Related
As the question describe itself "What is the core difference between algorithm and pseudocode?".
algorithm
An algorithm is a procedure for solving a problem in terms of the actions to be executed and the order in which those actions are to be executed. An algorithm is merely the sequence of steps taken to solve a problem. The steps are normally "sequence," "selection, " "iteration," and a case-type statement.
Pseudocode
Pseudocode is an artificial and informal language that helps programmers develop algorithms. Pseudocode is a "text-based" detail (algorithmic) design tool.
The rules of Pseudocode are reasonably straightforward. All statements showing "dependency" are to be indented. These include while, do, for, if, switch. Examples below will illustrate this notion.
I think all the other answers give useful explanations and definitions, but I'm going to give mine.
An algorithm is the idea of how to obtain some result from some input. It is an abstract concept; an algorithm is not something material by itself, but more something like an imagination or a deduction, a thing that only exists in the mind. In the broad sense, any sequence of steps that give you some thing(s) from other thing(s) could be called an algorithm. For example, if the screen of your computer is dirty, "spraying some glass cleaner on it and wipe it with a cloth" could be said to be an algorithm to solve the problem of how to obtain a clean screen form a dirty screen. It is important to note the difference between the problem itself (getting a clean screen) and the algorithm (wiping it with a cloth and cleaner); generally, several different algorithms are possible to solve the same problem. The idea of complexity is inherent to the algorithms itself, not the problem or the particular implementation or execution of the algorithm.
Pseudocode is a language to express algorithms. Since, as said before, algorithms are only concepts, we need to use something to express them and explain them to other people. Pseudocode is a convenient way for many computer science algorithms, because it is usually unambiguous, easy to read and somewhat similar to many programming languages. However, a specific programming language like C or Java can also be used to express and algorithm (it's just less convenient to those not familiarized with that language). In other cases, pseudocode may not be the best way to express an algorithm; for example, many graph and tree algorithms can be explained more easily with drawings or diagrams. In the previous example, the algorithm to get your screen cleaned is probably better expressed in a natural language like English, because it is simple and specific enough for that case.
Obviously, terms are frequently used loosely and exchanged depending on the context, and there's no need to be nitpicky about it, but I think it is important to have the difference clear. An algorithm doesn't stop being an algorithm just because it is written in Python instead of pseudocode. Pseudocode is just a convenient and widespread communication tool to express them.
An algorithm is something (a sequence of steps) you can do. Pseudocode is a notation to describe an algorithm.
Algorithm is something which is represented in mathematical terms. It includes, analysis, complexity considerations(best, average and worstcase analysis etc.).Pseudo code is a human readable representation of a program.
From Wikipedia :
Starting from an initial state and initial input (perhaps empty), the instructions describe a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing "output" and terminating at a final ending state.
With a pseudo language one can implement an algorithm without using a programming language such as C.
An example of pseudo language is Flow Charts.
I understand that doing minimization in integer programming is a very complex problem. But what makes this problem so difficult?
If I were to (attempt) to write an algorithm to solve it, what would I need to take into account? I'm only familiar with the branch-and-bound technique for solving it and I'm wondering what sort of roadblocks I will face when attempting to apply this technique programatically.
I'm wondering what sort of roadblocks I will face when attempting to apply this technique programatically.
None in particular (assuming a fairly straightforward implementation without a lot of tricks). The algorithms aren’t complicated – they are complex, that’s a fundamental difference.
Techniques such as branch and bound or branch and cut try to prune the search tree and thus speed up the running time. But the whole problem tree is nevertheless exponentially large, hence the problem.
Like the other said, those problem are very hard and there are no simple solution nor simple algorithm that apply to all classes of problems.
The "classic" way of solving those problem is to do a branch-and-bound and apply the simplex algorithm at each node, as you say in your question. However, I would not recommand implementing this yourself if you are not an expert.
As for a lot of numerical methods, it is very hard to get it right (good parameter values, good optimisations), and a lot have been done (see CPLEX, COIN_OR, etc).
It's not that you can't do it: the branch-and-bound part is pretty straigtforward, but without all the tricks your program will be really slow.
Also, you will need a simplex implementation and this is not something you want to do yourself: you will have to use a third-part lib anyway.
Most likely, wether
if your data set is not that big (try it !), and you are not interested in solving it really fast: use something like COIN-OR or lp_solve with the default method, it will work;
if your data set is really big (and/or you need to find a solution quickly each time), you need to work with an expert in this field.
My main point is that only experienced people will know which algorithm will perform better on your problem, wich form of the model will be the easiest to solve, which method to apply and what kind of optimisations you can try.
If you are interested in those problems, I would recommend this book for an introduction to the math behind all this (with a lot of examples). It is incredibly expansive, so you may want to go to a library instead of buying it: Nemhauser and Wolsey.
Integer programming is NP-hard. That's why it is so difficult.
There is a tutorial that you might be interested.
The first thing you do before you solve any mathematical optimization problem is you categorize it. Except special cases, most of the time, integer programming problems will be np-hard. So instead of using an "algorithm", you will use a "heuristic". The final solution you will find will not be a guaranteed optimum, but it will be a pretty good solution for real life problems.
Your main roadblock will your programming skills. Heuristic programming requires a good level of programming understanding. So instead of programming your own heuristic you are better of using well known package (eg, COIN-OR, free). This way you can focus on your problem instead of the heuristic.
Is there any formal definition for what makes a problem more fundamental than another? Otherwise, what would be an acceptable informal definition?
An example of a problem that is more fundamental than another would be sorting vs font rendering.
When many problems can be solved using one algorithm, for instance. This is the case for any optimal algorithm for sorting. BTW, perhaps you're mixing problems and algorithms? There is a formal definition of one problem being reducible to another. See http://en.wikipedia.org/wiki/Reduction_(complexity)
The original question is a valid one, and does not have to assume/consider complexity and reducibility as #slebetman suggested. (Thus making the question more fundamental :)
If we attempt a formal definition, we could have this one: Problem P1 is more fundamental than problem P2, if a solution to P1 affects the outcome of a wider set of other problems. This likely implies that P1 will affect problems in different domains of computer science - and possibly beyond.
In practical terms, I would correct again #slebetman. Instead of "if something uses or challenges an assumption then it is less fundamental than that assumption", I would say "if a problem uses or challenges an assumption then it is less fundamental than the same problem without the assumption". I.e. sorting of Objects is more fundamental than sorting of Integers; or, font rendering on a printer is less fundamental than font rendering on any device.
If I understood your question right.
When you can solve the same problem by applying many algorithms, the algorithm which proves its lightweight on both of memory and CPU is considered more fundamental. And I can think of another thing which is, a fundamental algorithm will not use other algorithms, otherwise it would be a complex one.
The problem or solution that has more applications is more fundamental.
(Sorting has many appications, P!=NP too has many applications (or implications), rendeering only has a few applications.)
Inf is right when he hinted at complexity and reducibility but not just of what is involved/included in an algorithm's implementation. It's the assumptions you make.
All pieces of code are written with assumptions about the world in which it operates. Those assumptions are more fundamental than the code written with those assumptions. In short, I would say: if something uses or challenges an assumption then it is less fundamental than that assumption.
Lets take an example: sorting. The problem of sorting is that when done the naive way the time it takes to sort grows very quickly. In technical terms, the problem of sorting tends towards being NP complete. So sorting algorithms are developed with the aim of avoiding being NP complete. But is NP complete always slow? That's a problem unto itself and the problem is called P!=NP which so far has not been proven either true or false. So P!=NP is more fundamental than sorting.
But even P!=NP makes some assumptions. It assumes that NP complete problems can always be run to completion even if it takes a long time to complete. In other words, the big-O notation for an NP complete problem is never infinite. This begs the question are all problems guaranteed to have a point of completion? The answer to that is no, not all problems have a guaranteed point of completion, the most trivial of which is the infinite loop: while (1) {print "still running!"}. So can we detect all cases of programs running infinitely? No, and the proof of that is the halting problem. Hence the halting problem is more fundamental than P!=NP.
But even the halting problem makes assumptions. We assume that we are running all our programs on a particular kind of CPU. Can we treat all CPUs as equivalent? Is there a CPU out there that can be built to solve the halting problem? Well, the answer is as long as a CPU is Turing complete, they are equivalent with other CPUs that are Turing complete. Turing completeness is therefore a more fundamental problem than the halting problem.
We can go on and on and question our assumptions like: are all kinds of signals equivalent? Is it possible that a fluidic or mechanical computer be fundamentally different than an electronic computer? And it will lead us to things like Shannon's information theory and Boolean algebra etc and each assumption that we uncover are more fundamental than the one above it.
I remember solving a lot of indefinite integration problems. There are certain standard methods of solving them, but nevertheless there are problems which take a combination of approaches to arrive at a solution.
But how can we achieve the solution programatically.
For instance look at the online integrator app of Mathematica. So how do we approach to write such a program which accepts a function as an argument and returns the indefinite integral of the function.
PS. The input function can be assumed to be continuous(i.e. is not for instance sin(x)/x).
You have Risch's algorithm which is subtly undecidable (since you must decide whether two expressions are equal, akin to the ubiquitous halting problem), and really long to implement.
If you're into complicated stuff, solving an ordinary differential equation is actually not harder (and computing an indefinite integral is equivalent to solving y' = f(x)). There exists a Galois differential theory which mimics Galois theory for polynomial equations (but with Lie groups of symmetries of solutions instead of finite groups of permutations of roots). Risch's algorithm is based on it.
The algorithm you are looking for is Risch' Algorithm:
http://en.wikipedia.org/wiki/Risch_algorithm
I believe it is a bit tricky to use. This book:
http://www.amazon.com/Algorithms-Computer-Algebra-Keith-Geddes/dp/0792392590
has description of it. A 100 page description.
You keep a set of basic forms you know the integrals of (polynomials, elementary trigonometric functions, etc.) and you use them on the form of the input. This is doable if you don't need much generality: it's very easy to write a program that integrates polynomials, for example.
If you want to do it in the most general case possible, you'll have to do much of the work that computer algebra systems do. It is a lifetime's work for some people, e.g. if you look at Risch's "algorithm" posted in other answers, or symbolic integration, you can see that there are entire multi-volume books ("Manuel Bronstein, Symbolic Integration Volume I: Springer") that have been written on the topic, and very few existing computer algebra systems implement it in maximum generality.
If you really want to code it yourself, you can look at the source code of Sage or the several projects listed among its components. Of course, it's easier to use one of these programs, or, if you're writing something bigger, use one of these as libraries.
These expert systems usually have a huge collection of techniques and simply try one after another.
I'm not sure about WolframMath, but in Maple there's a command that enables displaying all intermediate steps. If you do so, you get as output all the tried techniques.
Edit:
Transforming the input should not be the really tricky part - you need to write a parser and a lexer, that transforms the textual input into an internal representation.
Good luck. Mathematica is very complex piece of software, and symbolic manipulation is something that it does the best. If you are interested in the topic take a look at these books:
http://www.amazon.com/Computer-Algebra-Symbolic-Computation-Elementary/dp/1568811586/ref=sr_1_3?ie=UTF8&s=books&qid=1279039619&sr=8-3-spell
Also, going to the source wouldn't hurt either. These book actually explains the inner workings of mathematica
http://www.amazon.com/Mathematica-Book-Fourth-Stephen-Wolfram/dp/0521643147/ref=sr_1_7?ie=UTF8&s=books&qid=1279039687&sr=1-7
I wonder how many of you have implemented one of computer science's "classical algorithms" like Dijkstra's algorithm or data structures (e.g. binary search trees) in a real world, not academic project?
Is there a benefit to our dayjobs in knowing these algorithms and data structures when there are tons of libraries, frameworks and APIs which give you the same functionality?
Is there a benefit to our dayjobs in knowing these algorithms and data structures when there are tons of libraries, frameworks and APIs which give you the same functionality?
The library doesn't know what your problem domain is and won't be able to chose the correct algorithm to do the job. That is why I think it is important to know about them: then YOU can make the correct choice of algorithms to solve YOUR problem.
Knowing, or being able to understand these algorithms is important, these are the tools of your trade. It does not mean you have to be able to implement A* in an hour from memory. But you should be able to figure out what the advantages of using a red-black tree as opposed to a normal unbalanced tree are so you can decide if you need it or not. You need to be able to judge the fitness of an algorithm for solving your problem.
This might sound too school-masterish but these "classical algorithms" were not invented to give college students exam questions, they were invented to solve problems or improve on current solutions, just like the array, the linked list or the stack are building blocks to write a program so are some of these. Just like in math where you move from addition and subtraction to integration and differentiation, these are advanced techniques that will help you solve problems that are out there.
They might not be directly applicable to your problems or work situation but in the long run knowing of them will help you as a professional software engineer.
To answer your question, I did an implementation of A* recently for a game.
Is there a benefit to understanding your tools, rather than simply knowing that they exist?
Yes, of course there is. Taking a trivial example, don't you think there's a benefit to knowing what the difference is List (or your language's equivalent dynamic array implementation) and LinkedList (or your language's equivalent)? It's pretty important to know that one has constant random access time, while the other is linear. And one requires N copies if you insert a value in the middle of the sequence, while the other can do it in constant time.
Don't you think there's an advantage to understanding that the same sorting algorithm isn't always optimal? That for almost-sorted data, quicksort sucks, for example? Naively just calling Sort() and hoping for the best can become ridiculously expensive if you don't understand what's happening under the hood.
Of course there are a lot of algorithms you probably won't need, but even so, just understanding how they work may make it easier for yourself to come up with efficient algorithms to solve other, unrelated, problems.
Well, someone has to write the libraries. While working at a mapping software company, I implemented Dijkstra's, as well as binary search trees, b-trees, n-ary trees, bk-trees and hidden markov models.
Besides, if all you want is a single 'well known' algorithm, and you also want the freedom to specialise it and optimise it if it becomes critical to performance, including a whole library seems like a poor choice.
We use a home grown implementation of a p-random number generator from Knuth SemiNumeric as an aid in some statistical processing
In my previous workplace, which was an EDA company, we implemented versions of Prim and Dijsktra's algorithms, disjoint set data structures, A* search and more. All of these had real world significance. I believe this is dependent on problem domain - some domains are more algorithm-intensive and some less so.
Having said that, there is a fine line to walk - I see no business reason for re-implementing STL or Java Generics. In many cases, a standard library is better than "inventing a wheel". The more you are near your core application, the more it may be necessary to implement a textbook algorithm or data structure.
If you never work with performance-critical code, consider yourself lucky. However, I consider this scenario unrealistic. Performance problems could occur anywhere. And then it's necessary to know how to fix that problem. Obviously, merely knowing a few algorithm names isn't enough here – unless you want to implement them all and try them out one after the other.
No, knowing (at least some of) the inner workings of different algorithms is important for gauging their strengths and weaknesses and for analyzing how they would handle your situation.
Obviously, if there's a library already implementing exactly what you need, you're incredibly lucky. But let's face it, even if there is such a library, using it is often not completely straightforward (at the very least, interfaces and data representation often have to be adapted) so it's still good to know what to expect.
A* for a pac man clone. It took me weeks to really get but to this day I consider it a thing of beauty.
I've had to implement some of the classical algorithms from numerical analysis. It was easier to write my own than to connect to an existing library. Also, I've had to write variations on classical algorithms because the textbook case didn't fit my application.
For classical data structures, I nearly always use the standard libraries, such as STL for C++. The one time recently when I thought STL didn't have the structure I needed (a heap) I rolled my own, only to have someone point out almost immediately that I didn't need to do that.
Classical algorithms I have used in actual work:
A topological sort
A red-black tree (although I will
confess that I only had to implement
insertions for that application and
it only got used in a prototype).
This got used to implement an
'ordered dict' type structure in
Python.
A priority queue
State machines of various sorts
Probably one or two others I can't remember.
As to the second part of the question:
An understanding of how the algorithms work, their complexity and semantics gets used on a fairly regular basis. They also inform the design of systems. Occasionally one has to do things involving parsing or protocol handling, or some computation that's slightly clever. Having a working knowledge of what the algorithms do, how they work, how expensive they are and where one might find them lying around in library code goes a long way to knowing how to avoid reinventing the wheel poorly.
I use the Levenshtein distance algorithm to help implement a 'Did you mean [suggested word]?' feature in our website search.
Works quite well when combined with our 'tagging' system, which allows us to associate extra words (other than those in title/description/etc) with items in the database. \
It's not perfect by any means, but it's way better than most corporate site searches, if I don't say so myself ; )
Classical algorithms are usually associated with something glamorous, like games, or Web search, or scientific computation. However, I had to use some of the classical algorithms for a mere enterprise application.
I was building a metadata migration tool, and I had to use topological sort for dependency resolution, various forms of graph traversals for queries on metadata, and a modified variation of Tarjan's union-find datastructure to partition forest-like structured metadata to trees.
That was a really satisfying experience. Most of those algorithms were implemented before, but their implementations lacked something that I would need for my task. That's why It's important to understand their internals.