Concurrent routines in Go - go

I want to write three concurrent routines that sends integer to each other. Now, I have implemented two concurrent routines which sends integers to each other.
package main
import "rand"
func Routine1(commands chan int, responses chan int) {
for i := 0; i < 10; i++ {
i := rand.Intn(100)
commands <- i
print(<-responses, " 1st\n");
}
close(commands)
}
func Routine2(commands chan int, responses chan int) {
for i := 0; i < 1000; i++ {
x, open := <-commands
if !open {
return;
}
print(x , " 2nd\n");
y := rand.Intn(100)
responses <- y
}
}
func main()
{
commands := make(chan int)
responses := make(chan int)
go Routine1(commands, responses)
Routine2(commands, responses)
}
However, when I want to add another routine which wants to send and receive integers to/from the above routines, it gives errors like "throw: all goroutines are asleep - deadlock!". Below is my code:
package main
import "rand"
func Routine1(commands chan int, responses chan int, command chan int, response chan int ) {
for i := 0; i < 10; i++ {
i := rand.Intn(100)
commands <- i
command <- i
print(<-responses, " 12st\n");
print(<-response, " 13st\n");
}
close(commands)
}
func Routine2(commands chan int, responses chan int) {
for i := 0; i < 1000; i++ {
x, open := <-commands
if !open {
return;
}
print(x , " 2nd\n");
y := rand.Intn(100)
responses <- y
}
}
func Routine3(command chan int, response chan int) {
for i := 0; i < 1000; i++ {
x, open := <-command
if !open {
return;
}
print(x , " 3nd\n");
y := rand.Intn(100)
response <- y
}
}
func main() {
commands := make(chan int)
responses := make(chan int)
command := make(chan int)
response := make(chan int)
go Routine1(commands, responses,command, response )
Routine2(commands, responses)
Routine3(command, response)
}
Can anybody help me, where is my mistake ? And can anybody help me, is it possible to create bidirectional channel or is it possible to create a common channel for int, string etc ?

You haven't declared the command and response variables in the main function.
func main() {
commands := make(chan int)
responses := make(chan int)
go Routine1(commands, responses, command, response)
Routine2(commands, responses)
Routine3(command, response)
}

Related

Deadlocks with buffered channels in Go

I am encountering for the below code fatal error: all goroutines are asleep - deadlock!
Am I right in using a buffered channel? I would appreciate it if you can give me pointers. I am unfortunately at the end of my wits.
func main() {
valueChannel := make(chan int, 2)
defer close(valueChannel)
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go doNothing(&wg, valueChannel)
}
for {
v, ok := <- valueChannel
if !ok {
break
}
fmt.Println(v)
}
wg.Wait()
}
func doNothing(wg *sync.WaitGroup, numChan chan int) {
defer wg.Done()
time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond)
numChan <- 12
}
The main goroutine blocks on <- valueChannel after receiving all values. Close the channel to unblock the main goroutine.
func main() {
valueChannel := make(chan int, 2)
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go doNothing(&wg, valueChannel)
}
// Close channel after goroutines complete.
go func() {
wg.Wait()
close(valueChannel)
}()
// Receive values until channel is closed.
// The for / range loop here does the same
// thing as the for loop in the question.
for v := range valueChannel {
fmt.Println(v)
}
}
Run the example on the playground.
The code above works independent of the number of values sent by the goroutines.
If the main() function can determine the number of values sent by the goroutines, then receive that number of values from main():
func main() {
const n = 10
valueChannel := make(chan int, 2)
for i := 0; i < n; i++ {
go doNothing(valueChannel)
}
// Each call to doNothing sends one value. Receive
// one value for each call to doNothing.
for i := 0; i < n; i++ {
fmt.Println(<-valueChannel)
}
}
func doNothing(numChan chan int) {
time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond)
numChan <- 12
}
Run the example on the playground.
The main problem is on the for loop of channel receiving.
The comma ok idiom is slightly different on channels, ok indicates whether the received value was sent on the channel (true) or is a zero value returned because the channel is closed and empty (false).
In this case the channel is waiting a data to be sent and since it's already finished sending the value ten times : Deadlock.
So apart of the design of the code if I just need to do the less change possible here it is:
func main() {
valueChannel := make(chan int, 2)
defer close(valueChannel)
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go doNothing(&wg, valueChannel)
}
for i := 0; i < 10; i++ {
v := <- valueChannel
fmt.Println(v)
}
wg.Wait()
}
func doNothing(wg *sync.WaitGroup, numChan chan int) {
defer wg.Done()
time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond)
numChan <- 12
}

Passing info from channel to channel while altering it in go

I'm new to the go programming language.
I just learned about channels from their website, and tried to create
The following program:
1) I want to create 100,000 channels.
2) when the first channel receives a msg (value) he adds 1 to it
and pass it on to the next channel (by order).
3) when we'll get to the last channel it Will print 100,001.
I have created the channels with a loop, but I find it difficult to find
how to pass and alter the data in a "domino" fashion like I described.
Any solution or reference would be appreciated.
Thanks!
Here is my code:
package main
func addOneAndPass(c1 chan int, c2 chan int) {
c := make(chan int)
c <- 1
val := <- c
}
func main() {
const n = 100000
var channels [n]chan int
for i := 0; i < n; i++ {
channels[i] = make(chan int)
}
}
https://play.golang.org/p/ku-Dretm8EA
package main
import (
"fmt"
)
func add1(in chan int) (chan int) {
i := <-in
out := make(chan int, 1)
out <- (i+1)
return out
}
func main() {
ch := make(chan int, 1)
ch <- 1
for i := 0; i < 100000; i++ {
ch = add1(ch)
}
fmt.Println(<-ch)
}
another solution: https://play.golang.org/p/uWVxSG0xgqU
package main
import (
"fmt"
)
func add1(in, out chan int) {
i := <-in
out <- (i+1)
}
func main() {
start := make(chan int)
var in = start
var ch chan int
for i := 0; i < 100000; i++ {
ch = make(chan int)
go add1(in, ch)
in = ch
}
start <- 1
fmt.Println(<-ch)
}

Getting deadlock as I try to emulate fan in - fan out with factorial calculations

I am trying the fan in - fan out pattern with a factorial problem. But I am getting:
fatal error: all goroutines are asleep - deadlock!
and unable to identify the reason for deadlock.
I am trying to concurrently calculate factorial for 100 numbers using the fan-in fan-out pattern.
package main
import (
"fmt"
)
func main() {
_inChannel := _inListener(generator())
for val := range _inChannel {
fmt.Print(val, " -- ")
}
}
func generator() chan int { // NEED TO CALCULATE FACTORIAL FOR 100 NUMBERS
ch := make(chan int) // CREATE CHANNEL TO INPUT NUMBERS
go func() {
for i := 1; i <= 100; i++ {
ch <- i
}
close(ch) // CLOSE CHANNEL WHEN ALL NUMBERS HAVE BEEN WRITTEM
}()
return ch
}
func _inListener(ch chan int) chan int {
rec := make(chan int) // CHANNEL RECEIVED FROM GENERATOR
go func() {
for num := range ch { // RECEIVE THE INPUT NUMBERS FROM GENERATOR
result := factorial(num) // RESULT IS A NEW CHANNEL CREATED
rec <- <-result // MERGE INTO A SINGLE CHANNEL; rec
close(result)
}
close(rec)
}()
return rec // RETURN THE DEDICATED CHANNEL TO RECEIVE ALL OUTPUTS
}
func factorial(n int) chan int {
ch := make(chan int) // MAKE A NEW CHANNEL TO OUTPUT THE RESULT
// OF FACTORIAL
total := 1
for i := n; i > 0; i-- {
total *= i
}
ch <- total
return ch // RETURN THE CHANNEL HAVING THE FACTORIAL CALCULATED
}
I have put in comments, so that it becomes easier to follow the code.
I'm no expert in channels. I've taking on this to try and get more familiar with go.
Another issue is the int isn't large enough to take all factorials over 20 or so.
As you can see, I added a defer close as well as a logical channel called done in the generator func. The rest of the changes probably aren't needed. With channels you need to make sure something is ready to take off a value on the channel when you put something on a channel. Otherwise deadlock. Also, using
go run -race main.go
helps at least see which line(s) are causing problems.
I hope this helps and isn't removed for being off topic.
I was able to remove the deadlock by doing this:
package main
import (
"fmt"
)
func main() {
_gen := generator()
_inChannel := _inListener(_gen)
for val := range _inChannel {
fmt.Print(val, " -- \n")
}
}
func generator() chan int { // NEED TO CALCULATE FACTORIAL FOR 100 NUMBERS
ch := make(chan int) // CREATE CHANNEL TO INPUT NUMBERS
done := make(chan bool)
go func() {
defer close(ch)
for i := 1; i <= 100; i++ {
ch <- i
}
//close(ch) // CLOSE CHANNEL WHEN ALL NUMBERS HAVE BEEN WRITTEM
done <- true
}()
// this function will pull off the done for each function call above.
go func() {
for i := 1; i < 100; i++ {
<-done
}
}()
return ch
}
func _inListener(ch chan int) chan int {
rec := make(chan int) // CHANNEL RECEIVED FROM GENERATOR
go func() {
for num := range ch { // RECEIVE THE INPUT NUMBERS FROM GENERATOR
result := factorial(num) // RESULT IS A NEW CHANNEL CREATED
rec <- result // MERGE INTO A SINGLE CHANNEL; rec
}
close(rec)
}()
return rec // RETURN THE DEDICATED CHANNEL TO RECEIVE ALL OUTPUTS
}
func factorial(n int) int {
// OF FACTORIAL
total := 1
for i := n; i > 0; i-- {
total *= i
}
return total // RETURN THE CHANNEL HAVING THE FACTORIAL CALCULATED
}

Go: channel many slow API queries into single SQL transaction

I wonder what would be idiomatic way to do as following.
I have N slow API queries, and one database connection, I want to have a buffered channel, where responses will come, and one database transaction which I will use to write data.
I could only come up with semaphore thing as following makeup example:
func myFunc(){
//10 concurrent API calls
sem := make(chan bool, 10)
//A concurrent safe map as buffer
var myMap MyConcurrentMap
for i:=0;i<N;i++{
sem<-true
go func(i int){
defer func(){<-sem}()
resp:=slowAPICall(fmt.Sprintf("http://slow-api.me?%d",i))
myMap.Put(resp)
}(i)
}
for j=0;j<cap(sem);j++{
sem<-true
}
tx,_ := db.Begin()
for data:=range myMap{
tx.Exec("Insert data into database")
}
tx.Commit()
}
I am nearly sure there is simpler, cleaner and more proper solution, but it is seems complicated to grasp for me.
EDIT:
Well, I come with following solution, this way I do not need the buffer map, so once data comes to resp channel the data is printed or can be used to insert into a database, it works, I am still not sure if everything OK, at last there are no race.
package main
import (
"fmt"
"math/rand"
"sync"
"time"
)
//Gloab waitGroup
var wg sync.WaitGroup
func init() {
//just for fun sake, make rand seeded
rand.Seed(time.Now().UnixNano())
}
//Emulate a slow API call
func verySlowAPI(id int) int {
n := rand.Intn(5)
time.Sleep(time.Duration(n) * time.Second)
return n
}
func main() {
//Amount of tasks
N := 100
//Concurrency level
concur := 10
//Channel for tasks
tasks := make(chan int, N)
//Channel for responses
resp := make(chan int, 10)
//10 concurrent groutinezs
wg.Add(concur)
for i := 1; i <= concur; i++ {
go worker(tasks, resp)
}
//Add tasks
for i := 0; i < N; i++ {
tasks <- i
}
//Collect data from goroutiens
for i := 0; i < N; i++ {
fmt.Printf("%d\n", <-resp)
}
//close the tasks channel
close(tasks)
//wait till finish
wg.Wait()
}
func worker(task chan int, resp chan<- int) {
defer wg.Done()
for {
task, ok := <-task
if !ok {
return
}
n := verySlowAPI(task)
resp <- n
}
}
There's no need to use channels for a semaphore, sync.WaitGroup was made for waiting for a set of routines to complete.
If you're using the channel to limit throughput, you're better off with a worker pool, and using the channel to pass jobs to the workers:
type job struct {
i int
}
func myFunc(N int) {
// Adjust as needed for total number of tasks
work := make(chan job, 10)
// res being whatever type slowAPICall returns
results := make(chan res, 10)
resBuff := make([]res, 0, N)
wg := new(sync.WaitGroup)
// 10 concurrent API calls
for i = 0; i < 10; i++ {
wg.Add(1)
go func() {
for j := range work {
resp := slowAPICall(fmt.Sprintf("http://slow-api.me?%d", j.i))
results <- resp
}
wg.Done()
}()
}
go func() {
for r := range results {
resBuff = append(resBuff, r)
}
}
for i = 0; i < N; i++ {
work <- job{i}
}
close(work)
wg.Wait()
close(results)
}
Maybe this will work for you. Now you can get rid of your concurrent map. Here is a code snippet:
func myFunc() {
//10 concurrent API calls
sem := make(chan bool, 10)
respCh := make(chan YOUR_RESP_TYPE, 10)
var responses []YOUR_RESP_TYPE
for i := 0; i < N; i++ {
sem <- true
go func(i int) {
defer func() {
<-sem
}()
resp := slowAPICall(fmt.Sprintf("http://slow-api.me?%d",i))
respCh <- resp
}(i)
}
respCollected := make(chan struct{})
go func() {
for i := 0; i < N; i++ {
responses = append(responses, <-respCh)
}
close(respCollected)
}()
<-respCollected
tx,_ := db.Begin()
for _, data := range responses {
tx.Exec("Insert data into database")
}
tx.Commit()
}
Than we need to use one more goroutine that will collect all responses in some slice or map from a response channel.

Going mutex-less

Alright, Go "experts". How would you write this code in idiomatic Go, aka without a mutex in next?
package main
import (
"fmt"
)
func main() {
done := make(chan int)
x := 0
for i := 0; i < 10; i++ {
go func() {
y := next(&x)
fmt.Println(y)
done <- 0
}()
}
for i := 0; i < 10; i++ {
<-done
}
fmt.Println(x)
}
var mutex = make(chan int, 1)
func next(p *int) int {
mutex <- 0
// critical section BEGIN
x := *p
*p++
// critical section END
<-mutex
return x
}
Assume you can't have two goroutines in the critical section at the same time, or else bad things will happen.
My first guess is to have a separate goroutine to handle the state, but I can't figure out a way to match up inputs / outputs.
You would use an actual sync.Mutex:
var mutex sync.Mutex
func next(p *int) int {
mutex.Lock()
defer mutex.Unlock()
x := *p
*p++
return x
}
Though you would probably also group the next functionality, state and sync.Mutex into a single struct.
Though there's no reason to do so in this case, since a Mutex is better suited for mutual exclusion around a single resource, you can use goroutines and channels to achieve the same effect
http://play.golang.org/p/RR4TQXf2ct
x := 0
var wg sync.WaitGroup
send := make(chan *int)
recv := make(chan int)
go func() {
for i := range send {
x := *i
*i++
recv <- x
}
}()
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
defer wg.Done()
send <- &x
fmt.Println(<-recv)
}()
}
wg.Wait()
fmt.Println(x)
As #favoretti mentioned, sync/atomic is a way to do it.
But, you have to use int32 or int64 rather than int (since int can be different sizes on different platforms).
Here's an example on Playground
package main
import (
"fmt"
"sync/atomic"
)
func main() {
done := make(chan int)
x := int64(0)
for i := 0; i < 10; i++ {
go func() {
y := next(&x)
fmt.Println(y)
done <- 0
}()
}
for i := 0; i < 10; i++ {
<-done
}
fmt.Println(x)
}
func next(p *int64) int64 {
return atomic.AddInt64(p, 1) - 1
}

Resources