Related
I have an android application which is getting gesture coordinates (3 axis - x,y,z) from an external source. I need to compare them with coordinates which I have in my DB and determine whether gesture is the same/similar or not.
I also need to add some tolerance, since accelerometer (device which captures gestures) is very sensitive. It would be easy, but I also want to consider e.g. "big circle" drawn in the air, same as "small circle" drawn in the air. meaning that there would be different values, but structure of the graph would be the same, right?
I did some research and I found out I could use Dynamic time wraping possibly in combination with Hidden Markov model.
I tried to do some further reading on it, but I didn't find much. I just found a Java library called FastDTW but can't figure out which methods are the right ones for my problem.
Would you please provide me any lead on this?
See these images, they are the same gesture but one is done in a slower motion than another.
Faster one:
Slower one:
I haven't captured images of the same gesture where one would be smaller than another, might add that later.
I have a web cam that takes a picture every N seconds. This gives me a collection of images of the same scene over time. I want to process that collection of images as they are created to identify events like someone entering into the frame, or something else large happening. I will be comparing images that are adjacent in time and fixed in space - the same scene at different moments of time.
I want a reasonably sophisticated approach. For example, naive approaches fail for outdoor applications. If you count the number of pixels that change, for example, or the percentage of the picture that has a different color or grayscale value, that will give false positive reports every time the sun goes behind a cloud or the wind shakes a tree.
I want to be able to positively detect a truck parking in the scene, for example, while ignoring lighting changes from sun/cloud transitions, etc.
I've done a number of searches, and found a few survey papers (Radke et al, for example) but nothing that actually gives algorithms that I can put into a program I can write.
Use color spectroanalisys, without luminance: when the Sun goes down for a while, you will get similar result, colors does not change (too much).
Don't go for big changes, but quick changes. If the luminance of the image changes -10% during 10 min, it means the usual evening effect. But when the change is -5%, 0, +5% within seconds, its a quick change.
Don't forget to adjust the reference values.
Split the image to smaller regions. Then, when all the regions change same way, you know, it's a global change, like an eclypse or what, but if only one region's parameters are changing, then something happens there.
Use masks to create smart regions. If you're watching a street, filter out the sky, the trees (blown by wind), etc. You may set up different trigger values for different regions. The regions should overlap.
A special case of the region is the line. A line (a narrow region) contains less and more homogeneous pixels than a flat area. Mark, say, a green fence, it's easy to detect wheter someone crosses it, it makes bigger change in the line than in a flat area.
If you can, change the IRL world. Repaint the fence to a strange color to create a color spectrum, which can be identified easier. Paint tags to the floor and wall, which can be OCRed by the program, so you can detect wheter something hides it.
I believe you are looking for Template Matching
Also i would suggest you to look on to Open CV
We had to contend with many of these issues in our interactive installations. It's tough to not get false positives without being able to control some of your environment (sounds like you will have some degree of control). In the end we looked at combining some techniques and we created an open piece of software named OpenTSPS (Open Toolkit for Sensing People in Spaces - http://www.opentsps.com). You can look at the C++ source in github (https://github.com/labatrockwell/openTSPS/).
We use ‘progressive background relearn’ to adjust to the changing background over time. Progressive relearning is particularly useful in variable lighting conditions – e.g. if lighting in a space changes from day to night. This in combination with blob detection works pretty well and the only way we have found to improve is to use 3D cameras like the kinect which cast out IR and measure it.
There are other algorithms that might be relevant, like SURF (http://achuwilson.wordpress.com/2011/08/05/object-detection-using-surf-in-opencv-part-1/ and http://en.wikipedia.org/wiki/SURF) but I don't think it will help in your situation unless you know exactly the type of thing you are looking for in the image.
Sounds like a fun project. Best of luck.
The problem you are trying to solve is very interesting indeed!
I think that you would need to attack it in parts:
As you already pointed out, a sudden change in illumination can be problematic. This is an indicator that you probably need to achieve some sort of illumination-invariant representation of the images you are trying to analyze.
There are plenty of techniques lying around, one I have found very useful for illumination invariance (applied to face recognition) is DoG filtering (Difference of Gaussians)
The idea is that you first convert the image to gray-scale. Then you generate two blurred versions of this image by applying a gaussian filter, one a little bit more blurry than the first one. (you could use a 1.0 sigma and a 2.0 sigma in a gaussian filter respectively) Then you subtract from the less-blury image, the pixel intensities of the more-blurry image. This operation enhances edges and produces a similar image regardless of strong illumination intensity variations. These steps can be very easily performed using OpenCV (as others have stated). This technique has been applied and documented here.
This paper adds an extra step involving contrast equalization, In my experience this is only needed if you want to obtain "visible" images from the DoG operation (pixel values tend to be very low after the DoG filter and are veiwed as black rectangles onscreen), and performing a histogram equalization is an acceptable substitution if you want to be able to see the effect of the DoG filter.
Once you have illumination-invariant images you could focus on the detection part. If your problem can afford having a static camera that can be trained for a certain amount of time, then you could use a strategy similar to alarm motion detectors. Most of them work with an average thermal image - basically they record the average temperature of the "pixels" of a room view, and trigger an alarm when the heat signature varies greatly from one "frame" to the next. Here you wouldn't be working with temperatures, but with average, light-normalized pixel values. This would allow you to build up with time which areas of the image tend to have movement (e.g. the leaves of a tree in a windy environment), and which areas are fairly stable in the image. Then you could trigger an alarm when a large number of pixles already flagged as stable have a strong variation from one frame to the next one.
If you can't afford training your camera view, then I would suggest you take a look at the TLD tracker of Zdenek Kalal. His research is focused on object tracking with a single frame as training. You could probably use the semistatic view of the camera (with no foreign objects present) as a starting point for the tracker and flag a detection when the TLD tracker (a grid of points where local motion flow is estimated using the Lucas-Kanade algorithm) fails to track a large amount of gridpoints from one frame to the next. This scenario would probably allow even a panning camera to work as the algorithm is very resilient to motion disturbances.
Hope this pointers are of some help. Good Luck and enjoy the journey! =D
Use one of the standard measures like Mean Squared Error, for eg. to find out the difference between two consecutive images. If the MSE is beyond a certain threshold, you know that there is some motion.
Also read about Motion Estimation.
if you know that the image will remain reletivly static I would reccomend:
1) look into neural networks. you can use them to learn what defines someone within the image or what is a non-something in the image.
2) look into motion detection algorithms, they are used all over the place.
3) is you camera capable of thermal imaging? if so it may be worthwile to look for hotspots in the images. There may be existing algorithms to turn your webcam into a thermal imager.
I am using a web cam to get video feed and then performing motion tracking on this video feed. The motion tracker returns (x,y) co-ordinates continuously.
I want to use these (x,y) to recognize gestures such as "swipe left", "swipe right", "swipe up" or "swipe down".
How do i make and store templates of these gestures and how do i figure out/recognize if one
of the gestures has happened ?
Thank you in advance :)
PS: I am using Flex 4 and ActionScript 3.0. If someone could help me out with the logic, i can write it in ActionScript.
An approach I could think of working would be to have a series of (X,Y) coordinates representing points along the gesture. On a small scale if a gesture that passed through your screen was graphed as such:
|1|1|1|
|1|0|0|
|1|0|0|
and represented (from the upper left corner representing 0,0):
(0,2)(0,1)(0,0)(0,1)(0,2)
Break the x,y coordinates up into individual 2d arrays with total distance traveled between the current coordinate and the first point (in all cases in this example it would increment by 1) so you would have two arrays:
X:(0,0)(1,1)(2,2)
Y:(0,1)(1,1)(2,2)
Now do a least square fit on each array to find the closest representation of the change in x and change in y as quadratic functions. Do the same to your per-deteremined gestures and then plug in the x,y coordinates of your per-determined gestures into to the user's gesture's quadratic function and the per-determined gestures you designed and see which one it matches the closest. This is your gesture.
(I've never tried processing gestures, but I don't see why this wouldn't work)
You should divide your task into smaller subtasks. In computer vision there is no thing like a generic gesture detection that works out of the box in all environments.
First of all, you need to be able to detect motion at all. There are several ways to do this, e.g. background subtraction or blob tracking.
Then you need to extract certain features from your image, e.g. a hand. Again, there is more than one way to do this. Starting from skin color approximation/evaluation, which is very error prone to different lighting conditions, to more advanced techniques which really try to "analyze" the shape of an object. Those algorithms "learn" over time how a hand should look like.
I can only recommend to buy a decent book about computer vision and to research the web for articles etc. There are also libraries like OpenCV you can use for learning more about the implementation side. There should be several ports of OpenCV to ActionScript 3. I also can recommend the articles and tools from Eugene Zatepyakin (http://blog.inspirit.ru). He's doing great CV stuff with ActionScript 3.
Long story short, you should research motion tracking and feature extraction.
The best place to start is to read about how sign language recognition or trackpad input works, such as creating reference images and comparing them to user input. Specific to Adobe, there's the FLARToolKit, which is detailed in an augmented reality article on their website.
References:
Trackpad Science
Hand Gesture Recognition
Sign Language Recognition Research - PDF
Gesture Recognition Walkthrough - Video
I am hacking a vacuum cleaner robot to control it with a microcontroller (Arduino). I want to make it more efficient when cleaning a room. For now, it just go straight and turn when it hits something.
But I have trouble finding the best algorithm or method to use to know its position in the room. I am looking for an idea that stays cheap (less than $100) and not to complex (one that don't require a PhD thesis in computer vision). I can add some discrete markers in the room if necessary.
Right now, my robot has:
One webcam
Three proximity sensors (around 1 meter range)
Compass (no used for now)
Wi-Fi
Its speed can vary if the battery is full or nearly empty
A netbook Eee PC is embedded on the robot
Do you have any idea for doing this? Does any standard method exist for these kind of problems?
Note: if this question belongs on another website, please move it, I couldn't find a better place than Stack Overflow.
The problem of figuring out a robot's position in its environment is called localization. Computer science researchers have been trying to solve this problem for many years, with limited success. One problem is that you need reasonably good sensory input to figure out where you are, and sensory input from webcams (i.e. computer vision) is far from a solved problem.
If that didn't scare you off: one of the approaches to localization that I find easiest to understand is particle filtering. The idea goes something like this:
You keep track of a bunch of particles, each of which represents one possible location in the environment.
Each particle also has an associated probability that tells you how confident you are that the particle really represents your true location in the environment.
When you start off, all of these particles might be distributed uniformly throughout your environment and be given equal probabilities. Here the robot is gray and the particles are green.
When your robot moves, you move each particle. You might also degrade each particle's probability to represent the uncertainty in how the motors actually move the robot.
When your robot observes something (e.g. a landmark seen with the webcam, a wifi signal, etc.) you can increase the probability of particles that agree with that observation.
You might also want to periodically replace the lowest-probability particles with new particles based on observations.
To decide where the robot actually is, you can either use the particle with the highest probability, the highest-probability cluster, the weighted average of all particles, etc.
If you search around a bit, you'll find plenty of examples: e.g. a video of a robot using particle filtering to determine its location in a small room.
Particle filtering is nice because it's pretty easy to understand. That makes implementing and tweaking it a little less difficult. There are other similar techniques (like Kalman filters) that are arguably more theoretically sound but can be harder to get your head around.
A QR Code poster in each room would not only make an interesting Modern art piece, but would be relatively easy to spot with the camera!
If you can place some markers in the room, using the camera could be an option. If 2 known markers have an angular displacement (left to right) then the camera and the markers lie on a circle whose radius is related to the measured angle between the markers. I don't recall the formula right off, but the arc segment (on that circle) between the markers will be twice the angle you see. If you have the markers at known height and the camera is at a fixed angle of inclination, you can compute the distance to the markers. Either of these methods alone can nail down your position given enough markers. Using both will help do it with fewer markers.
Unfortunately, those methods are imperfect due to measurement errors. You get around this by using a Kalman estimator to incorporate multiple noisy measurements to arrive at a good position estimate - you can then feed in some dead reckoning information (which is also imperfect) to refine it further. This part is goes pretty deep into math, but I'd say it's a requirement to do a great job at what you're attempting. You can do OK without it, but if you want an optimal solution (in terms of best position estimate for given input) there is no better way. If you actually want a career in autonomous robotics, this will play large in your future. (
Once you can determine your position you can cover the room in any pattern you'd like. Keep using the bump sensor to help construct a map of obstacles and then you'll need to devise a way to scan incorporating the obstacles.
Not sure if you've got the math background yet, but here is the book:
http://books.google.com/books/about/Applied_optimal_estimation.html?id=KlFrn8lpPP0C
This doesn't replace the accepted answer (which is great, thanks!) but I might recommend getting a Kinect and use that instead of your webcam, either through Microsoft's recently released official drivers or using the hacked drivers if your EeePC doesn't have Windows 7 (presumably it does not).
That way the positioning will be improved by the 3D vision. Observing landmarks will now tell you how far away the landmark is, and not just where in the visual field that landmark is located.
Regardless, the accepted answer doesn't really address how to pick out landmarks in the visual field, and simply assumes that you can. While the Kinect drivers may already have feature detection included (I'm not sure) you can also use OpenCV for detecting features in the image.
One solution would be to use a strategy similar to "flood fill" (wikipedia). To get the controller to accurately perform sweeps, it needs a sense of distance. You can calibrate your bot using the proximity sensors: e.g. run motor for 1 sec = xx change in proximity. With that info, you can move your bot for an exact distance, and continue sweeping the room using flood fill.
Assuming you are not looking for a generalised solution, you may actually know the room's shape, size, potential obstacle locations, etc. When the bot exists the factory there is no info about its future operating environment, which kind of forces it to be inefficient from the outset.
If that's you case, you can hardcode that info, and then use basic measurements (ie. rotary encoders on wheels + compass) to precisely figure out its location in the room/house. No need for wifi triangulation or crazy sensor setups in my opinion. At least for a start.
Ever considered GPS? Every position on earth has a unique GPS coordinates - with resolution of 1 to 3 metres, and doing differential GPS you can go down to sub-10 cm range - more info here:
http://en.wikipedia.org/wiki/Global_Positioning_System
And Arduino does have lots of options of GPS-modules:
http://www.arduino.cc/playground/Tutorials/GPS
After you have collected all the key coordinates points of the house, you can then write the routine for the arduino to move the robot from point to point (as collected above) - assuming it will do all those obstacles avoidance stuff.
More information can be found here:
http://www.google.com/search?q=GPS+localization+robots&num=100
And inside the list I found this - specifically for your case: Arduino + GPS + localization:
http://www.youtube.com/watch?v=u7evnfTAVyM
I was thinking about this problem too. But I don't understand why you can't just triangulate? Have two or three beacons (e.g. IR LEDs of different frequencies) and a IR rotating sensor 'eye' on a servo. You could then get an almost constant fix on your position. I expect the accuracy would be in low cm range and it would be cheap. You can then map anything you bump into easily.
Maybe you could also use any interruption in the beacon beams to plot objects that are quite far from the robot too.
You have a camera you said ? Did you consider looking at the ceiling ? There is little chance that two rooms have identical dimensions, so you can identify in which room you are, position in the room can be computed from angular distance to the borders of the ceiling and direction can probably be extracted by the position of doors.
This will require some image processing but the vacuum cleaner moving slowly to be efficiently cleaning will have enough time to compute.
Good luck !
Use Ultra Sonic Sensor HC-SR04 or similar.
As above told sense the walls distance from robot with sensors and room part with QR code.
When your are near to a wall turn 90 degree and move as width of your robot and again turn 90deg( i.e. 90 deg left turn) and again move your robot I think it will help :)
In a multi-touch environment, how does gesture recognition work? What mathematical methods or algorithms are utilized to recognize or reject data for possible gestures?
I've created some retro-reflective gloves and an IR LED array, coupled with a Wii remote. The Wii remote does internal blob detection and tracks 4 points of IR light and transmits this information to my computer via a bluetooth dongle.
This is based off Johnny Chung Lee's Wii Research. My precise setup is exactly like the graduate students from the Netherlands displayed here. I can easily track 4 point's positions in 2d space and I've written my basic software to receive and visualize these points.
The Netherlands students have gotten a lot of functionality out of their basic pinch-click recognition. I'd like to take it a step further if I could, and implement some other gestures.
How is gesture recognition usually implemented? Beyond anything trivial, how could I write software to recognize and identify a variety of gestures: various swipes, circular movements, letter tracing, etc.
Gesture recognition, as I've seen it anyway, is usually implemented using machine learning techniques similar to image recognition software. Here's a cool project on codeproject about doing mouse gesture recognition in c#. I'm sure the concepts are quite similar since you can likely reduce the problem down to 2D space. If you get something working with this, I'd love to see it. Great project idea!
One way to look at it is as a compression / recognition problem. Basically, you want to take a whole bunch of data, throw out most of it, and categorize the remainder. If I were doing this (from scratch) I'd probably proceed as follows:
work with a rolling history window
take the center of gravity of the four points in the start frame, save it, and subtract it out of all the positions in all frames.
factor each frame into two components: the shape of the constellation and the movement of it's CofG relative to the last frame's.
save the absolute CofG for the last frame too
the series of CofG changes gives you swipes, waves, etc.
the series of constellation morphing gives you pinches, etc.
After seeing your photo (two points on each hand, not four points on one, doh!) I'd modify the above as follows:
Do the CofG calculation on pairs, with the caveats that:
If there are four points visible, pairs are chosen to minimize the product of the intrapair distances
If there are three points visible, the closest two are one pair, the other one is the other
Use prior / following frames to override when needed
Instead of a constellation, you've got a nested structure of distance / orientation pairs (i.e., one D/O between the hands, and one more for each hand).
Pass the full reduced data to recognizers for each gesture, and let them sort out what they care about.
If you want to get cute, do a little DSL to recognize the patterns, and write things like:
fire when
in frame.final: rectangle(points)
and
over frames.final(5): points.all (p => p.jerk)
or
fire when
over frames.final(3): hands.all (h => h.click)
A video of what has been done with this sort of technology, if anyone is interested?
Pattie Maes demos the Sixth Sense - TED 2009
Most simple gesture-recognition tools I've looked at use a vector-based template to recognize them. For example, you can define right-swipe as "0", a checkmark as "-45, 45, 45", a clockwise circle as "0, -45, -90, -135, 180, 135, 90, 45, 0", and so on.
Err.. I've been working on gesture recognition for the past year or so now, but I don't want to say too much because I'm trying to patent my technology :) But... we've had some luck with adaptive boosting, although what you're doing looks fundamentally different. You only have 4 points of data to process, so I don't think you really need to "reduce" anything.
What I would investigate is how programs like Flash turn a freehand drawn circle into an actual circle. It seems like you could track the points for duration of about a second, and then "smooth" the path in some fashion, and then you could probably get away with hardcoding your gestures (if you make them simple enough). Otherwise, yes, you're going to want to use a learning algorithm. Neural nets might work... I don't know. Just tossing out ideas :) Maybe look at how OCR is done too... or even Hough transforms. It looks to me like this is a problem of recognizing shapes more than it is of recognizing gestures.
I'm not very well versed in this type of mathematics, but I have read somewhere that people sometimes use Markov Chains or Hidden Markov Models to do Gesture Recognition.
Perhaps someone with a little more background in this side of Computer Science can illuminate it further and provide some more details.