Hadoop JobConf class is deprecated , need updated example - hadoop

I am writing hadoop programs , and i really dont want to play with deprecated classes .
Anywhere online i am not able to find programs with updated
org.apache.hadoop.conf.Configuration
class
insted of
org.apache.hadoop.mapred.JobConf
class.
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(Test.class);
conf.setJobName("TESST");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
This is how my main() looks like.
Can please anyone will provide me with updated function.

Here it's the classic WordCount example. You'll notice a tone of other imports that may not be necessary, reading the code you'll figure out which is which.
What's different? I'm using the Tool interface and the GenericOptionParser to parse the job command a.k.a : hadoop jar ....
In the mapper you'll notice a run thing. You can get rid of that, it's usually called by default when you supply the code for the Map method. I put it there to give you the info that you can further control the mapping stage. This is all using the new API. I hope you find it useful. Any other questions, let me know!
import java.io.IOException;
import java.util.*;
import org.apache.commons.io.FileUtils;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.util.GenericOptionsParser;
public class Inception extends Configured implements Tool{
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
public void run (Context context) throws IOException, InterruptedException {
setup(context);
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
cleanup(context);
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public int run(String[] args) throws Exception {
Job job = Job.getInstance(new Configuration());
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setJarByClass(WordCount.class);
job.submit();
return 0;
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
ToolRunner.run(new WordCount(), otherArgs);
}
}

Also take classic WordCount as example:
org.apache.hadoop.mapred.JobConf is old, in new version we use Configuration and Job to achieve.
Please use org.apache.hadoop.mapreduce.lib.* (it is new API) instead of org.apache.hadoop.mapred.TextInputFormat (it is old).
The Mapper and Reducer are nothing new, please see main function, it includes relatively overall configurations, feel free to change them according to your specific requirements.
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private Text outputKey;
private IntWritable outputVal;
#Override
public void setup(Context context) {
outputKey = new Text();
outputVal = new IntWritable(1);
}
#Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer stk = new StringTokenizer(value.toString());
while(stk.hasMoreTokens()) {
outputKey.set(stk.nextToken());
context.write(outputKey, outputVal);
}
}
}
class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result;
#Override
public void setup(Context context) {
result = new IntWritable();
}
#Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for(IntWritable val: values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public class WordCount {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
if(args.length != 2) {
System.err.println("Usage: <in> <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "Word Count");
// set jar
job.setJarByClass(WordCount.class);
// set Mapper, Combiner, Reducer
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
/* Optional, set customer defined Partioner:
* job.setPartitionerClass(MyPartioner.class);
*/
// set output key
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// set input and output path
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// by default, Hadoop use TextInputFormat and TextOutputFormat
// any customer defined input and output class must implement InputFormat/OutputFormat interface
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

Related

Iterable not working in mapreduce Reduce Task

Hi Guys i am new to hadoop, i am struggling with issue related to reducer. I have simple wordcount programme which not returning expected output
expected output:
this 1
hadoop 2
output:
this 1
hadoop 1
hadoop 1
code for wordcount programme
package in.edureka.mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable>{
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer tokenizer = new StringTokenizer(value.toString());
while (tokenizer.hasMoreTokens()){
String token = tokenizer.nextToken();
context.write(new Text(token), new IntWritable(1));
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable>{
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for(IntWritable v: values){
sum+=v.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = new Job(conf, "WordCount Programme");
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
Path outputpath = new Path(args[1]);
//Path outputpath = new Path(args[1]);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
outputpath.getFileSystem(conf).delete(outputpath);
System.setProperty("hadoop.home.dir", System.getProperty("user.home"));
System.exit(job.waitForCompletion(true)? 0 : 1);
}
}
I am not sure the problem with your code but I took the following from the documentation (https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Example:_WordCount_v1.0)
and it works as expected.
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

Hadoop multiple input files error

Im trying to read 2 file from hdfs input with below code but I face with error as follow
I am beginner in mapreduce programing and stuck on this problem for couple of days,any help will be appreciated.
My code:
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
public class Recipe {
public static class TokenizerMapper1
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String line=value.toString();
word.set(line.substring(2,8));
context.write(word,one);
}
}
public static class TokenizerMapper2
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String line=value.toString();
word.set(line.substring(2,8));
context.write(word,one);
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: recipe <in> <out>");
System.exit(2);
}
#SuppressWarnings("deprecation")
Job job = new Job(conf, "Recipe");
job.setJarByClass(Recipe.class);
job.setMapperClass(TokenizerMapper1.class);
job.setMapperClass(TokenizerMapper2.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
MultipleInputs.addInputPath(job,new Path(args[0]),TextInputFormat.class,TokenizerMapper1.class);
MultipleInputs.addInputPath(job,new Path(args[1]),TextInputFormat.class,TokenizerMapper2.class);
FileOutputFormat.setOutputPath(job, new Path(args[2]));
//FileInputFormat.addInputPath(job, new Path("hdfs://localhost:9000/in"));
//FileOutputFormat.setOutputPath(job, new Path("hdfs://127.0.0.1:9000/out"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
// job.submit();
}
And i've set program run configuration arguments like this:
/in /put
Error:
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2
at Recipe.main(Recipe.java:121)
There are several issues. Program is expecting 3 parameters and you are passing only 2. Also if you have to process multiple input formats you need to use MultipleInputs.
Assume that you invoke program /in1 /in2 /out
MultipleInputs.addInputPath(job, args[0], TokenizerMapper1.class, FirstMapper.class);
MultipleInputs.addInputPath(job, args[1], TokenizerMapper2.class, SecondMapper.class);
You can remove these lines from the code:
job.setMapperClass(TokenizerMapper1.class);
job.setMapperClass(TokenizerMapper2.class);
Now it works with the following modifications:
Put every file in a separate directory.
Use real address instead of arg[], as shown below:
MultipleInputs.addInputPath(job,new Path("hdfs://localhost:9000/in1"),TextInputFormat.class,TokenizerMapper1.class);
MultipleInputs.addInputPath(job,new Path("hdfs://localhost:9000/in2"),TextInputFormat.class,TokenizerMapper1.class);
FileOutputFormat.setOutputPath(job, new Path("hdfs://127.0.0.1:9000/out"));
Specify all input and output paths in run configurations\arguments like this:
127.0.0.1:9000/in1/DNAIn.txt 127.0.0.1:9000/in2/DNAIn2.txt 127.0.0.1:9000/out

Run WordCount without reducer in hadoop

I have installed hadoop cluster environment (Master & Slave). Works smoothly.
I tried wordcount and grep using (hadoop.example.jar) file and also works fine.
Now, I want to edit the (hadoop.example.jar) to run only mapper without reducer. Is there a way on doing that???
I read some articles that says I have to set the value to zero of setNumReducerTask(0), but I don't know how? using the (hadoop.example.jar) file.
You can't change the hadoop.example.jar file.
You need to create your own custom code and export it as a jar file.
The modified wordcount code should be:
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
**job.setNumReduceTasks( 0 ); **
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
The origianl source code

Hadoop setJarByClass not working

My WordCount example is the following structure:
public class WordCount extends Configured implements Tool {
public static class Map extends
Mapper<LongWritable, Text, Text, IntWritable> {}
public static class Reduce extends
Reducer<Text, IntWritable, Text, IntWritable> {}
public static void main(String[] args) throws Exception {
BasicConfigurator.configure();
Logger.getRootLogger().setLevel(Level.WARN);
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
#Override
public int run(String[] args) throws Exception {
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
if (fs.exists(new Path(args[1]))) {
fs.delete(new Path(args[1]), true);
}
Job job = Job.getInstance(conf, "wordcount");
long startTime = System.currentTimeMillis();
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setJarByClass(WordCount.class);
// job.setJar(WordCount.class.getSimpleName());
job.waitForCompletion(true);
System.out.println("Job Finished in "
+ (System.currentTimeMillis() - startTime) / 1000.0
+ " seconds");
return 0;
}
}
The job.setJarByClass() call is not working, and I get a "No job jar file set" message. Also, job.getJar() after this call shows "null" value. Anyone knows what's the problem here?
I also tried with job.setJarByClass(this.getClass()), job.setJar("WordCount") and job.setJar(WordCount.class.getSimpleName()). The first one has no effect, job.getJar() returns null, the second and third both give me FileNotFoundException: File WordCount does not exist. Then I tried with job.setJar("src/wordcount/WordCount.java") and job.setJar("bin/wordcount/WordCount.class"), both succeed within eclipse (without this warning message), but still fail with FileNotFoundException when executed as standalone jar file on command line. I guess the problem may relate to class path setting if not unresolved dependencies.
think you should add appropriate jar files.
In your case you must have this jar org.apache.hadoop.mapreduce.Job in your project file.
I imported the following classes and interfaces
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
And your project working fine.
Just check after importing all above mentioned classes. If any problem, give me a comment.
please use this java code for word counting, with two arguments one is input file other one is result file. And add all jar files from mapreduce and common folders in hadoop directory
package org.samples.mapreduce.training;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("mapred.job.tracker", "hdfs://localhost:50001");
conf.set("fs.default.name", "hdfs://localhost:50000");
Job job = new Job(conf, "wordcount");
job.setJarByClass(WordCount.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
Or If you want use advance version use this code with three arguments, here third one file which you dont want count example ,
package org.samples.mapreduce.training;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.StringUtils;
public class WordCountV2 {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
static enum CountersEnum { INPUT_WORDS }
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
private boolean caseSensitive;
private Set<String> patternsToSkip = new HashSet<String>();
private Configuration conf;
private BufferedReader fis;
#Override
public void setup(Context context) throws IOException,
InterruptedException {
conf = context.getConfiguration();
caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);
if (conf.getBoolean("wordcount.skip.patterns", true)) {
URI[] patternsURIs = Job.getInstance(conf).getCacheFiles();
for (URI patternsURI : patternsURIs) {
Path patternsPath = new Path(patternsURI.getPath());
String patternsFileName = patternsPath.getName().toString();
parseSkipFile(patternsFileName);
}
}
}
private void parseSkipFile(String fileName) {
try {
fis = new BufferedReader(new FileReader(fileName));
String pattern = null;
while ((pattern = fis.readLine()) != null) {
patternsToSkip.add(pattern);
}
} catch (IOException ioe) {
System.err.println("Caught exception while parsing the cached file '"
+ StringUtils.stringifyException(ioe));
}
}
#Override
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String line = (caseSensitive) ?
value.toString() : value.toString().toLowerCase();
for (String pattern : patternsToSkip) {
line = line.replaceAll(pattern, "");
}
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
Counter counter = context.getCounter(CountersEnum.class.getName(),
CountersEnum.INPUT_WORDS.toString());
counter.increment(1);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
GenericOptionsParser optionParser = new GenericOptionsParser(conf, args);
String[] remainingArgs = optionParser.getRemainingArgs();
if (!(remainingArgs.length != 2 || remainingArgs.length != 4)) {
System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCountV2.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
List<String> otherArgs = new ArrayList<String>();
for (int i=0; i < remainingArgs.length; ++i) {
if ("-skip".equals(remainingArgs[i])) {
job.addCacheFile(new Path(remainingArgs[++i]).toUri());
job.getConfiguration().setBoolean("wordcount.skip.patterns", true);
} else {
otherArgs.add(remainingArgs[i]);
}
}
FileInputFormat.addInputPath(job, new Path(otherArgs.get(0)));
FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(1)));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

reading parameter in hadoop mapreduce

I am new to hadoop mapreduce.I am trying to implement search in map reduce so my input file is like this
key1 value1,value3
key2 value2,value6
I want to find values list for key which user will pass as command line argument.for this my main (driver) class is like this
public static void main(String[] args) {
JobClient client = new JobClient();
JobConf conf = new JobConf(NameSearchJava.class);
// write now I am trying with writing search key in code (Joy),later I'll
//try to pass argument while running job from hadoop.
conf.set("searcKey", "Joy");
conf.setJobName("Search");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
conf.setMapperClass(SearchMapper.class);
conf.setReducerClass(SearchReducer.class);
client.setConf(conf);
try {
JobClient.runJob(conf);
} catch (Exception e) {
e.printStackTrace();
}
}
}
and my configure function is:
String item ;
public void configure(JobConf job) {
{
item = job.get("test");
System.out.println(item);
System.err.println("search" + item);
}
where should I write configure function in Mapper or Reducer.How can I use this item parameter to do comparison in reducer .Is this the correct way to take parameters in hadoop ?
Add on to Hadooper's Answer.
This is the full Code.
You can refer Hadooper's answer for explanation.
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* #author Unmesha sreeveni
* #Date 23 sep 2014
*/
public class StringSearchDriver extends Configured implements Tool {
public static class Map extends
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
String line = value.toString();
String searchString = conf.get("word");
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken();
if(token.equals(searchString)){
word.set(token);
context.write(word, one);
}
}
}
}
public static class Reduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
int res = ToolRunner.run(conf, new StringSearchDriver(), args);
System.exit(res);
}
#Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
if (args.length != 3) {
System.out
.printf("Usage: Search String <input dir> <output dir> <search word> \n");
System.exit(-1);
}
String source = args[0];
String dest = args[1];
String searchword = args[2];
Configuration conf = new Configuration();
conf.set("word", searchword);
Job job = new Job(conf, "Search String");
job.setJarByClass(StringSearchDriver.class);
FileSystem fs = FileSystem.get(conf);
Path in =new Path(source);
Path out =new Path(dest);
if (fs.exists(out)) {
fs.delete(out, true);
}
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, in);
FileOutputFormat.setOutputPath(job, out);
boolean sucess = job.waitForCompletion(true);
return (sucess ? 0 : 1);
}
}
Read the command line argument in the Driver class as follows -
conf.set("searchKey", args[2]);
where args[2] will be the search-key passed as third argument.
The configure method should be coded in the Mapper as follows -
String searchWord;
public void configure(JobConf jc)
{
searchWord = jc.get("searchKey");
}
This will bring your key to be searched in the Mapper function.
You can perform the comparison in the Mapper itself using the logic as follows -
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> out, Reporter reporter)
throws IOException
{
String[] input = value.toString().split(" ");
for(String word:input)
{
if (word.equalsIgnoreCase(searchWord))
out.collect(new Text(word), new IntWritable(1));
}
}
Let me know if this helps!

Resources