC add eax,dword ptr [ebp-14h]
00DC1382 89 45 E0 mov dword ptr [ebp-20h],eax
24: return 0;
Notice how the relative addressing variable A and B are not aligned by word size of 4?
What is happening here?
Also, why do we skip $ebp - 8 ?
Turning off the optimization will show the ideal addressing scheme.
Can someone please explain the reason? Thanks.
The offset of each variable is 12 bytes. A -> B -> C
I made a mistake. I meant why do we skip the first 8 bytes.

You are looking at the code generated by the default Debug build setting. Particularly the /RTC option (enable run-time error checks). Filling the stack frame with 0xcccccccc helps diagnose uninitialized variables, the gaps around the variables help diagnose buffer overflow.
There isn't much point in looking at this code, you are not going to ship that. It is purely a Debug build artifact, only there to help you get the bugs out of the code. None of it remains in the Release build.

Related

Ghidra decompile windows is greyed backgound

For some methods, Ghidra's decompiler background window is greyed out and I can't rename the function nor the local variables.
Why?
It works fine for methods with a "white background".
Example:
Matching code
004d49dd cc ?? CCh
004d49de cc ?? CCh
004d49df cc ?? CCh
LAB_004d49e0 XREF[1]: FUN_004d4ac0:004d4b0e(*)
==> 004d49e0 64 8b 0d MOV ECX,dword ptr FS:[0x2c]
2c 00 00 00
004d49e7 a1 bc 39 MOV EAX,[DAT_00d439bc] = ??
d4 00
004d49ec 8b 14 81 MOV EDX,dword ptr [ECX + EAX*0x4]
004d49ef 8b 92 08 MOV EDX,dword ptr [EDX + 0x8]
00 00 00
You can only do rename in a fully defined function. The grey background means that Ghidra didn't properly create a function at this point. You can see this also in a disassembly where you only have a label at this location. If you think this is a function you can type F and define a function. It should enable all the edit options.

Why do I find some never called instructions nopl, nopw after ret or jmp in GCC compiled code? [duplicate]

I've been working with C for a short while and very recently started to get into ASM. When I compile a program:
int main(void)
{
int a = 0;
a += 1;
return 0;
}
The objdump disassembly has the code, but nops after the ret:
...
08048394 <main>:
8048394: 55 push %ebp
8048395: 89 e5 mov %esp,%ebp
8048397: 83 ec 10 sub $0x10,%esp
804839a: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%ebp)
80483a1: 83 45 fc 01 addl $0x1,-0x4(%ebp)
80483a5: b8 00 00 00 00 mov $0x0,%eax
80483aa: c9 leave
80483ab: c3 ret
80483ac: 90 nop
80483ad: 90 nop
80483ae: 90 nop
80483af: 90 nop
...
From what I learned nops do nothing, and since after ret wouldn't even be executed.
My question is: why bother? Couldn't ELF(linux-x86) work with a .text section(+main) of any size?
I'd appreciate any help, just trying to learn.
First of all, gcc doesn't always do this. The padding is controlled by -falign-functions, which is automatically turned on by -O2 and -O3:
-falign-functions
-falign-functions=n
Align the start of functions to the next power-of-two greater than n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next 32-byte boundary, but -falign-functions=24 would align to the next 32-byte boundary only
if this can be done by skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are equivalent and mean that functions will not be aligned.
Some assemblers only support this flag when n is a power of two; in
that case, it is rounded up.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels -O2, -O3.
There could be multiple reasons for doing this, but the main one on x86 is probably this:
Most processors fetch instructions in aligned 16-byte or 32-byte blocks. It can be
advantageous to align critical loop entries and subroutine entries by 16 in order to minimize
the number of 16-byte boundaries in the code. Alternatively, make sure that there is no 16-byte boundary in the first few instructions after a critical loop entry or subroutine entry.
(Quoted from "Optimizing subroutines in assembly
language" by Agner Fog.)
edit: Here is an example that demonstrates the padding:
// align.c
int f(void) { return 0; }
int g(void) { return 0; }
When compiled using gcc 4.4.5 with default settings, I get:
align.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <f>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: b8 00 00 00 00 mov $0x0,%eax
9: c9 leaveq
a: c3 retq
000000000000000b <g>:
b: 55 push %rbp
c: 48 89 e5 mov %rsp,%rbp
f: b8 00 00 00 00 mov $0x0,%eax
14: c9 leaveq
15: c3 retq
Specifying -falign-functions gives:
align.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <f>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: b8 00 00 00 00 mov $0x0,%eax
9: c9 leaveq
a: c3 retq
b: eb 03 jmp 10 <g>
d: 90 nop
e: 90 nop
f: 90 nop
0000000000000010 <g>:
10: 55 push %rbp
11: 48 89 e5 mov %rsp,%rbp
14: b8 00 00 00 00 mov $0x0,%eax
19: c9 leaveq
1a: c3 retq
This is done to align the next function by 8, 16 or 32-byte boundary.
From “Optimizing subroutines in assembly language” by A.Fog:
11.5 Alignment of code
Most microprocessors fetch code in aligned 16-byte or 32-byte blocks. If an importantsubroutine entry or jump label happens to be near the end of a 16-byte block then themicroprocessor will only get a few useful bytes of code when fetching that block of code. Itmay have to fetch the next 16 bytes too before it can decode the first instructions after thelabel. This can be avoided by aligning important subroutine entries and loop entries by 16.
[...]
Aligning a subroutine entry is as simple as putting as many
NOP
's as needed before thesubroutine entry to make the address divisible by 8, 16, 32 or 64, as desired.
As far as I remember, instructions are pipelined in cpu and different cpu blocks (loader, decoder and such) process subsequent instructions. When RET instructions is being executed, few next instructions are already loaded into cpu pipeline. It's a guess, but you can start digging here and if you find out (maybe the specific number of NOPs that are safe, share your findings please.

Is tooling available to 'assemble' WebAssembly to x86-64 native code?

I am guessing that a Wasm binary is usually JIT-compiled to native code, but given a Wasm source, is there a tool to see the actual generated x86-64 machine code?
Or asked in a different way, is there a tool that consumes Wasm and outputs native code?
The online WasmExplorer compiles C code to both WebAssembly and FireFox x86, using the SpiderMonkey compiler. Given the following simple function:
int testFunction(int* input, int length) {
int sum = 0;
for (int i = 0; i < length; ++i) {
sum += input[i];
}
return sum;
}
Here is the x86 output:
wasm-function[0]:
sub rsp, 8 ; 0x000000 48 83 ec 08
cmp esi, 1 ; 0x000004 83 fe 01
jge 0x14 ; 0x000007 0f 8d 07 00 00 00
0x00000d:
xor eax, eax ; 0x00000d 33 c0
jmp 0x26 ; 0x00000f e9 12 00 00 00
0x000014:
xor eax, eax ; 0x000014 33 c0
0x000016: ; 0x000016 from: [0x000024]
mov ecx, dword ptr [r15 + rdi] ; 0x000016 41 8b 0c 3f
add eax, ecx ; 0x00001a 03 c1
add edi, 4 ; 0x00001c 83 c7 04
add esi, -1 ; 0x00001f 83 c6 ff
test esi, esi ; 0x000022 85 f6
jne 0x16 ; 0x000024 75 f0
0x000026:
nop ; 0x000026 66 90
add rsp, 8 ; 0x000028 48 83 c4 08
ret
You can view this example online.
WasmExplorer compiles code into wasm / x86 via a service - you can see the scripts that are run on Github - you should be able to use these to construct a command-line tool yourself.

Why does loop alignment on 32 byte make code faster?

Look at this code:
one.cpp:
bool test(int a, int b, int c, int d);
int main() {
volatile int va = 1;
volatile int vb = 2;
volatile int vc = 3;
volatile int vd = 4;
int a = va;
int b = vb;
int c = vc;
int d = vd;
int s = 0;
__asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop");
__asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop");
__asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop");
__asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop");
for (int i=0; i<2000000000; i++) {
s += test(a, b, c, d);
}
return s;
}
two.cpp:
bool test(int a, int b, int c, int d) {
// return a == d || b == d || c == d;
return false;
}
There are 16 nops in one.cpp. You can comment/decomment them to change alignment of the loop's entry point between 16 and 32. I've compiled them with g++ one.cpp two.cpp -O3 -mtune=native.
Here are my questions:
the 32-aligned version is faster than the 16-aligned version. On Sandy Bridge, the difference is 20%; on Haswell, 8%. Why is the difference?
with the 32-aligned version, the code runs the same speed on Sandy Bridge, doesn't matter which return statement is in two.cpp. I thought the return false version should be faster at least a little bit. But no, exactly the same speed!
If I remove volatiles from one.cpp, code becomes slower (Haswell: before: ~2.17 sec, after: ~2.38 sec). Why is that? But this only happens, when the loop aligned to 32.
The fact that 32-aligned version is faster, is strange to me, because Intel® 64 and IA-32 Architectures
Optimization Reference Manual says (page 3-9):
Assembly/Compiler Coding Rule 12. (M impact, H generality) All branch
targets should be 16- byte aligned.
Another little question: is there any tricks to make only this loop 32-aligned (so rest of the code could keep using 16-byte alignment)?
Note: I've tried compilers gcc 6, gcc 7 and clang 3.9, same results.
Here's the code with volatile (the code is the same for 16/32 aligned, just the address differ):
0000000000000560 <main>:
560: 41 57 push r15
562: 41 56 push r14
564: 41 55 push r13
566: 41 54 push r12
568: 55 push rbp
569: 31 ed xor ebp,ebp
56b: 53 push rbx
56c: bb 00 94 35 77 mov ebx,0x77359400
571: 48 83 ec 18 sub rsp,0x18
575: c7 04 24 01 00 00 00 mov DWORD PTR [rsp],0x1
57c: c7 44 24 04 02 00 00 mov DWORD PTR [rsp+0x4],0x2
583: 00
584: c7 44 24 08 03 00 00 mov DWORD PTR [rsp+0x8],0x3
58b: 00
58c: c7 44 24 0c 04 00 00 mov DWORD PTR [rsp+0xc],0x4
593: 00
594: 44 8b 3c 24 mov r15d,DWORD PTR [rsp]
598: 44 8b 74 24 04 mov r14d,DWORD PTR [rsp+0x4]
59d: 44 8b 6c 24 08 mov r13d,DWORD PTR [rsp+0x8]
5a2: 44 8b 64 24 0c mov r12d,DWORD PTR [rsp+0xc]
5a7: 0f 1f 44 00 00 nop DWORD PTR [rax+rax*1+0x0]
5ac: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]
5b3: 00 00 00
5b6: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]
5bd: 00 00 00
5c0: 44 89 e1 mov ecx,r12d
5c3: 44 89 ea mov edx,r13d
5c6: 44 89 f6 mov esi,r14d
5c9: 44 89 ff mov edi,r15d
5cc: e8 4f 01 00 00 call 720 <test(int, int, int, int)>
5d1: 0f b6 c0 movzx eax,al
5d4: 01 c5 add ebp,eax
5d6: 83 eb 01 sub ebx,0x1
5d9: 75 e5 jne 5c0 <main+0x60>
5db: 48 83 c4 18 add rsp,0x18
5df: 89 e8 mov eax,ebp
5e1: 5b pop rbx
5e2: 5d pop rbp
5e3: 41 5c pop r12
5e5: 41 5d pop r13
5e7: 41 5e pop r14
5e9: 41 5f pop r15
5eb: c3 ret
5ec: 0f 1f 40 00 nop DWORD PTR [rax+0x0]
Without volatile:
0000000000000560 <main>:
560: 55 push rbp
561: 31 ed xor ebp,ebp
563: 53 push rbx
564: bb 00 94 35 77 mov ebx,0x77359400
569: 48 83 ec 08 sub rsp,0x8
56d: 66 0f 1f 84 00 00 00 nop WORD PTR [rax+rax*1+0x0]
574: 00 00
576: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]
57d: 00 00 00
580: b9 04 00 00 00 mov ecx,0x4
585: ba 03 00 00 00 mov edx,0x3
58a: be 02 00 00 00 mov esi,0x2
58f: bf 01 00 00 00 mov edi,0x1
594: e8 47 01 00 00 call 6e0 <test(int, int, int, int)>
599: 0f b6 c0 movzx eax,al
59c: 01 c5 add ebp,eax
59e: 83 eb 01 sub ebx,0x1
5a1: 75 dd jne 580 <main+0x20>
5a3: 48 83 c4 08 add rsp,0x8
5a7: 89 e8 mov eax,ebp
5a9: 5b pop rbx
5aa: 5d pop rbp
5ab: c3 ret
5ac: 0f 1f 40 00 nop DWORD PTR [rax+0x0]
This doesn't answer point 2 (return a == d || b == d || c == d; being the same speed as return false). That's still a maybe-interesting question, since that must compile multiple to uop-cache lines of instructions.
The fact that 32-aligned version is faster, is strange to me, because [Intel's manual says to align to 16]
That optimization-guide advice is a very general guideline, and definitely doesn't mean that larger never helps. Usually it doesn't, and padding to 32 would be more likely to hurt than help. (I-cache misses, ITLB misses, and more code bytes to load from disk).
In fact, 16B alignment is rarely necessary, especially on CPUs with a uop cache. For a small loop that can run from the loop buffer, it alignment is usually totally irrelevant.
(Skylake microcode updates disabled the loop buffer to work around a partial-register AH-merging bug, SKL150. This creates problems for tiny loops that span a 32-byte boundary, only running one iteration per 2 clocks, instead of the one iteration per 1.5 clocks you might get from a 6 uop loop on Haswell, or on SKL with older microcode. The LSD is not re-enabled until Ice Lake, broken in Kaby/Coffee/Comet Lake which are the same microarchitecture as SKL/SKX.)
Another SKL erratum workaround created another worse code-alignment pothole: How can I mitigate the impact of the Intel jcc erratum on gcc?
16B is still not bad as a broad recommendation, but it doesn't tell you everything you need to know to understand one specific case on a couple of specific CPUs.
Compilers usually default to aligning loop branches and function entry-points, but usually don't align other branch targets. The cost of executing a NOP (and code bloat) is often larger than the likely cost of an unaligned non-loop branch target.
Code alignment has some direct and some indirect effects. The direct effects include the uop cache on Intel SnB-family. For example, see Branch alignment for loops involving micro-coded instructions on Intel SnB-family CPUs.
Another section of Intel's optimization manual goes into some detail about how the uop cache works:
2.3.2.2 Decoded ICache:
All micro-ops in a Way (uop cache line) represent instructions which are statically contiguous in the code and have their EIPs within the
same aligned 32-byte region. (I think this means an instruction that
extends past the boundary goes in the uop cache for the block
containing its start, rather than end. Spanning instructions have to
go somewhere, and the branch target address that would run the
instruction is the start of the insn, so it's most useful to put it in
a line for that block).
A multi micro-op instruction cannot be split across Ways.
An instruction which turns on the MSROM consumes an entire Way.
Up to two branches are allowed per Way.
A pair of macro-fused instructions is kept as one micro-op.
See also Agner Fog's microarch guide. He adds:
An unconditional jump or call always ends a μop cache line
lots of other stuff that that probably isn't relevant here.
Also, that if your code doesn't fit in the uop cache, it can't run from the loop buffer.
The indirect effects of alignment include:
larger/smaller code-size (L1I cache misses, TLB). Not relevant for your test
which branches alias each other in the BTB (Branch Target Buffer).
If I remove volatiles from one.cpp, code becomes slower. Why is that?
The larger instructions push the last instruction into the loop across a 32B boundary:
59e: 83 eb 01 sub ebx,0x1
5a1: 75 dd jne 580 <main+0x20>
So if you aren't running from the loop buffer (LSD), then without volatile one of the uop-cache fetch cycles gets only 1 uop.
If sub/jne macro-fuses, this might not apply. And I think only crossing a 64B boundary would break macro-fusion.
Also, those aren't real addresses. Have you checked what the addresses are after linking? There could be a 64B boundary there after linking, if the text section has less than 64B alignment.
Also related to 32-byte boundaries, the JCC erratum disables the uop cache for blocks where a branch (including macro-fused ALU+JCC) includes the last byte of the line, on Skylake CPUs.
How can I mitigate the impact of the Intel jcc erratum on gcc?
Sorry I haven't actually tested this to say more about this specific case. The point is, when you bottleneck on the front-end from stuff like having a call/ret inside a tight loop, alignment becomes important and can get is extremely complex. Boundary-crossing or not for all future instructions is affected. Do not expect it to be simple. If you've read my other answers, you'll know I'm not usually the kind of person to say "it's too complicated to fully explain", but alignment can be that way.
See also Code alignment in one object file is affecting the performance of a function in another object file
In your case, make sure tiny functions inline. Use link-time optimization if your code-base has any important tiny functions in separate .c files instead of in a .h where they can inline. Or change your code to put them in a .h.

_InterlockedIncrement intrinsic implementation

Visual Studio produces the following machine code when _InterlockedIncrement is used:
; 40 : _InterlockedIncrement(&framecounter);
00078 b8 00 00 00 00 mov eax, OFFSET ?framecounter##3JA ; framecounter
0007d b9 01 00 00 00 mov ecx, 1
00082 f0 0f c1 08 lock xadd DWORD PTR [eax], ecx
If I would be writing this i would use just lock inc DWORD PTR [eax] instead of mov and xadd
Is there a valid reason why Microsoft preferred xadd and using 2 instructions instead of 1?
Because _InterlockedIncrement also returns the new value.
You can't do that with lock inc DWORD PTR [eax], because now neither the old nor the new value are anywhere to be found. Except in memory, but if you do an other read, clearly it won't be atomic (the increment itself would be, but you could get a value back that has nothing to do with what happened at the time of the increment).
Returning the value makes _InterlockedIncrement more useful.

Resources