Priority queue random access - algorithm

I have priority queue which sorts elements by some value(lets name it rating). I need to take elements from queue by rating. So i need to implement function queue_get(rating). This function also increases rating which is okay with priority heap.
But problem is that each level of the heap is not ordered by rating. Elements of each level only satisfy the heap property. So I could not surely return N-th element by rating.
Are there any implementations of priority queue with such functionality?
Should I use another data structure?

The simplest solution is to use a binary search tree that is self-balancing, e.g. AVL tree, splay tree or red-black tree. It allows you to access elements by their key in O(log n) time and iterate through the objects in their order in O(log n + k) where k is the number of elements iterated.

A collection class will usually give you some Map which is based on an ordered key, such as java.util.TreeMap or C++ std::map. Using this you can retrieve items in sorted order - you may have to invert the order if the class gives you items in increasing order. If all you want to do is to read the top N items this should be enough for you.
If you want random access to the Nth highest item, this can be done by annotating a tree data structure with the number of items beneath each node, but I am not aware of a widely available class library that gives you this.
Come to think of it, if you just want to retrieve the N highest items in order, you can do this with a priority queue if you are prepared to remove the items as you read them out - and put them back again later if you need to restore the original contents.

Related

Data structure that supports random access by index and key, insertion, deletion in logaritmic time with order maintained

I'm looking for the data structure that stores an ordered list of E = (K, V) elements and supports the following operations in at most O(log(N)) time where N is the number of elements. Memory usage is not a problem.
E get(index) // get element by index
int find(K) // find the index of the element whose K matches
delete(index) // delete element at index, the following elements have their indexes decreased by 1
insert(index, E) // insert element at index, the following elements have their indexes increased by 1
I have considered the following incorrect solutions:
Use array: find, delete, and insert will still O(N)
Use array + map of K to index: delete and insert will still cost O(N) for shifting elements and updating map
Use linked list + map of K to element address: get and find will still cost O(N)
In my imagination, the last solution is the closest, but instead of linked list, a self-balancing tree where each node stores the number of elements on the left of it will make it possible for us to do get in O(log(N)).
However I'm not sure if I'm correct, so I want to ask whether my imagination is correct and whether there is a name for this kind of data structure so I can look for off-the-shelf solution.
The closest data structure i could think of is treaps.
Implicit treap is a simple modification of the regular treap which is a very powerful data structure. In fact, implicit treap can be considered as an array with the following procedures implemented (all in O(logN)O(log⁡N) in the online mode):
Inserting an element in the array in any location
Removal of an arbitrary element
Finding sum, minimum / maximum element etc. on an arbitrary interval
Addition, painting on an arbitrary interval
Reversing elements on an arbitrary interval
Using modification with implicit keys allows you to do all operation except the second one (find the index of the element whose K matches). I'll edit this answer if i come up with a better idea :)

Best sorting algorithm - Partially sorted linked list

Problem- Given a sorted doubly link list and two numbers C and K. You need to decrease the info of node with data K by C and insert the new node formed at its correct position such that the list remains sorted.
I would think of insertion sort for such problem, because, insertion sort at any instance looks like, shown bunch of cards,
that are partially sorted. For insertion sort, number of swaps is equivalent to number of inversions. Number of compares is equivalent to number of exchanges + (N-1).
So, in the given problem(above), if node with data K is decreased by C, then the sorted linked list became partially sorted. Insertion sort is the best fit.
Another point is, amidst selection of sorting algorithm, if sorting logic applied for array representation of data holds best fit, then same sorting logic should holds best fit for linked list representation of same data.
For this problem, Is my thought process correct in choosing insertion sort?
Maybe you mean something else, but insertion sort is not the best algorithm, because you actually don't need to sort anything. If there is only one element with value K then it doesn't make a big difference, but otherwise it does.
So I would suggest the following algorithm O(n), ignoring edge cases for simplicity:
Go forward in the list until the value of the current node is > K - C.
Save this node, all the reduced nodes will be inserted before this one.
Continue to go forward while the value of the current node is < K
While the value of the current node is K, remove node, set value to K - C and insert it before the saved node. This could be optimized further, so that you only do one remove and insert operation of the whole sublist of nodes which had value K.
If these decrease operations can be batched up before the sorted list must be available, then you can simply remove all the decremented nodes from the list. Then, sort them, and perform a two-way merge into the list.
If the list must be maintained in order after each node decrement, then there is little choice but to remove the decremented node and re-insert in order.
Doing this with a linear search for a deck of cards is probably acceptable, unless you're running some monstrous Monte Carlo simulation involving cards, that runs for hours or day, so that optimization counts.
Otherwise the way we would deal with the need to maintain order would be to use an ordered sequence data structure: balanced binary tree (red-black, splay) or a skip list. Take the node out of the structure, adjust value, re-insert: O(log N).

Efficiently storing objects allowing rapid access to highest value (hashmap vs. priority queue)

So I have a set of objects X, and each of them has a value v[x].
How can I store the objects X in a way that allows me to efficiently compute the x with the highest value?
Also I would like to be able to change the value of v[x], and have x automatically fall to the correct place in the data structure.
I thought about using a priority queue for this but my friend told me I should use a hashmap instead. Which confused me because hashmaps are unordered.
You are correct, and your friend is wrong: hash map is not going to work, because it is unordered. Hash map may be useful if you wish to maintain values v externally to your objects x, but then it would need a separate data structure, in addition to the one providing the ordering.
Priority queue with a comparator that compares the value v attached to the object x will provide you with a fast way to get the object with the highest value.
No matter what data structure you are going to use, it would be up to you to update it when the value v[x] changes. Generally, you will need to remove the object from the structure, and then insert it back right away, so that it could be placed at its new position according to its updated value.
You have 2 operations that you wish to support efficiently:
Find maximum
Update value
For #1, a priority queue (i.e. heap) is a good idea, but it doesn't allow you to efficiently do #2 - you'll have to look through the whole queue to find the correct node, then update and move (or delete and reinsert) it - this takes O(n).
To support #2 efficiently, you can use a hash map in addition to a priority queue (perhaps this is what your friend was talking about) - have each object map to the applicable node in the tree, then you can find the correct node in expected O(1) and update it in O(log n).
As an alternative, you can use a (self-balancing) binary search tree. You'll firstly sort on the value, then on a unique member of the object (like a unique ID). This will allow you to find any object in O(log n). #1 can be implemented to take O(1) and #2 will take O(log n) (through delete and reinsert).
Lastly, for completeness, elements in a hash map are unordered - you'll have to look through all the values to find the maximum (i.e. it takes O(n)) (but update can be performed in expected O(1)).
Summary:
Find Max Update
Heap only O(1) O(n)
Heap + HM O(1) O(log n) (expected)
BST O(1) O(log n)
HM only O(n) O(1) (expected)

Deleting a node from the middle of a heap

Deleting a node from the middle of the heap can be done in O(lg n) provided we can find the element in the heap in constant time. Suppose the node of a heap contains id as its field. Now if we provide the id, how can we delete the node in O(lg n) time ?
One solution can be that we can have a address of a location in each node, where we maintain the index of the node in the heap. This array would be ordered by node ids. This requires additional array to be maintained though. Is there any other good method to achieve the same.
PS: I came across this problem while implementing Djikstra's Shortest Path algorithm.
The index (id, node) can be maintained separately in a hashtable which has O(1) lookup complexity (on average). The overall complexity then remains O(log n).
Each data structure is designed with certain operations in mind. From wikipedia about heap operations
The operations commonly performed with a heap are:
create-heap: create an empty heap
find-max or find-min: find the maximum item of a max-heap or a minimum item of a min-heap, respectively
delete-max or delete-min: removing the root node of a max- or min-heap, respectively
increase-key or decrease-key: updating a key within a max- or min-heap, respectively
insert: adding a new key to the heap
merge joining two heaps to form a valid new heap containing all the elements of both.
This means, heap is not the best data structure for the operation you are looking for. I would advice you to look for a better suited data structure(depending on your requirements)..
I've had a similar problem and here's what I've come up with:
Solution 1: if your calls to delete some random item will have a pointer to item, you can store your individual data items outside of the heap; have the heap be of pointers to these items; and have each item contain its current heap array index.
Example: the heap contains pointers to items with keys [2 10 5 11 12 6]. The item holding value 10 has a field called ArrayIndex = 1 (counting from 0). So if I have a pointer to item 10 and want to delete it, I just look at its ArrayIndex and use that in the heap for a normal delete. O(1) to find heap location, then usual O(log n) to delete it via recursive heapify.
Solution 2: If you only have the key field of the item you want to delete, not its address, try this. Switch to a red-black tree, putting your payload data in the actual tree nodes. This is also O( log n ) for insert and delete. It can additionally find an item with a given key in O( log n ), which makes delete-by-key continue to be log n.
Between these, solution 1 will require an overhead of constantly updating ArrayIndex fields with every swap. It also results in a kind of strange one-off data structure that the next code maintainer would need to study and understand. I think solution 2 would be about as fast, and has the advantage that it's a well-understood algo.

What is the fastest way of updating an ordered array of numbers?

I need to calculate a 1d histogram that must be dynamically maintained and looked up frequently. One idea I had involves keeping an ordered array with the data (cause thus I can determine percentiles in O(1), and this suffices for quickly finding a histogram with non-uniform bins with the exactly same amount of points inside each bin).
So, is there a way that is less than O(N) to insert a number into an ordered array while keeping it ordered?
I guess the answer is very well known but I don't know a lot about algorithms (physicists doing numerical calculations rarely do).
In the general case, you could use a more flexible tree-like data structure. This would allow access, insertion and deletion in O(log) time and is also relatively easy to get ready-made from a library (ex.: C++'s STL map).
(Or a hash map...)
An ordered array with binary search does the same things as a tree, but is more rigid. It might probably be faster for acess and memory use but you will pay when having to insert or delete things in the middle (O(n) cost).
Note, however, that an ordered array might be enough for you: if your data points are often the same, you can mantain a list of pairs {key, count}, ordered by key, being able to quickly add another instance of an existing item (but still having to do more work to add a new item)
You could use binary search. This is O(log(n)).
If you like to insert number x, then take the number in the middle of your array and compare it to x. if x is smaller then then take the number in the middle of the first half else the number in the middle of the second half and so on.
You can perform insertions in O(1) time if you rearrange your array as a bunch of linked-lists hanging off of each element:
keys = Array([0][1][2][3][4]......)
a c b e f . .
d g i . . .
h j .
|__|__|__|__|__|__|__/linked lists
There's also the strategy of keeping two datastructures at the same time, if your update workload supports it without increasing time-complexity of common operations.
So, is there a way that is less than O(N) to insert a number into an
ordered array while keeping it ordered?
Yes, you can use an array to implement a binary search tree using arrays and do the insertion in O(log n) time. How?
Keep index 0 empty; index 1 = root; if node is the left child of parent node, index of node = 2 * index of parent node; if node is the right child of parent node, index of node = 2 * index of parent node + 1.
Insertion will thus be O(log n). Unfortunately, you might notice that the binary search tree for an ordered list might degenerate to a linear search if you don't balance the tree i.e. O(n), which is pointless. Here, you may have to implement a red black tree to keep the height balanced. However, this is quite complicated, BUT insertion can be done with arrays in O(log n). Note that the array elements will no longer be ints; instead, they'll have to be objects with a colour attribute.
I wouldn't recommend it.
Any particular reason this demands an array? You need an data structure which keeps data ordered and allows you to insert quickly. Why not a binary search tree? Or better still, a red black tree. In C++, you could use the Set structure in the Standard template library which is implemented as a red black tree. Gives you O(log(n)) insertion time and the ability to iterate over it like an array.

Resources