How to pixelate a set of lines into a matrix - algorithm

It looks a very simple question.
There are many lines available as their two endpoints.
The question is how to discretize them into a matrix. Then the matrix can be used for image processing purposes.
At the following figure example lines (yellow) and their corresponding pixelated demonstrations are shown.
A piece of code in any language would be of great help and strongly recommended and of course is in advance appreciated.
Note that performance and accuracy are very important factors.
Also as demonstrated each point of line must have only one pixel (i.e., element of matrix) associated.

The easiest way is to use Bresenham's algorithm.

Related

Recognize recurring images into a larger one

Edit: this is not a duplicate of Determine if an image exists within a larger image, and if so, find it, using Python since I do not know the pattern beforehand
Suppose I have a big image (usually a picture taken with a camera so it might be a bit noisy, but let's assume it's not for now) made up of multiple smaller images all equal among themselves, something like
I need to find the contour of each one of those. The first step is recognizing that there's a recurring image (or unknown pattern) in the 2D image. How can I achieve this first step?
I did read around that I might use a FFT of the original image and search for duplicate frequencies, would that be a feasible approach?
To build a bit on the problem: I do not know the image beforehand, nor its size or how many will there be on the big image. The images can be shot from camera so they might be noisy. The images won't overlap.
You can try to use described keypoints (Sift/SURF/ORB/etc.) to find features in the image and try to detect the same features in the image.
You can see such a result in How to find euclidean distance between keypoints of a single image in opencv where 3x the same image is present and features are detected and linked between those subimages automatically.
In your image the result looks like
so you can see that the different occurances of the same pattern is indeed automatically detected and linked.
Next steps would be to group features to objects, so that the "whole" pattern can be extracted. Once you have a candidate for a pattern, you can extract a homography for each occurance of the pattern (with one reference candidate pattern) to verify that it is a pattern. One open problem is how to find such candidates. Maybe it is worth trying to find "parallel features", so keypoint matches that have parallel lines and/or same length lines (see image). Or maybe there is some graph theory approach.
All in all, this whole approach will have some advantages and disadvantes:
Advantages:
real world applicability - Sift and other keypoints are working quite well even with noise and some perspective effects, so chances are increased to find such patterns.
Disadvantages
slow
parametric (define what it means that two features are successfully
matched)
not suitable for all kind of patterns - your pattern must have some extractable keypoints
Those are some thoughts and probably not complete ;)
Unfortunately no full code yet for your concrete task, but I hope the idea is clear.
For such a clean image, it suffices to segment the patterns by blob analysis and to compare the segments or ROI that contain them. The size is a first matching criterion. The SAD, SSD or correlation similarity scores can do finer comparison.
In practice you will face more difficulties such as
not possible to segment the patterns
geometric variations in size/orientation
partial occlusion
...
Handling these is out of the scope of this answer; it makes things much harder than in the "toy" case.
The goal is to find several equal or very similar patterns which are not known before in a picture. As it is this problem is still a bit ill posed.
Are the patterns exactly equal or only similar (added noise maybe)?
Do you want to have the largest possible patterns or are smaller subpatterns okay too or are all possible patterns needed? Reason is that of course each pattern could consist of equal patterns too.
Is the background always that simple (completely white) or can it be much more difficult? What do we know about it?
Are the patterns always equally oriented, equally scaled, non-overlapping?
For the simple case of non-overlapping patterns with simple background, the answer of Yves Daoust using segmentation is well performing but fails if patterns are very close or overlapping.
For other cases the idea of the keypoints by Micka will help but might not perform well if there is noise or might be slow.
I have one alternative: look at correlations of subblocks of the image.
In pseudocode:
Divide the image in overlapping areas of size MxN for a suitable M,N (pixel width and height chosen to be approximately the size of the desired pattern)
Correlate each subblock with the whole image. Look for local maxima in the correlation. The position of these maxima denotes the position of similar regions.
Choose a global threshold on all correlations (smartly somehow) and find sets of equal patterns.
Determine the fine structure of these patterns by shanging the shape from rectangular (bounding box) to a more sophisticaed shape (maybe by looking at the shape of the peaks in the correlation)
In case the approximate size of the desired patterns is not known before, try with large values of M, N and go down to smaller ones.
To speed up the whole process start on a coarse scale (downscaled version of the image) and then process finer scales only where needed. Needs balancing of zooming in and performing correlations.
Sorry, I cannot make this a full Matlab project right now, but I hope this helps you.

Matching photographed image with screenshot (or generated image based on data model)

first of all, I have to say I'm new to the field of computervision and I'm currently facing a problem, I tried to solve with opencv (Java Wrapper) without success.
Basicly I have a picture of a part from a Model taken by a camera (different angles, resoultions, rotations...) and I need to find the position of that part in the model.
Example Picture:
Model Picture:
So one question is: Where should I start/which algorithm should I use?
My first try was to use KeyPoint Matching with SURF as Detector, Descriptor and BF as Matcher.
It worked for about 2 pcitures out of 10. I used the default parameters and tried other detectors, without any improvements. (Maybe it's a question of the right parameters. But how to find out the right parameteres combined with the right algorithm?...)
Two examples:
My second try was to use the color to differentiate the certain elements in the model and to compare the structure with the model itself (In addition to the picture of the model I also have and xml representation of the model..).
Right now I extraxted the color red out of the image, adjusted h,s,v values manually to get the best detection for about 4 pictures, which fails for other pictures.
Two examples:
I also tried to use edge detection (canny, gray, with histogramm Equalization) to detect geometric structures. For some results I could imagine, that it will work, but using the same canny parameters for other pictures "fails". Two examples:
As I said I'm not familiar with computervision and just tried out some algorithms. I'm facing the problem, that I don't know which combination of algorithms and techniques is the best and in addition to that which parameters should I use. Testing it manually seems to be impossible.
Thanks in advance
gemorra
Your initial idea of using SURF features was actually very good, just try to understand how the parameters for this algorithm work and you should be able to register your images. A good starting point for your parameters would be varying only the Hessian treshold, and being fearles while doing so: your features are quite well defined, so try to use tresholds around 2000 and above (increasing in steps of 500-1000 till you get good results is totally ok).
Alternatively you can try to detect your ellipses and calculate an affine warp that normalizes them and run a cross-correlation to register them. This alternative does imply much more work, but is quite fascinating. Some ideas on that normalization using the covariance matrix and its choletsky decomposition here.

Recognizing distortions in a regular grid

To give you some background as to what I'm doing: I'm trying to quantitatively record variations in flow of a compressible fluid via image analysis. One way to do this is to exploit the fact that the index of refraction of the fluid is directly related to its density. If you set up some kind of image behind the flow, the distortion in the image due to refractive index changes throughout the fluid field leads you to a density gradient, which helps to characterize the flow pattern.
I have a set of routines that do this successfully with a regular 2D pattern of dots. The dot pattern is slightly distorted, and by comparing the position of the dots in the distorted image with that in the non-distorted image, I get a displacement field, which is exactly what I need. The problem with this method is resolution. The resolution is limited to the number of dots in the field, and I'm exploring methods that give me more data.
One idea I've had is to use a regular grid of horizontal and vertical lines. This image will distort the same way, but instead of getting only the displacement of a dot, I'll have the continuous distortion of a grid. It seems like there must be some standard algorithm or procedure to compare one geometric grid to another and infer some kind of displacement field. Nonetheless, I haven't found anything like this in my research.
Does anyone have some ideas that might point me in the right direction? FYI, I am not a computer scientist -- I'm an engineer. I say that only because there may be some obvious approach I'm neglecting due to coming from a different field. But I can program. I'm using MATLAB, but I can read Python, C/C++, etc.
Here are examples of the type of images I'm working with:
Regular: Distorted:
--------
I think you are looking for the Digital Image Correlation algorithm.
Here you can see a demo.
Here is a Matlab Implementation.
From Wikipedia:
Digital Image Correlation and Tracking (DIC/DDIT) is an optical method that employs tracking & image registration techniques for accurate 2D and 3D measurements of changes in images. This is often used to measure deformation (engineering), displacement, and strain, but it is widely applied in many areas of science and engineering.
Edit
Here I applied the DIC algorithm to your distorted image using Mathematica, showing the relative displacements.
Edit
You may also easily identify the maximum displacement zone:
Edit
After some work (quite a bit, frankly) you can come up to something like this, representing the "displacement field", showing clearly that you are dealing with a vortex:
(Darker and bigger arrows means more displacement (velocity))
Post me a comment if you are interested in the Mathematica code for this one. I think my code is not going to help anybody else, so I omit posting it.
I would also suggest a line tracking algorithm would work well.
Simply start at the first pixel line of the image and start following each of the vertical lines downwards (You just need to start this at the first line to get the starting points. This can be done by a simple pattern that moves orthogonally to the gradient of that line, ergo follows a line. When you reach a crossing of a horizontal line you can measure that point (in x,y coordinates) and compare it to the corresponding crossing point in your distorted image.
Since your grid is regular you know that the n'th measured crossing point on the m'th vertical black line are corresponding in both images. Then you simply compare both points by computing their distance. Do this for each line on your grid and you will get, by how far each crossing point of the grid is distorted.
This following a line algorithm is also used in basic Edge linking algorithms or the Canny Edge detector.
(All this are just theoretic ideas and I cannot provide you with an algorithm to it. But I guess it should work easily on distorted images like you have there... but maybe it is helpful for you)

Fastest method to search for a specified item on an image?

Imagine we have a simple 2D drawing, filled it with lots of non-overlapping circles and only a few stars.
If we are to find all the stars among all these circles, I can think of very few methods. Brute force is one of them. Another one is possibly reduce the image size (to the optimal point where you can still distinguish the objects apart) and then apply brute force and map to the original image. The drawback of brute force is of course, it is very time consuming. I am looking for faster methods, possibly the fastest one.
What is the fastest image processing method to search for the specified item on a simple 2D image?
One typical way of looking for an object in an image is through cross correlation. Basically, you look for the position where the cross-correlation between a mask (the object you're attempting to find) and the image is the highest. That position is the likely location of the object you're trying to find.
For the sake of simplicity, I will refer to the object you're attempting to find as a star, but in general it can be any shape.
Some problems with the above approach:
The size of the mask has to match the size of the star. If you don't know the size of the star, then you will have to try different size masks. Image pyramids are more effective than just iteratively trying different size masks, but still require extra effort.
Similarly, the orientations of the mask and the star have to match. If they don't, the cross-correlation won't work.
For these reasons, the more you know about your problem, the simpler it becomes. This is the reason why people have asked you for more information in the comments. A general purpose solution doesn't really exist, to the best of my knowledge. Maybe someone more knowledgeable can correct me on this.
As you've mentioned, reducing the size of the image will help you reduce the computational time of your approach. In my opinion, it's hardly the core element of a solution -- it's just an optional optimization step.
If the shapes are easy to segment from the background, you might be able to compute distinguishing shape/color descriptors. Depending on your problem you could choose descriptors that are invariant to scale, translation or rotation (e.g. compactness, if it is unique to each shape). I do not know if this will be faster, though.
If you already know the exact shape and have an idea about the size, you might want to have a look at the Generalized Hough Transform, which is basically a formalized description of your "brute force algorithm"
As you list a property that the shapes are not overlapping then I assume an efficient algorithm would be able to
cut out all the shapes by scanning the image in some way (I can imagine relatively efficient and simple algorithm for convex shapes)
when you are left with cut out shapes you could use cross relation misha mentioned
You should describe the problem a bit better
can the shapes be rotated or scaled (or some other transform?)
is the background uniform colour
are the shapes uniform colour
are the shapes filled
Depending on the answer on the above questions you might have more less or more simple solutions.
Also, maybe this article might be interesting.
If the shapes are very regular maybe turning them into vectors could fit your needs nicely, but it might be an overkill, really depends what you want to do later.
Step 1: Thresholding - reduce the image to 1 bit (black or white) if the general image set permits it. [For the type of example you cite, my guess is thresholding would work nicely - leaving enough details to find objects].
Step 2: Optionally do some smoothing/noise removal.
Step 3: Use some clustering approach to gather the foreground objects.
Step 4: Use an appropriate heuristic to identify the objects.
The parameters in steps 1/2 will depend a lot on the type of images as well as experimentation/observation. 3 is usually straightforward if you have worked out 1/2 correctly. 4 will depend very much on the problem (for example, in your case identifying stars - which would depend on what is the actual shape of the stars expected in the images).

What is currently considered the "best" algorithm for 2D point-matching?

I have two lists containing x-y coordinates (of stars). I could also have magnitudes (brightnesses) attached to each star. Now each star has random position jiggles and there can be a few extra or missing points in each image. My question is, "What is the best 2D point matching algorithm for such a dataset?" I guess both for a simple linear (translation, rotation, scale) and non-linear (say, n-degree polynomials in the coordinates). In the lingo of the point matching field, I'm looking for the algorithms that would win in a shootout between 2D point matching programs with noise and spurious points. There may be a different "winners" depending if the labeling info is used (the magnitudes) and/or the transformation is restricted to being linear.
I am aware that there are many classes of 2D point matching algorithms and many algorithms in each class (literally probably hundreds in total) but I don't know which, if any, is the consider the "best" or the "most standard" by people in the field of computer vision. Sadly, many of the articles to papers I want to read don't have online versions and I can only read the abstract. Before I settle on a particular algorithm to implement it would be good to hear from a few experts to separate the wheat from the chaff.
I have a working matching program that uses triangles but it fails somewhat frequently (~5% of the time) such that the solution transformation has obvious distortions but for no obvious reason. This program was not written by me and is from a paper written almost 20 years ago. I want to write a new implementation that performs most robustly. I am assuming (hoping) that there have been some advances in this area that make this plausible.
If you're interested in star matching, check out the Astrometry.net blind astrometry solver and the paper on it here. They use four point quads to solve star configurations in Flickr pictures of the night sky. Check out this interview.
There is no single "best" algorithm for this. There are lots of different techniques, and each work better than others on specific datasets and types of data.
One thing I'd recommend is to read this introduction to image registration from the tutorials of the Insight Toolkit. ITK supports MANY types of image registration (which is what it sounds like you are attempting), and is very robust in many cases. Most of their users are in the medical field, so you'll have to wade through a lot of medical jargon, but the algorithms and code work with any type of image (including 1,2,3, and n dimensional images, of different types,etc).
You can consider applying your algorithm first only on the N brightest stars, then include progressively the others to refine the result, reducing the search range at the same time.
Using RANSAC for robustness to extra points is also very common.
I'm not sure it would work, but worth a try:
For each star do the circle time ray Fourier transform - centered around it - of all the other stars (note: this is not the standard Fourier transform, which is line times line).
The phase space of circle times ray is integers times line, but since we only have finite accuracy, you just get a matrix; the dimensions of the matrix depend on accuracy. Now try to pair the matrices to one another (e.g. using L_2 norm)
I saw a program on tv a while ago about how researchers were taking pictures of whales and using the spots on them (which are unique for each whale) to id each whale. It used the angles between the spots. By using the angles it didn't matter if the image was rotated or scaled or translated. That sounds similar to what you're doing with your triangles.
I think the "best" (most technical) way would to be to take the Fourier Transform of the original image and of the new linearly modified image. By doing some simple filtering, it should be easy to figure out the orientation and scale of your image with respect to the old one. There is a description of the 2d Fourier Transform here.

Resources