How to detect threshing in accelerometer? - algorithm

I'm writing an application controlled by an accelerometer built into a wrist watch. I want one of the commands to be "wildly swinging your forehand". How do I detect it and measure for how long it goes?

To supplement John Fisher's suggestion, I would add: Look at analyzing this with spectral/Fourier transform techniques. I would expect to see a strong signal characteristic at low frequencies, but it could easily vary from user to user.
If the characteristic is there, signal processing techniques can help you isolate it and detect it.

Write something to record the measurements while you flail your arm around. Do it several times in different ways. Analyze the measurements for a pattern you can use.

Use a Kalman filter to track a moving average of the absolute value of the current acceleration? Or, if you can, the current acceleration minus gravity?
If that goes over a threshold, that indicates a lot of acceleration has been happening recently. That suggests thrashing.

Related

iBeacons: bearing to beacon?

Partly a coding problem, partly math problem.
Q1. I have an iOS device with compass active. If it knows I'm moving through the field of an iBeacon - or the Beacon is moving through my detection range - would it be possible for a phone to work out (roughly) the relative direction/bearing of that beacon with a series of readings by comparing signal strengths? Has anyone had a try at this?
Q2. Would it be possible to change the Major and Minor values of a beacon regularly (eg: every second) to pass small pieces of info - such as a second user's Bearing and Course?
Q1. It MIGHT be possible but you would need a controlled environment. Either the beacon or the phone needs to be fixed. You also need to be in an area with no obstructions or sources of radio interference.
Then you'd need to use the signal strength (which is sloppy and varies by a fair amount) as one input, and the device's heading info (which is also grossly inaccurate) and do some petty gnarly math on it.
Assuming you could work out the math, the slop in the input readings might make the results too iffy to be useful. (For example, how would you distinguish moving directly towards the beacon from moving 30 degrees to one side or the other? The signal strength would still increase, just not as quickly.
And your algorithm would have to deal with edge cases like moving along a circle around the beacon. In that case the signal strength should not change.
My gut is that even with clever algorithms that input data is just too unreliable to make much sense out of it, beyond "getting warmer" and "getting colder."
As mentioned above, you'd have to track your device's movement within the field, including distance covered and direction, then with multiple readings of signal strength you could theoretically calculate relative direction to the beacon to some degree of accuracy.
As to your second question about changing the minor version number, I have not seen any beacon APIs that allow that, either from the beacon manufacturers or from Apple's implementation.
However, a typical beacon is an ARM or other low power processor with a BLE transceiver, running a program. In theory it should be possible to create your own iBeacon transmitter that changed one of the parameters in order to transmit changing information. You'd have to set up the iOS device with the beacon region only specifying the UUID or UUID and major ID (depending on whether you wanted to change just the minor or change both the major and minor ID in order to transmit changing information.)
Note, too, that iBeacons are a special case of BLE, and the BLE standard does support the sending of arbitrary, changing data. You might be better off implementing your own BLE scheme either instead of or in addition to iBeacons.

Determining the duration of a frequency and the magnitude

I am working with a system in which I am getting data from a sensor (gyro) at 1KHz.
What I am trying to do is determine when the system is vibrating so that I can turn down the PID gains on the output.
What I currently have is a high pass filter on the incoming values. I then have set the alpha value to 1/64, which I believe should be filtering for about a 10KHz frequency. I then take this value and then integrate if it is individual above a threshold. When my integrated value passes another threshold, I then assume that the system is vibrating. I also reset the integrated value every half second to ensure that it does simply grow towards the threshold.
What I am trying to do with this system is make sure that it is really vibrating and not seeing a jolt. I have tried to do this with a upper limit to how much will be added to the integrated value, but this is not really appearing to work.
What I am looking for is any better way to go about detecting that the system is vibrating, and not being effected by a jolt, my primary issue is that that I do not miss detect a jolt for a vibration because then that will cause the values on the PID to be lowered unnecessarily.
FFT. It will separate out the "jolts" from the vibrations, because jolts will register across all frequencies and vibrations will spike around a particular frequency.
I agree with the above. There are many free algorithms for the Fast Fourier Transform avalible online. If you are not familiar with the FFT it is an operation that defines a relationship between a
function in the time domain and its representation in the frequency domain, enabling
analysis of the original function’s frequency content. This will enable you to determine if there is any noise or oscillatory behavior in your signal or time-series.
Another method your could use to establish whether your time-series has underlying periodicity is that of the Structure Function (Structure Function Analysis). Structure function analysis provides a method of quantifying time variability in a signal without the problem of aliasing, or windowing, that are encountered using the traditional FFT technique. Potentially it is able to provide information on the nature of the process that causes variability. The method is mainly concerned with the categorization of underlying noise processes and the identification of correlation time-scales. This is a fairly simple algorithm that you could probably write yourself.
Going one step further and being more "snazzy" would be to use a Wavelet Transform. Fourier analysis is a very powerful tool for detecting and quantifying periodic oscillations in time-series; that is signals of truly constant period, phase, and amplitude. However, real systems almost never exhibit such consistent behavior; periodic oscillations often arising intermittently as transient phenomenon. Although Fourier analysis can, to some extent detect and quantify such transient behavior, it is far from ideal for such purposes. Wavelet analysis has been developed to overcome these difficulties. See http://atoc.colorado.edu/research/wavelets/software.html for some source code and more information about wavelets.

Comparing 2 one dimensional signals

I have the following problem: I have 2 signals over time. They are from the same source so they should be the same. I want to check if they really are.
Complications:
they may be measured with different sample rates
the start / end time do not correlate. The measurement does not start at the same time and end at the same time.
there may be an time offset between the two signals.
My thoughts go along Fourier transformation, convolution and statistical methods for comparison. Can someone post me some links where I can find more information on how to handle this?
You can easily correct for the phase by just shifting them so their centers of mass line up. (Or alternatively, in the Fourier domain just multiplying by the inverse of the phase of the first coefficient.)
Similarly, if you want to line up the images given only partial data, you can just cross correlate and take the maximal value (which is again easy to do in the Fourier domain).
That leaves the only tricky part of this process as dealing with the sampling rates. Now if you know a-priori what the sample rates are, (and if they are related by a rational number), you can just use sinc interpolation/downsampling to rescale them to a common sampling rate:
https://ccrma.stanford.edu/~jos/st/Bandlimited_Interpolation_Time_Limited_Signals.html
If you don't know the sampling rate, you may be a bit screwed. Technically, you can try just brute forcing over all the different rescalings of your signal, but doing this tends to be either slow or else give mediocre results.
As a last suggestion, if you just want to match sounds exactly you can try using the cepstrum and verifying that the peaks of the signal are close enough to within some tolerance. This type of analysis is used a lot in sound and speech recognition, with some refinements to make it operate a bit more locally. It tends to work best with frequency modulated data like speech and music:
http://en.wikipedia.org/wiki/Cepstrum
Fourier transformation does sound like the right way.
There is too much mathematical information for me to just start explaining here so if you really wanna know what's going on with that (cause I don't think you can just use FT without understanding it) you should use this reference from MIT OpenCourseWare: http://ocw.mit.edu/courses/mathematics/18-103-fourier-analysis-theory-and-applications-spring-2004/lecture-notes/
Hope it helped.
If you are working with a linux box and the waveforms that need to be processed have already been recorded, you can try to use the file command to display details about the recording. It gives you the sampling rate when it is invoked on a wav file, though I am not sure what format you are recording in.
If the signals are time-shifted with respect to each other, you may try to convolve one with a delta function with increasing delays and then comparing. On MATLAB, conv and all should be good enough.
These are just 'crude' attempts (almost like hacking at the problem). There may be algorithms that are shift-invariant that may do a better job.
Hope that helps.

How to get volume from mic input on WP7 [duplicate]

Given two byte arrays of data captured from a microphone, how can I determine which one has more spikes in noise? I would assume there is an algorithm I can apply to the data, but I have no idea where to start.
Getting down to it, I need to be able to determine when a baby is crying vs ambient noise in the room.
If it helps, I am using the Microsoft.Xna.Framework.Audio.Microphone class to capture the sound.
you can convert each sample (normalised to a range 1.0 to -1.0) into a decibel rating by applying the formula
dB = 20 * log-base-10 (sample-value)
To be honest, so long as you don't mind the occasional false positive, and your microphone is set up OK, you should have no problem telling the difference between a baby crying and ambient background noise, without going through the hassle of doing an FFT.
I'd recommend you having a look at the source code for a noise gate, which does pretty much what you are after, with configurable attack times & thresholds.
First use a Fast Fourier Transform to transform the signal into the frequency domain.
Then check if the signal in the typical "cry-frequencies" is significantly higher than the other amplitudes.
The preprocessor of the speex codec supports noise vs signal detection, but I don't know if you can get it to work with XNA.
Or if you really want some kind of loudness calculate the sum of squares of the amplitudes from the frequencies you're interested in (for example 50-20000Hz) and if the average of that over the last 30 seconds is significantly higher than the average over the last 10 minutes or exceeds a certain absolute threshold sound the alarm.
Louder at what point? The signal's average amplitude will tell you which one is louder on average, but that is kind of a dumb, brute force way to go about it. It may work for you in practice though.
Getting down to it, I need to be able to determine when a baby is crying vs ambient noise in the room.
Ok, so, I'm just throwing out ideas here; I am by no means an expert on audio processing.
If you know your input, i.e., a baby crying (relatively loud with a high pitch) versus ambient noise (relatively quiet), you should be able to analyze the signal in terms of pitch (frequency) and amplitude (loudness). Of course, if during he recording someone drops some pots and pans onto the kitchen floor, that will be tough to discern.
As a first pass I would simply traverse the signal, maintaining a standard deviation of pitch and amplitude throughout, and then set a flag when those deviations jump beyond some threshold that you will have to define. When they come back down you may be able to safely assume that you captured the baby's cry.
Again, just throwing you an idea here. You will have to see how it works in practice with actual data.
I agree with #Ed Swangren, it will take a lot of playing with samples of data for a lot of sources. To me, it sounds like the trick will be to limit or hopefully eliminate false positives. My experience with babies is they are much louder crying than the environment. so, keeping track of the average measurements (freq/amp/??) of the normal environment and then classifying how well the changes match the characteristics of a crying baby which changes from kid to kid, so you'll probably want a system that 'learns'. Best of luck.
update: you might find this library useful http://naudio.codeplex.com/

Algorithms needed on filtering the noise caused by the vibration

For example you measure the data coming from some device, it can be a mass of the object moving on the bridge. Because it is moving the mass will give data which will vibrate in some amplitude depending on the mass of the object. Bigger the mass - bigger the vibrations.
Are there any methods for filtering such kind of noise from that data?
May be using some formulas of vibrations? Have no idea what kind of formulas or algorithms (filters) can be used here. Please suggest anything.
EDIT 2:
Better picture, I just draw it for better understanding:
Not very good picture. From that graph you can see that the frequency is the same every
time, but the amplitude chanbges periodically. Something like that I have when there are no objects on the moving road. (conveyer belt). vibrating near zero value.
When the object moves, I there are the same waves with changing amplitude.
The graph can tell that there may be some force applying to the system and which produces forced occilations. So I am interested in removing such kind of noise. I do not know what force causes such occilations. Soon I hope I will get some data on the non moving road with and without object on it for comparison with moving road case.
What you have in your last plot is basically an amplitude modulated oscillation coming from a function like:
f[x] := 10 * (4 + Sin[x]) * Sin[80 * x]
The constants have been chosen to match your plot (using just a rule of thumb)
The Plot of this function is
That isn't "noise" (although may be some noise is there too), but can be filtered easily.
Let's see your data for the static and moving payloads ....
Edit
Based on your response to several comments, and based in my previous experience with weighting devices:
You are interfacing the physical world, not just getting input from a mouse and keyboard. It is very important for you understand the device, how it works and how it is designed.
You need a calibration procedure. You have to use several master weights to be sure that the device is working properly and linearly in the whole scale, and that the static case is measured much better than your dynamic needs.
You'll not be able to predict if you can measure with several loads in the conveyor until you do some experiments and look very carefully at the resulting plots
You need to be sure that a load placed anywhere in the conveyor shows the same reading. Or at least you should be able to correlate reading and position.
As I said before, you need a lot of info, and it seems that is not available. I always worked as a team with the engineers designing the device.
Don't hesitate to add more info ...
Have you tried filters with lowpass characteristics? There are different approaches for smoothing data (i.e. Savitzky-Golay, Gauss, moving average) but often, a simple N-point median filter is already sufficient.
It really depends on what you're after.
Take a look at this book:
The Scientist and Engineer's Guide to Digital Signal Processing
You can download it for free. In particular, check chapters 14 and 15.
If the frequency changes with mass and you're trying to measure mass, why not measure the frequency of the oscillations and use that as your primary measure?
Otherwise you need a notch filter which is tunable - figure out the frequency of the "noise" and tune the notch filter to that.
Another book to try is Lyons Understanding Digital Signal Processing
In order to smooth the signal, I'd average the previous 2 * n samples where n is the maximum expected wavelength of the vibrations.
This should cause most of the noise to be eliminated.
If you have some idea of the range of frequencies, you could do a simple average as long as the measurement period were sufficiently long to give you the level of accuracy you want to achieve. The more wavelengths worth of data you average against, the smaller the ratio of contributed error from a partial wavelength.
I'd suggest first simulating/modeling this in software like Matlab.
Data you'll need to consider:
The expected range of vibration frequencies
The measurement accuracy you want to achieve
The expected range of mass you'll want to measure
The function of mass to vibration amplitude
You should be able to apply the same principles as noise-cancelling microphones: put two sensors out, then subtract the secondary sensor's (farther away from the good signal source) signal from the primary sensor's (closer to the good signal source) signal.
Obviously, this works best if the "noise" will reach both sensors fairly equally while the "signal" reaches the primary sensor much more strongly.
For things like sound, this is pretty easy to do in the sensor itself, which makes your software a lot easier and more performant. Depending on what you're measuring, this might be easier to do with multiple sets of hardware and doing the cancellation in software.
If you can characterize the frequency spectra of the unwanted vibration noise, you might be able to synthesize a set of (near) minimum phase notch or band reject filter(s) to allow you to acquire your desired signal at your desired S/N ratio with minimized latency or data set size.
Filtering noisy digital signals is straight forward, as previous posters have noted. There are lots of references. You have not however stated what your objectives are clearly, so we cannot point you into a good direction. Are you looking for a single measurement of a single object on a bridge? [Then see other answers].
Are you monitoring traffic on this bridge and weighing each entity as it passes by? Then you need to determine when entities are on the sensor and when they are not. Typically, as long as the sensor's noise floor is significantly lower than the signal you're measuring this can be accomplished by simple thresholding.
Are you trying to measure the vibrations of the bridge caused by other vehicles? In which case you need either a more expensive sensor if you're having problems doing this, or a clearer measuring objective.

Resources