Is there an erlang term parser written in ruby? - ruby

We have a logging system, and erlang OTP server is writing logs in erlang term.
We also have Rails interface for internal users, and I want to provide a log analysis for them.
I have tried to find an erlang term parser, not erlang parser, written in ruby. but no luck yet.
erlang terms are simple; atom, tuple, list(including string), binary, and pid/ref
atom is like a symbol
tuple is like a hash
list is like an array
binary/pid/ref are like string
Anyone knows any existing erl-to-ruby parser?

Maybe this isn't quite what you're looking for, but you could check out BERT-RPC. It has serializers, clients, and servers for various languages, including Ruby (they are listed at the bottom of the page).

BERT is new, and it seems overkill to me, and I don't see code out-there for this purpose,
I made my own.
https://github.com/bighostkim/erl_to_ruby

This module from the people at basho seems to be exactly what you need.
https://github.com/basho/erlang_template_helper

Related

How to Work with Ruby Duck Typing

I am learning Ruby and I'm having a major conceptual problem concerning typing. Allow me to detail why I don't understand with paradigm.
Say I am method chaining for concise code as you do in Ruby. I have to precisely know what the return type of each method call in the chain, otherwise I can't know what methods are available on the next link. Do I have to check the method documentation every time?? I'm running into this constantly running tutorial exercises. It seems I'm stuck with a process of reference, infer, run, fail, fix, repeat to get code running rather then knowing precisely what I'm working with during coding. This flies in the face of Ruby's promise of intuitiveness.
Say I am using a third party library, once again I need to know what types are allow to pass on the parameters otherwise I get a failure. I can look at the code but there may or may not be any comments or declaration of what type the method is expecting. I understand you code based on methods are available on an object, not the type. But then I have to be sure whatever I pass as a parameter has all the methods the library is expect, so I still have to do type checking. Do I have to hope and pray everything is documented properly on an interface so I know if I'm expected to give a string, a hash, a class, etc.
If I look at the source of a method I can get a list of methods being called and infer the type expected, but I have to perform analysis.
Ruby and duck typing: design by contract impossible?
The discussions in the preceding stackoverflow question don't really answer anything other than "there are processes you have to follow" and those processes don't seem to be standard, everyone has a different opinion on what process to follow, and the language has zero enforcement. Method Validation? Test-Driven Design? Documented API? Strict Method Naming Conventions? What's the standard and who dictates it? What do I follow? Would these guidelines solve this concern https://stackoverflow.com/questions/616037/ruby-coding-style-guidelines? Is there editors that help?
Conceptually I don't get the advantage either. You need to know what methods are needed for any method called, so regardless you are typing when you code anything. You just aren't informing the language or anyone else explicitly, unless you decide to document it. Then you are stuck doing all type checking at runtime instead of during coding. I've done PHP and Python programming and I don't understand it there either.
What am I missing or not understanding? Please help me understand this paradigm.
This is not a Ruby specific problem, it's the same for all dynamically typed languages.
Usually there are no guidelines for how to document this either (and most of the time not really possible). See for instance map in the ruby documentation
map { |item| block } → new_ary
map → Enumerator
What is item, block and new_ary here and how are they related? There's no way to tell unless you know the implementation or can infer it from the name of the function somehow. Specifying the type is also hard since new_ary depends on what block returns, which in turn depends on the type of item, which could be different for each element in the Array.
A lot of times you also stumble across documentation that says that an argument is of type Object, Which again tells you nothing since everything is an Object.
OCaml has a solution for this, it supports structural typing so a function that needs an object with a property foo that's a String will be inferred to be { foo : String } instead of a concrete type. But OCaml is still statically typed.
Worth noting is that this can be a problem in statically typed lanugages too. Scala has very generic methods on collections which leads to type signatures like ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Array[T], B, That]): That for appending two collections.
So most of the time, you will just have to learn this by heart in dynamically typed languages, and perhaps help improve the documentation of libraries you are using.
And this is why I prefer static typing ;)
Edit One thing that might make sense is to do what Scala also does. It doesn't actually show you that type signature for ++ by default, instead it shows ++[B](that: GenTraversableOnce[B]): Array[B] which is not as generic, but probably covers most of the use cases. So for Ruby's map it could have a monomorphic type signature like Array<a> -> (a -> b) -> Array<b>. It's only correct for the cases where the list only contains values of one type and the block only returns elements of one other type, but it's much easier to understand and gives a good overview of what the function does.
Yes, you seem to misunderstand the concept. It's not a replacement for static type checking. It's just different. For example, if you convert objects to json (for rendering them to client), you don't care about actual type of the object, as long as it has #to_json method. In Java, you'd have to create IJsonable interface. In ruby no overhead is needed.
As for knowing what to pass where and what returns what: memorize this or consult docs each time. We all do that.
Just another day, I've seen rails programmer with 6+ years of experience complain on twitter that he can't memorize order of parameters to alias_method: does new name go first or last?
This flies in the face of Ruby's promise of intuitiveness.
Not really. Maybe it's just badly written library. In core ruby everything is quite intuitive, I dare say.
Statically typed languages with their powerful IDEs have a small advantage here, because they can show you documentation right here, very quickly. This is still accessing documentation, though. Only quicker.
Consider that the design choices of strongly typed languages (C++,Java,C#,et al) enforce strict declarations of type passed to methods, and type returned by methods. This is because these languages were designed to validate that arguments are correct (and since these languages are compiled, this work can be done at compile time). But some questions can only be answered at run time, and C++ for example has the RTTI (Run Time Type Interpreter) to examine and enforce type guarantees. But as the developer, you are guided by syntax, semantics and the compiler to produce code that follows these type constraints.
Ruby gives you flexibility to take dynamic argument types, and return dynamic types. This freedom enables you to write more generic code (read Stepanov on the STL and generic programming), and gives you a rich set of introspection methods (is_a?, instance_of?, respond_to?, kind_of?, is_array?, et al) which you can use dynamically. Ruby enables you to write generic methods, but you can also explicity enforce design by contract, and process failure of contract by means chosen.
Yes, you will need to use care when chaining methods together, but learning Ruby is not just a few new keywords. Ruby supports multiple paradigms; you can write procedural, object oriend, generic, and functional programs. The cycle you are in right now will improve quickly as you learn about Ruby.
Perhaps your concern stems from a bias towards strongly typed languages (C++, Java, C#, et al). Duck typing is a different approach. You think differently. Duck typing means that if an object looks like a , behaves like a , then it is a . Everything (almost) is an Object in Ruby, so everything is polymorphic.
Consider templates (C++ has them, C# has them, Java is getting them, C has macros). You build an algorithm, and then have the compiler generate instances for your chosen types. You aren't doing design by contract with generics, but when you recognize their power, you write less code, and produce more.
Some of your other concerns,
third party libraries (gems) are not as hard to use as you fear
Documented API? See Rdoc and http://www.ruby-doc.org/
Rdoc documentation is (usually) provided for libraries
coding guidelines - look at the source for a couple of simple gems for starters
naming conventions - snake case and camel case are both popular
Suggestion - approach an online tutorial with an open mind, do the tutorial (http://rubymonk.com/learning/books/ is good), and you will have more focused questions.

Screen scraping in clojure

I googled, but I can't find a satisfactory answer. This SO question is related but kinda old as well as the exact opposite of what I am looking for: a way to do screen-scraping using XPath, not CSS selectors.
I've used enlive for some basic screen-scraping but sometimes one needs the power of XPath selectors. So here it is:
Is there any equivalent to Nokogiri or lxml for clojure (java)? What is the state of the "pure java Nokogiri"? Any way to use the library from clojure? Any better alternatives than this hack?
There are a couple of possibilities here.
Several of these require semi-well formed XML to work. If you don't have it, I would pair clj-tagsoup with hiccup to produce the XML (parse with clj-tag-soup, which produces a form that hiccup and write out as XML) and work with that.
First, just use the native JDK capabilities. Assuming the document is well formed enough, try using clj-xpath which provides a wrapper around the native JDK parsing.
If that doesn't suffice, consider taking a more Clojure data structure based route. A simpler path could just use the output of TagSoup and a combination of maps, filters, and nths.
If you need something more advanced, consider using zippers to provide structure around the data, making it easier to manipulate. Use clojure.xml/parse and clojure.zip/xml-zip to produce the zipper, and go from there. An example can be found at http://techbehindtech.com/2010/06/25/parsing-xml-in-clojure/.
Using the native structures is my preferred route for anything complicated, as you can bring the full power of the language to bear.
If you provide a sample of why you need XPath, I can provide some sample code.

Determining the length of sections of code

Is there a tool that parses a Ruby script (MRI/YARV) and gives statistics of how many lines each module/class/method definition is?
Saikuro will do this. It's also included in metric_fu, which makes it easy to run Saikuro and many other code metrics tools.
(Be careful, the saikuro gem is probably not what you want, instead it's Saikuro with a capital "S".)
What do you mean by MRI/YARV? A script doesn't have an implementation associated with it. The tool may be associated with a particular implementation, though.
There may be such a tool in the code metrics section of Ruby Toolbox.

On the use of of Internal`Bag, and any official documentation?

(Mathematica version: 8.0.4)
lst = Names["Internal`*"];
Length[lst]
Pick[lst, StringMatchQ[lst, "*Bag*"]]
gives
293
{"Internal`Bag", "Internal`BagLength", "Internal`BagPart", "Internal`StuffBag"}
The Mathematica guidebook for programming By Michael Trott, page 494 says on the Internal context
"But similar to Experimental` context, no guarantee exists that the behavior and syntax of the functions will still be available in later versions of Mathematica"
Also, here is a mention of Bag functions:
Implementing a Quadtree in Mathematica
But since I've seen number of Mathematica experts here suggest Internal`Bag functions and use them themselves, I am assuming it would be sort of safe to use them in actual code? and if so, I have the following question:
Where can I find a more official description of these functions (the API, etc..) like one finds in documenation center? There is nothing now about them now
??Internal`Bag
Internal`Bag
Attributes[Internal`Bag]={Protected}
If I am to start using them, I find it hard to learn about new functions by just looking at some examples and trial and error to see what they do. I wonder if someone here might have a more complete and self contained document on the use of these, describe the API and such more than what is out there already or a link to such place.
The Internal context is exactly what its name says: Meant for internal use by Wolfram developers.
This means, among other things, the following things hold about anything you might find in there:
You most likely won't be able to find any official documentation on it, as it's not meant to be used by the public.
It's not necessarily as robust about invalid arguments. (Crashing the kernel can easily happen on some of them.)
The API may change without notice.
The function may disappear completely without notice.
Now, in practice some of them may be reasonably stable, but I would strongly advise you to steer away from them. Using undocumented APIs can easily leave you in for a lot of pain and a nasty surprise in the future.

Parsing XML, how is this actually done? [duplicate]

So, just as a fun project, I decided I'd write my own XML parser. No, not to parse a specific document, and no, not using an XML parser library. I mean writing code to parse out any XML document into a usable data structure. Just because I like the challenge. :-)
With that said, so far it's proved to be... interesting. It's not as easy to parse (especially when you start taking into account special characters, CDATA, empty tags, comments, etc.) as it initially looked.
Are there any well documented XML parsing algorithms or explanations anywhere that anyone knows of? It seems like there are well-documented Queue and Stack and BTree and etc. etc. etc. implementations everywhere, but I'm not sure I've ever seen a simple, well-documented XML parser algorithm...
I repeat: I am not looking for a pre-built parser library! I am looking for information on how to create my own pre-built parser library! Do not tell me "use expat" or "use SAX" or whatever. That's not what I'm asking for.
Antlr offers a tutorial on parsing XML. It breaks the process down into phases: lexing, parsing, tree parsing, etc. Looks pretty interesting.
I don't know if it would be "cheating" in your book, but you could try parsing your XML with a ready-built all-purpose language parser like ANTLR. The result would be a list of tokens (if you just use the lexer) or a parse tree (if you include the parser) and you could then re-build the parse tree almost 1:1 into an XML structure.
Maybe. I haven't thought about the ways in which XML might be different from "normal" ANTLR fodder like programming languages, and whether you would be able to define a suitable grammar.
VTD-XML is probably the simplest parsing technique possible...
http://expat.sourceforge.net/
Expat is an XML parser library written in C. It is a stream-oriented parser in which an application registers handlers for things the parser might find in the XML document (like start tags). An introductory article on using Expat is available on xml.com.

Resources