How to compare int values? - windows

I would like to know how to compare int values.
I would like to know that once I compare both 2 int values, I would like to know how far apart these 2 values are and if it is possible to put this in a 'if' statement.
The only problem I have is that (lets say int HELLO), HELLO's value always changes at random, so I would like to know how do I always compare HELLO's value and a different int's value on the go, so that at any moment if the result of both values are only 50 numbers off (negative or positive), it would trigger let's say timer2->Stop();.
Thank you.

If you have two int values, then you can subtract them to find out the difference between the two. Then in your if-test you just check if they are within 50 of each other and then execute the code...
Here's some pseudocode for you to work off of:
int valueOne = 100;
int valueTwo = 50;
int differenceBetweenValues = valueOne - valueTwo;
if ( (differenceBetweenValues >= 50) || (differenceBetweenValues >= -50) ) {
timer2->Stop();
}
You could then make that as a function and pass your values in (as you've stated they're different each time).

The distance between two int numbers is calculated as an absolute value of their difference:
int dist = abs(value1 - value2);
You can put it in an if statement or do anything you wish with the result:
if (abs(value1 - value2) > 50) ...

Related

C++ srand() repeating the same string of numbers [duplicate]

So, I'm trying to create a random vector (think geometry, not an expandable array), and every time I call my random vector function I get the same x value, though y and z are different.
int main () {
srand ( (unsigned)time(NULL));
Vector<double> a;
a.randvec();
cout << a << endl;
return 0;
}
using the function
//random Vector
template <class T>
void Vector<T>::randvec()
{
const int min=-10, max=10;
int randx, randy, randz;
const int bucket_size = RAND_MAX/(max-min);
do randx = (rand()/bucket_size)+min;
while (randx <= min && randx >= max);
x = randx;
do randy = (rand()/bucket_size)+min;
while (randy <= min && randy >= max);
y = randy;
do randz = (rand()/bucket_size)+min;
while (randz <= min && randz >= max);
z = randz;
}
For some reason, randx will consistently return 8, whereas the other numbers seem to be following the (pseudo) randomness perfectly. However, if I put the call to define, say, randy before randx, randy will always return 8.
Why is my first random number always 8? Am I seeding incorrectly?
The issue is that the random number generator is being seeded with a values that are very close together - each run of the program only changes the return value of time() by a small amount - maybe 1 second, maybe even none! The rather poor standard random number generator then uses these similar seed values to generate apparently identical initial random numbers. Basically, you need a better initial seed generator than time() and a better random number generator than rand().
The actual looping algorithm used is I think lifted from Accelerated C++ and is intended to produce a better spread of numbers over the required range than say using the mod operator would. But it can't compensate for always being (effectively) given the same seed.
I don't see any problem with your srand(), and when I tried running extremely similar code, I did not repeatedly get the same number with the first rand(). However, I did notice another possible issue.
do randx = (rand()/bucket_size)+min;
while (randx <= min && randx >= max);
This line probably does not do what you intended. As long as min < max (and it always should be), it's impossible for randx to be both less than or equal to min and greater than or equal to max. Plus, you don't need to loop at all. Instead, you can get a value in between min and max using:
randx = rand() % (max - min) + min;
I had the same problem exactly. I fixed it by moving the srand() call so it was only called once in my program (previously I had been seeding it at the top of a function call).
Don't really understand the technicalities - but it was problem solved.
Also to mention, you can even get rid of that strange bucket_size variable and use the following method to generate numbers from a to b inclusively:
srand ((unsigned)time(NULL));
const int a = -1;
const int b = 1;
int x = rand() % ((b - a) + 1) + a;
int y = rand() % ((b - a) + 1) + a;
int z = rand() % ((b - a) + 1) + a;
A simple quickfix is to call rand a few times after seeding.
int main ()
{
srand ( (unsigned)time(NULL));
rand(); rand(); rand();
Vector<double> a;
a.randvec();
cout << a << endl;
return 0;
}
Just to explain better, the first call to rand() in four sequential runs of a test program gave the following output:
27592
27595
27598
27602
Notice how similar they are? For example, if you divide rand() by 100, you will get the same number 3 times in a row. Now take a look at the second result of rand() in four sequential runs:
11520
22268
248
10997
This looks much better, doesn't it? I really don't see any reason for the downvotes.
Your implementation, through integer division, ignores the smallest 4-5 bit of the random number. Since your RNG is seeded with the system time, the first value you get out of it will change only (on average) every 20 seconds.
This should work:
randx = (min) + (int) ((max - min) * rand() / (RAND_MAX + 1.0));
where
rand() / (RAND_MAX + 1.0)
is a random double value in [0, 1) and the rest is just shifting it around.
Not directly related to the code in this question, but I had same issue with using
srand ((unsigned)time(NULL)) and still having same sequence of values being returned from following calls to rand().
It turned out that srand needs to called on each thread you are using it on separately. I had a loading thread that was generating random content (that wasn't random cuz of the seed issue). I had just using srand in the main thread and not the loading thread. So added another srand ((unsigned)time(NULL)) to start of loading thread fixed this issue.

What did I do wrong with calculating percent in processing?

I was writing a simple processing script that does an random boolean and counts how oft its 1 instead of 0.
then I added an counter of the total amount an random is done.
i wanted to use that for claculating the percentage of the 1ns.
anything works fine to this point.
then I wanted to do the calculating. it shows 0 no matter what i do.
the code goes like
bool r; //boolean for random
int t; //t fr true or 1
int f; //f for false or 0
int cnt; //cnt for total count
float p; //for the percentage
Void draw(){
r = int(random(2));
if (r==0){int(f++);}
if (r==1){int(t++);}
if (r<100){cnt++;}
p = t / cnt * 100; //calculating percentage.
text(p,10,100); //draws text on sceen at x=10 and y=100 but it always draws 0
}
Whats is wrong with that? What did I do wrong?
I think it is this problem: Why dividing two integers doesn't get a float?
So you can write something like that:
(t * 100.0f)/cnt

Bad math (and code) while incrementing values

Warning: I'm a total beginner. Very rookie mistakes ahead. The language used is Processing (Java).
I'm using functions to add numbers consecutively (i.e. 1+2+3+4+5+6 and so on) up to 10. I use the float "num" represents how high it should count up in this incremental manner, which is 10.
Next, I'm calculating factorials (1*2*3*4*5*6 and so on) up to 10.
My teacher gave the example in class for adding the numbers consecutively, which looks like:
float Addition(float num) {
float val1=1;
float val=0;
while (val1 <=num){
val=val+val1;
val1++;
}
return val;
}
This adds to 55, as it should, since we're incrementing until we hit 10. Could someone please explain the concept of this for me? I'm working on a bit now that adds in increments of 4 (i.e. 0+4+8+12+16+20 and so on) up to 10, but my math is WAY is off; it should equal to 180, but instead equals 45:
float Addition2(float num) {
float val1=1;
float val=1;
while (val1 <=num){
val=val*val1;
val1=val1+val2+4;
}
return val;
}
I'm not looking for anyone to fix the math for me, but to explain the concept itself and how I would properly calculate this (if that makes sense).
Thanks in advance.
P.S.
As a bonus, here is my work on the factorial, again, also wrong. If someone could also explain the concept of this, that would be smashing:
float Multiplication1(float num) {
float val1=1;
float val=1;
while (val1 <=num){
val=val*val1;
val1=val1+2;
}
return val;
}
To understand code, try to take it line by line. It might help to add comments to it to understand. It might also help to use longer and more descriptive variable names. Let's try with the function that works:
//this function adds up 1+2+...maxNumberToAdd
float addition(float maxNumberToAdd) {
//start at 1
float currentNumberToAdd = 1;
//keep track of your total sum
float totalSoFar = 0;
//loop 1,2,3...maxNumberToAdd
while (currentNumberToAdd <= maxNumberToAdd){
//add the current number to the total
totalSoFar = totalSoFar + currentNumberToAdd;
//go to the next number to add
currentNumberToAdd++;
}
//return the total
return totalSoFar;
}
Now that you have that, you can think about modifying it to do your next task.
You say you want to start at 0 instead of 1. Find the line of code responsible for starting at 1. What happens if you change it to something else?
You say you want to add only every 4th number. Find the line of code responsible for going to the next number. What happens if you increase it by something other than 1?

Find out which combinations of numbers in a set add up to a given total

I've been tasked with helping some accountants solve a common problem they have - given a list of transactions and a total deposit, which transactions are part of the deposit? For example, say I have this list of numbers:
1.00
2.50
3.75
8.00
And I know that my total deposit is 10.50, I can easily see that it's made up of the 8.00 and 2.50 transaction. However, given a hundred transactions and a deposit in the millions, it quickly becomes much more difficult.
In testing a brute force solution (which takes way too long to be practical), I had two questions:
With a list of about 60 numbers, it seems to find a dozen or more combinations for any total that's reasonable. I was expecting a single combination to satisfy my total, or maybe a few possibilities, but there always seem to be a ton of combinations. Is there a math principle that describes why this is? It seems that given a collection of random numbers of even a medium size, you can find a multiple combination that adds up to just about any total you want.
I built a brute force solution for the problem, but it's clearly O(n!), and quickly grows out of control. Aside from the obvious shortcuts (exclude numbers larger than the total themselves), is there a way to shorten the time to calculate this?
Details on my current (super-slow) solution:
The list of detail amounts is sorted largest to smallest, and then the following process runs recursively:
Take the next item in the list and see if adding it to your running total makes your total match the target. If it does, set aside the current chain as a match. If it falls short of your target, add it to your running total, remove it from the list of detail amounts, and then call this process again
This way it excludes the larger numbers quickly, cutting the list down to only the numbers it needs to consider. However, it's still n! and larger lists never seem to finish, so I'm interested in any shortcuts I might be able to take to speed this up - I suspect that even cutting 1 number out of the list would cut the calculation time in half.
Thanks for your help!
This special case of the Knapsack problem is called Subset Sum.
C# version
setup test:
using System;
using System.Collections.Generic;
public class Program
{
public static void Main(string[] args)
{
// subtotal list
List<double> totals = new List<double>(new double[] { 1, -1, 18, 23, 3.50, 8, 70, 99.50, 87, 22, 4, 4, 100.50, 120, 27, 101.50, 100.50 });
// get matches
List<double[]> results = Knapsack.MatchTotal(100.50, totals);
// print results
foreach (var result in results)
{
Console.WriteLine(string.Join(",", result));
}
Console.WriteLine("Done.");
Console.ReadKey();
}
}
code:
using System.Collections.Generic;
using System.Linq;
public class Knapsack
{
internal static List<double[]> MatchTotal(double theTotal, List<double> subTotals)
{
List<double[]> results = new List<double[]>();
while (subTotals.Contains(theTotal))
{
results.Add(new double[1] { theTotal });
subTotals.Remove(theTotal);
}
// if no subtotals were passed
// or all matched the Total
// return
if (subTotals.Count == 0)
return results;
subTotals.Sort();
double mostNegativeNumber = subTotals[0];
if (mostNegativeNumber > 0)
mostNegativeNumber = 0;
// if there aren't any negative values
// we can remove any values bigger than the total
if (mostNegativeNumber == 0)
subTotals.RemoveAll(d => d > theTotal);
// if there aren't any negative values
// and sum is less than the total no need to look further
if (mostNegativeNumber == 0 && subTotals.Sum() < theTotal)
return results;
// get the combinations for the remaining subTotals
// skip 1 since we already removed subTotals that match
for (int choose = 2; choose <= subTotals.Count; choose++)
{
// get combinations for each length
IEnumerable<IEnumerable<double>> combos = Combination.Combinations(subTotals.AsEnumerable(), choose);
// add combinations where the sum mathces the total to the result list
results.AddRange(from combo in combos
where combo.Sum() == theTotal
select combo.ToArray());
}
return results;
}
}
public static class Combination
{
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int choose)
{
return choose == 0 ? // if choose = 0
new[] { new T[0] } : // return empty Type array
elements.SelectMany((element, i) => // else recursively iterate over array to create combinations
elements.Skip(i + 1).Combinations(choose - 1).Select(combo => (new[] { element }).Concat(combo)));
}
}
results:
100.5
100.5
-1,101.5
1,99.5
3.5,27,70
3.5,4,23,70
3.5,4,23,70
-1,1,3.5,27,70
1,3.5,4,22,70
1,3.5,4,22,70
1,3.5,8,18,70
-1,1,3.5,4,23,70
-1,1,3.5,4,23,70
1,3.5,4,4,18,70
-1,3.5,8,18,22,23,27
-1,3.5,4,4,18,22,23,27
Done.
If subTotals are repeated, there will appear to be duplicate results (the desired effect). In reality, you will probably want to use the subTotal Tupled with some ID, so you can relate it back to your data.
If I understand your problem correctly, you have a set of transactions, and you merely wish to know which of them could have been included in a given total. So if there are 4 possible transactions, then there are 2^4 = 16 possible sets to inspect. This problem is, for 100 possible transactions, the search space has 2^100 = 1267650600228229401496703205376 possible combinations to search over. For 1000 potential transactions in the mix, it grows to a total of
10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376
sets that you must test. Brute force will hardly be a viable solution on these problems.
Instead, use a solver that can handle knapsack problems. But even then, I'm not sure that you can generate a complete enumeration of all possible solutions without some variation of brute force.
There is a cheap Excel Add-in that solves this problem: SumMatch
The Excel Solver Addin as posted over on superuser.com has a great solution (if you have Excel) https://superuser.com/questions/204925/excel-find-a-subset-of-numbers-that-add-to-a-given-total
Its kind of like 0-1 Knapsack problem which is NP-complete and can be solved through dynamic programming in polynomial time.
http://en.wikipedia.org/wiki/Knapsack_problem
But at the end of the algorithm you also need to check that the sum is what you wanted.
Depending on your data you could first look at the cents portion of each transaction. Like in your initial example you know that 2.50 has to be part of the total because it is the only set of non-zero cent transactions which add to 50.
Not a super efficient solution but heres an implementation in coffeescript
combinations returns all possible combinations of the elements in list
combinations = (list) ->
permuations = Math.pow(2, list.length) - 1
out = []
combinations = []
while permuations
out = []
for i in [0..list.length]
y = ( 1 << i )
if( y & permuations and (y isnt permuations))
out.push(list[i])
if out.length <= list.length and out.length > 0
combinations.push(out)
permuations--
return combinations
and then find_components makes use of it to determine which numbers add up to total
find_components = (total, list) ->
# given a list that is assumed to have only unique elements
list_combinations = combinations(list)
for combination in list_combinations
sum = 0
for number in combination
sum += number
if sum is total
return combination
return []
Heres an example
list = [7.2, 3.3, 4.5, 6.0, 2, 4.1]
total = 7.2 + 2 + 4.1
console.log(find_components(total, list))
which returns [ 7.2, 2, 4.1 ]
#include <stdio.h>
#include <stdlib.h>
/* Takes at least 3 numbers as arguments.
* First number is desired sum.
* Find the subset of the rest that comes closest
* to the desired sum without going over.
*/
static long *elements;
static int nelements;
/* A linked list of some elements, not necessarily all */
/* The list represents the optimal subset for elements in the range [index..nelements-1] */
struct status {
long sum; /* sum of all the elements in the list */
struct status *next; /* points to next element in the list */
int index; /* index into elements array of this element */
};
/* find the subset of elements[startingat .. nelements-1] whose sum is closest to but does not exceed desiredsum */
struct status *reportoptimalsubset(long desiredsum, int startingat) {
struct status *sumcdr = NULL;
struct status *sumlist = NULL;
/* sum of zero elements or summing to zero */
if (startingat == nelements || desiredsum == 0) {
return NULL;
}
/* optimal sum using the current element */
/* if current elements[startingat] too big, it won't fit, don't try it */
if (elements[startingat] <= desiredsum) {
sumlist = malloc(sizeof(struct status));
sumlist->index = startingat;
sumlist->next = reportoptimalsubset(desiredsum - elements[startingat], startingat + 1);
sumlist->sum = elements[startingat] + (sumlist->next ? sumlist->next->sum : 0);
if (sumlist->sum == desiredsum)
return sumlist;
}
/* optimal sum not using current element */
sumcdr = reportoptimalsubset(desiredsum, startingat + 1);
if (!sumcdr) return sumlist;
if (!sumlist) return sumcdr;
return (sumcdr->sum < sumlist->sum) ? sumlist : sumcdr;
}
int main(int argc, char **argv) {
struct status *result = NULL;
long desiredsum = strtol(argv[1], NULL, 10);
nelements = argc - 2;
elements = malloc(sizeof(long) * nelements);
for (int i = 0; i < nelements; i++) {
elements[i] = strtol(argv[i + 2], NULL , 10);
}
result = reportoptimalsubset(desiredsum, 0);
if (result)
printf("optimal subset = %ld\n", result->sum);
while (result) {
printf("%ld + ", elements[result->index]);
result = result->next;
}
printf("\n");
}
Best to avoid use of floats and doubles when doing arithmetic and equality comparisons btw.

How can I count the digits in an integer without a string cast?

I fear there's a simple and obvious answer to this question. I need to determine how many digits wide a count of items is, so that I can pad each item number with the minimum number of leading zeros required to maintain alignment. For example, I want no leading zeros if the total is < 10, 1 if it's between 10 and 99, etc.
One solution would be to cast the item count to a string and then count characters. Yuck! Is there a better way?
Edit: I would not have thought to use the common logarithm (I didn't know such a thing existed). So, not obvious - to me - but definitely simple.
This should do it:
int length = (number ==0) ? 1 : (int)Math.log10(number) + 1;
int length = (int)Math.Log10(Math.Abs(number)) + 1;
You may need to account for the negative sign..
A more efficient solution than repeated division would be repeated if statements with multiplies... e.g. (where n is the number whose number of digits is required)
unsigned int test = 1;
unsigned int digits = 0;
while (n >= test)
{
++digits;
test *= 10;
}
If there is some reasonable upper bound on the item count (e.g. the 32-bit range of an unsigned int) then an even better way is to compare with members of some static array, e.g.
// this covers the whole range of 32-bit unsigned values
const unsigned int test[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
unsigned int digits = 10;
while(n < test[digits]) --digits;
If you are going to pad the number in .Net, then
num.ToString().PadLeft(10, '0')
might do what you want.
You can use a while loop, which will likely be faster than a logarithm because this uses integer arithmetic only:
int len = 0;
while (n > 0) {
len++;
n /= 10;
}
I leave it as an exercise for the reader to adjust this algorithm to handle zero and negative numbers.
I would have posted a comment but my rep score won't grant me that distinction.
All I wanted to point out was that even though the Log(10) is a very elegant (read: very few lines of code) solution, it is probably the one most taxing on the processor.
I think jherico's answer is probably the most efficient solution and therefore should be rewarded as such.
Especially if you are going to be doing this for a lot of numbers..
Since a number doesn't have leading zeroes, you're converting anyway to add them. I'm not sure why you're trying so hard to avoid it to find the length when the end result will have to be a string anyway.
One solution is provided by base 10 logarithm, a bit overkill.
You can loop through and delete by 10, count the number of times you loop;
int num = 423;
int minimum = 1;
while (num > 10) {
num = num/10;
minimum++;
}
Okay, I can't resist: use /=:
#include <stdio.h>
int
main(){
int num = 423;
int count = 1;
while( num /= 10)
count ++;
printf("Count: %d\n", count);
return 0;
}
534 $ gcc count.c && ./a.out
Count: 3
535 $

Resources