I am writting a number of test cases in a single .mt file that share common setup (and teardown) procedure(s). I was hoping to see something like JUnit's #Before / #After, but nothing from the MUnit package jumped out at me that that would accomplish this. In all honesty, the MUnit package documentation is a little better than the Wolfram Workbench's MUnit documentation, but it too is far from complete. Instructions on viewing the MUnit package.
So before I go reinventing the wheel, I thought I would check to see if I missed something in MUnit or if anyone has a pattern that works well?
So based on Leonid Shifrin initial answer (he updated his answer while I put this together) this is (was) where I am (was) at ...
TestPlus.mt
(* Mathematica Test File *)
(* x is a global value *)
x=0;
SetUp[] := Module[{}, x=1;];
TearDown[] := Module[{}, x=0;];
(* test SetUp[] *)
SetUp[];
Test[x, 1, TestID->"SetUp-20120103-F2U9V6"]
(* test TearDown[] *)
TearDown[];
Test[x, 0, TestID->"TearDown-20120103-O4R6M7"]
(* test plus --contrived tests-- *)
SetUp[];
Test[x+0, 1, TestID->"Plus-20120103-S5D9X6"]
TearDown[];
SetUp[];
Test[x+1, 2, TestID->"Plus-20120103-D7Q3E0"]
TearDown[];
SetUp[];
Test[x+2, 3, TestID->"Plus-20120103-F0S4P9"]
TearDown[];
MUnit files are normal package files, and they are read and executed sequentially - or at least this has been my experience with them. You can simply add lines with your common code before and after your tests, and they will be executed before and after all the tests respectively.
If you want to invoke your setup and teardown procedures individually for each test, you can add the corresponding lines (calls) just before and just after each test. You may find it convenient then to write a preprocessor, which would load your tests as a package (for example, by using Import["Tests.tm","HeldExpressions"] - where your tests are in Tests.tm in this example), and inserting the corresponding lines and then saving a file again. This will require some fluency with manipulations with held code, but can be picked up reasonably quickly, and is very convenient if you have many tests.
EDIT
As a more light-weight alternative, you can define macro-like short-cuts. Here is an example test file contents:
(* Mathematica Test File *)
before[]:= (Print["Before Test: ",f[2]];f[x_]:=x^3);
after[] := (ClearAll[f];Print["After Test: ",f[2]]);
SetAttributes[withCodeAfter,HoldRest];
withCodeAfter[before_,after_]:=(after;before)
SetAttributes[{wrapTest,wrapTest1},HoldAll]
wrapTest[code_]:= withCodeAfter[before[];code,after[]]
wrapTest1[code_]:=Block[{f},f[x_]:=x^3;code];
wrapTest#
Test[f[2],
8,
TestID -> "MyTest1"
]
wrapTest1#
Test[f[2],
8,
TestID -> "MyTest2"
]
The functions before and after imitate your setup / teardown functions. The function withCodeAfter is a helper macro which executes code before first, then executes code after, but as a result returns the result of before. The functions wrapTest and wrapTest1 illustrate two possibilities: you can either define separate "before" and "after" functions and sandwich your code with them, or you can use Block and define the "around" macro, which may be sometimes more convenient. Tests will work either way. You can also mix these approaches. In both cases, the amount of boilerplate code is minimal - just add wrapTest# line before each test.
I can't get the formatting correct in the comment so I am doing this as an answer...
Okay I think I have the dissected the code in your answer, please let me know if I am correct.
Defines what is evaluated before and after the "test case" is evaluated. A side note, you are defining f in before, undefining f in after.
(* Mathematica Test File *)
before[]:= (Print["Before Test: ",f[2]];f[x_]:=x^3);
after[] := (ClearAll[f];Print["After Test: ",f[2]]);
Defines the function withCodeAfter. It takes two expressions, the first expression, before, is evaluated when passed in. The second expression, after, is passed in unevaluated and is the first expression to be evaluated within withCodeAfter. The evaluated first expression, before, is returned by withCodeAfter.
SetAttributes[withCodeAfter,HoldRest];
withCodeAfter[before_,after_]:=(after;before)
Defines the function wrapTest. It takes one expression, code, that is passed in unevaluated. That expression, code, is the second expression of a compound expression, before[];code, that is passed as the first expression, before, to withCodeAfter. The compound expression, before[];code, is evaluated when passed into withCodeAfter. The value of the evaluated expression, code, is returned by withCodeAfter following after being evaluated. The value returned by withCodeAfter is returned by wrapTest.
SetAttributes[{wrapTest},HoldAll]
wrapTest[code_]:= withCodeAfter[before[];code,after[]]
Is the same thing as calling wrapTest[Test[f[2], 8, TestID -> "MyTest1"]]
wrapTest#
Test[f[2], 8, TestID -> "MyTest1"]
Related
I'm in love with Ruby. In this language all core functions are actually methods. That's why I prefer postfix notation – when the data, which I want to process is placed left from the body of anonymous processing function, for example: array.map{...}. I believe, that it has advantages in how easy is this code to read.
But Mathetica, being functional (yeah, it can be procedural if you want) dictates a style, where Function name is placed left from the data. As we can see in its manuals, // is used only when it's some simple Function, without arguments, like list // MatrixForm. When Function needs a lot of arguments, people who wrote manuals, use syntax F[data].
It would be okay, but my problem is the case F[f,data], for example Do[function, {x, a, b}]. Most of Mathematica functions (if not all) have arguments in exactly this order – [function, data], not [data, function]. As I prefer to use pure functions to keep namespace clean instead of creating a lot of named functions in my notebook, the argument function can be too big – so big, that argument data would be placed on the 5-20th line of code after the line with Function call.
This is why sometimes, when evil Ruby nature takes me under control, I rewrite such functions in postfix way:
Because it's important for me, that pure function (potentially big code) is placed right from processing data. Yeah I do it and I'm happy. But there are two things:
this causes Mathematica's highlighting parser problem: the x in postfix notation is highlighted with blue color, not turquoise;
everytime when I look into Mathematica manuals, I see examples like this one: Do[x[[i]] = (v[[i]] - U[[i, i + 1 ;; n]].x[[i + 1 ;; n]])/ U[[i, i]], {i, n, 1, -1}];, which means... hell, they think it's easy to read/support/etc.?!
So these two things made me ask this question here: am I so bad boy, that use my Ruby-style, and should I write code like these guys do, or is it OK, and I don't have to worry, and should write as I like to?
The style you propose is frequently possible, but is inadvisable in the case of Do. The problem is that Do has the attribute HoldAll. This is important because the loop variable (x in the example) must remain unevaluated and be treated as a local variable. To see this, try evaluating these expressions:
x = 123;
Do[Print[x], {x, 1, 2}]
(* prints 1 and 2 *)
{x, 1, 2} // Do[Print[x], #]&
(* error: Do::itraw: Raw object 123 cannot be used as an iterator.
Do[Print[x], {123, 1, 2}]
*)
The error occurs because the pure function Do[Print[x], #]& lacks the HoldAll attribute, causing {x, 1, 2} to be evaluated. You could solve the problem by explicitly defining a pure function with the HoldAll attribute, thus:
{x, 1, 2} // Function[Null, Do[Print[x], #], HoldAll]
... but I suspect that the cure is worse than the disease :)
Thus, when one is using "binding" expressions like Do, Table, Module and so on, it is safest to conform with the herd.
I think you need to learn to use the styles that Mathematica most naturally supports. Certainly there is more than one way, and my code does not look like everyone else's. Nevertheless, if you continue to try to beat Mathematica syntax into your own preconceived style, based on a different language, I foresee nothing but continued frustration for you.
Whitespace is not evil, and you can easily add line breaks to separate long arguments:
Do[
x[[i]] = (v[[i]] - U[[i, i + 1 ;; n]].x[[i + 1 ;; n]]) / U[[i, i]]
, {i, n, 1, -1}
];
This said, I like to write using more prefix (f # x) and infix (x ~ f ~ y) notation that I usually see, and I find this valuable because it is easy to determine that such functions are receiving one and two arguments respectively. This is somewhat nonstandard, but I do not think it is kicking over the traces of Mathematica syntax. Rather, I see it as using the syntax to advantage. Sometimes this causes syntax highlighting to fail, but I can live with that:
f[x] ~Do~ {x, 2, 5}
When using anything besides the standard form of f[x, y, z] (with line breaks as needed), you must be more careful of evaluation order, and IMHO, readability can suffer. Consider this contrived example:
{x, y} // # + 1 & ## # &
I do not find this intuitive. Yes, for someone intimate with Mathematica's order of operations, it is readable, but I believe it does not improve clarity. I tend to reserve // postfix for named functions where reading is natural:
Do[f[x], {x, 10000}] //Timing //First
I'd say it is one of the biggest mistakes to try program in a language B in ways idiomatic for a language A, only because you happen to know the latter well and like it. There is nothing wrong in borrowing idioms, but you have to make sure to understand the second language well enough so that you know why other people use it the way they do.
In the particular case of your example, and generally, I want to draw attention to a few things others did not mention. First, Do is a scoping construct which uses dynamic scoping to localize its iterator symbols. Therefore, you have:
In[4]:=
x=1;
{x,1,5}//Do[f[x],#]&
During evaluation of In[4]:= Do::itraw: Raw object
1 cannot be used as an iterator. >>
Out[5]= Do[f[x],{1,1,5}]
What a surprise, isn't it. This won't happen when you use Do in a standard fashion.
Second, note that, while this fact is largely ignored, f[#]&[arg] is NOT always the same as f[arg]. Example:
ClearAll[f];
SetAttributes[f, HoldAll];
f[x_] := Print[Unevaluated[x]]
f[5^2]
5^2
f[#] &[5^2]
25
This does not affect your example, but your usage is close enough to those cases affected by this, since you manipulate the scopes.
Mathematica supports 4 ways of applying a function to its arguments:
standard function form: f[x]
prefix: f#x or g##{x,y}
postfix: x // f, and
infix: x~g~y which is equivalent to g[x,y].
What form you choose to use is up to you, and is often an aesthetic choice, more than anything else. Internally, f#x is interpreted as f[x]. Personally, I primarily use postfix, like you, because I view each function in the chain as a transformation, and it is easier to string multiple transformations together like that. That said, my code will be littered with both the standard form and prefix form mostly depending on whim, but I tend to use standard form more as it evokes a feeling of containment with regards to the functions parameters.
I took a little liberty with the prefix form, as I included the shorthand form of Apply (##) alongside Prefix (#). Of the built in commands, only the standard form, infix form, and Apply allow you easily pass more than one variable to your function without additional work. Apply (e.g. g ## {x,y}) works by replacing the Head of the expression ({x,y}) with the function, in effect evaluating the function with multiple variables (g##{x,y} == g[x,y]).
The method I use to pass multiple variables to my functions using the postfix form is via lists. This necessitates a little more work as I have to write
{x,y} // f[ #[[1]], #[[2]] ]&
to specify which element of the List corresponds to the appropriate parameter. I tend to do this, but you could combine this with Apply like
{x,y} // f ## #&
which involves less typing, but could be more difficult to interpret when you read it later.
Edit: I should point out that f and g above are just placeholders, they can, and often are, replaced with pure functions, e.g. #+1& # x is mostly equivalent to #+1&[x], see Leonid's answer.
To clarify, per Leonid's answer, the equivalence between f#expr and f[expr] is true if f does not posses an attribute that would prevent the expression, expr, from being evaluated before being passed to f. For instance, one of the Attributes of Do is HoldAll which allows it to act as a scoping construct which allows its parameters to be evaluated internally without undo outside influence. The point is expr will be evaluated prior to it being passed to f, so if you need it to remain unevaluated, extra care must be taken, like creating a pure function with a Hold style attribute.
You can certainly do it, as you evidently know. Personally, I would not worry about how the manuals write code, and just write it the way I find natural and memorable.
However, I have noticed that I usually fall into definite patterns. For instance, if I produce a list after some computation and incidentally plot it to make sure it's what I expected, I usually do
prodListAfterLongComputation[
args,
]//ListPlot[#,PlotRange->Full]&
If I have a list, say lst, and I am now focusing on producing a complicated plot, I'll do
ListPlot[
lst,
Option1->Setting1,
Option2->Setting2
]
So basically, anything that is incidental and perhaps not important to be readable (I don't need to be able to instantaneously parse the first ListPlot as it's not the point of that bit of code) ends up being postfix, to avoid disrupting the already-written complicated code it is applied to. Conversely, complicated code I tend to write in the way I find easiest to parse later, which, in my case, is something like
f[
g[
a,
b,
c
]
]
even though it takes more typing and, if one does not use the Workbench/Eclipse plugin, makes it more work to reorganize code.
So I suppose I'd answer your question with "do whatever is most convenient after taking into account the possible need for readability and the possible loss of convenience such as code highlighting, extra work to refactor code etc".
Of course all this applies if you're the only one working with some piece of code; if there are others, it is a different question alltogether.
But this is just an opinion. I doubt it's possible for anybody to offer more than this.
For one-argument functions (f#(arg)), ((arg)//f) and f[arg] are completely equivalent even in the sense of applying of attributes of f. In the case of multi-argument functions one may write f#Sequence[args] or Sequence[args]//f with the same effect:
In[1]:= SetAttributes[f,HoldAll];
In[2]:= arg1:=Print[];
In[3]:= f#arg1
Out[3]= f[arg1]
In[4]:= f#Sequence[arg1,arg1]
Out[4]= f[arg1,arg1]
So it seems that the solution for anyone who likes postfix notation is to use Sequence:
x=123;
Sequence[Print[x],{x,1,2}]//Do
(* prints 1 and 2 *)
Some difficulties can potentially appear with functions having attribute SequenceHold or HoldAllComplete:
In[18]:= Select[{#, ToExpression[#, InputForm, Attributes]} & /#
Names["System`*"],
MemberQ[#[[2]], SequenceHold | HoldAllComplete] &][[All, 1]]
Out[18]= {"AbsoluteTiming", "DebugTag", "EvaluationObject", \
"HoldComplete", "InterpretationBox", "MakeBoxes", "ParallelEvaluate", \
"ParallelSubmit", "Parenthesize", "PreemptProtect", "Rule", \
"RuleDelayed", "Set", "SetDelayed", "SystemException", "TagSet", \
"TagSetDelayed", "Timing", "Unevaluated", "UpSet", "UpSetDelayed"}
I am developing a (large) package which does not load properly anymore.
This happened after I changed a single line of code.
When I attempt to load the package (with Needs), the package starts loading and then one of the setdelayed definitions “comes alive” (ie. Is somehow evaluated), gets trapped in an error trapping routine loaded a few lines before and the package loading aborts.
The error trapping routine with abort is doing its job, except that it should not have been called in the first place, during the package loading phase.
The error message reveals that the wrong argument is in fact a pattern expression which I use on the lhs of a setdelayed definition a few lines later.
Something like this:
……Some code lines
Changed line of code
g[x_?NotGoodQ]:=(Message[g::nogood, x];Abort[])
……..some other code lines
g/: cccQ[g[x0_]]:=True
When I attempt to load the package, I get:
g::nogood: Argument x0_ is not good
As you see the passed argument is a pattern and it can only come from the code line above.
I tried to find the reason for this behavior, but I have been unsuccessful so far.
So I decided to use the powerful Workbench debugging tools .
I would like to see step by step (or with breakpoints) what happens when I load the package.
I am not yet too familiar with WB, but it seems that ,using Debug as…, the package is first loaded and then eventually debugged with breakpoints, ect.
My problem is that the package does not even load completely! And any breakpoint set before loading the package does not seem to be effective.
So…2 questions:
can anybody please explain why these code lines "come alive" during package loading? (there are no obvious syntax errors or code fragments left in the package as far as I can see)
can anybody please explain how (if) is possible to examine/debug
package code while being loaded in WB?
Thank you for any help.
Edit
In light of Leonid's answer and using his EvenQ example:
We can avoid using Holdpattern simply by definying upvalues for g BEFORE downvalues for g
notGoodQ[x_] := EvenQ[x];
Clear[g];
g /: cccQ[g[x0_]] := True
g[x_?notGoodQ] := (Message[g::nogood, x]; Abort[])
Now
?g
Global`g
cccQ[g[x0_]]^:=True
g[x_?notGoodQ]:=(Message[g::nogood,x];Abort[])
In[6]:= cccQ[g[1]]
Out[6]= True
while
In[7]:= cccQ[g[2]]
During evaluation of In[7]:= g::nogood: -- Message text not found -- (2)
Out[7]= $Aborted
So...general rule:
When writing a function g, first define upvalues for g, then define downvalues for g, otherwise use Holdpattern
Can you subscribe to this rule?
Leonid says that using Holdpattern might indicate improvable design. Besides the solution indicated above, how could one improve the design of the little code above or, better, in general when dealing with upvalues?
Thank you for your help
Leaving aside the WB (which is not really needed to answer your question) - the problem seems to have a straightforward answer based only on how expressions are evaluated during assignments. Here is an example:
In[1505]:=
notGoodQ[x_]:=True;
Clear[g];
g[x_?notGoodQ]:=(Message[g::nogood,x];Abort[])
In[1509]:= g/:cccQ[g[x0_]]:=True
During evaluation of In[1509]:= g::nogood: -- Message text not found -- (x0_)
Out[1509]= $Aborted
To make it work, I deliberately made a definition for notGoodQ to always return True. Now, why was g[x0_] evaluated during the assignment through TagSetDelayed? The answer is that, while TagSetDelayed (as well as SetDelayed) in an assignment h/:f[h[elem1,...,elemn]]:=... does not apply any rules that f may have, it will evaluate h[elem1,...,elem2], as well as f. Here is an example:
In[1513]:=
ClearAll[h,f];
h[___]:=Print["Evaluated"];
In[1515]:= h/:f[h[1,2]]:=3
During evaluation of In[1515]:= Evaluated
During evaluation of In[1515]:= TagSetDelayed::tagnf: Tag h not found in f[Null]. >>
Out[1515]= $Failed
The fact that TagSetDelayed is HoldAll does not mean that it does not evaluate its arguments - it only means that the arguments arrive to it unevaluated, and whether or not they will be evaluated depends on the semantics of TagSetDelayed (which I briefly described above). The same holds for SetDelayed, so the commonly used statement that it "does not evaluate its arguments" is not literally correct. A more correct statement is that it receives the arguments unevaluated and does evaluate them in a special way - not evaluate the r.h.s, while for l.h.s., evaluate head and elements but not apply rules for the head. To avoid that, you may wrap things in HoldPattern, like this:
Clear[g,notGoodQ];
notGoodQ[x_]:=EvenQ[x];
g[x_?notGoodQ]:=(Message[g::nogood,x];Abort[])
g/:cccQ[HoldPattern[g[x0_]]]:=True;
This goes through. Here is some usage:
In[1527]:= cccQ[g[1]]
Out[1527]= True
In[1528]:= cccQ[g[2]]
During evaluation of In[1528]:= g::nogood: -- Message text not found -- (2)
Out[1528]= $Aborted
Note however that the need for HoldPattern inside your left-hand side when making a definition is often a sign that the expression inside your head may also evaluate during the function call, which may break your code. Here is an example of what I mean:
In[1532]:=
ClearAll[f,h];
f[x_]:=x^2;
f/:h[HoldPattern[f[y_]]]:=y^4;
This code attempts to catch cases like h[f[something]], but it will obviously fail since f[something] will evaluate before the evaluation comes to h:
In[1535]:= h[f[5]]
Out[1535]= h[25]
For me, the need for HoldPattern on the l.h.s. is a sign that I need to reconsider my design.
EDIT
Regarding debugging during loading in WB, one thing you can do (IIRC, can not check right now) is to use good old print statements, the output of which will appear in the WB's console. Personally, I rarely feel a need for debugger for this purpose (debugging package when loading)
EDIT 2
In response to the edit in the question:
Regarding the order of definitions: yes, you can do this, and it solves this particular problem. But, generally, this isn't robust, and I would not consider it a good general method. It is hard to give a definite advice for a case at hand, since it is a bit out of its context, but it seems to me that the use of UpValues here is unjustified. If this is done for error - handling, there are other ways to do it without using UpValues.
Generally, UpValues are used most commonly to overload some function in a safe way, without adding any rule to the function being overloaded. One advice is to avoid associating UpValues with heads which also have DownValues and may evaluate -by doing this you start playing a game with evaluator, and will eventually lose. The safest is to attach UpValues to inert symbols (heads, containers), which often represent a "type" of objects on which you want to overload a given function.
Regarding my comment on the presence of HoldPattern indicating a bad design. There certainly are legitimate uses for HoldPattern, such as this (somewhat artificial) one:
In[25]:=
Clear[ff,a,b,c];
ff[HoldPattern[Plus[x__]]]:={x};
ff[a+b+c]
Out[27]= {a,b,c}
Here it is justified because in many cases Plus remains unevaluated, and is useful in its unevaluated form - since one can deduce that it represents a sum. We need HoldPattern here because of the way Plus is defined on a single argument, and because a pattern happens to be a single argument (even though it describes generally multiple arguments) during the definition. So, we use HoldPattern here to prevent treating the pattern as normal argument, but this is mostly different from the intended use cases for Plus. Whenever this is the case (we are sure that the definition will work all right for intended use cases), HoldPattern is fine. Note b.t.w., that this example is also fragile:
In[28]:= ff[Plus[a]]
Out[28]= ff[a]
The reason why it is still mostly OK is that normally we don't use Plus on a single argument.
But, there is a second group of cases, where the structure of usually supplied arguments is the same as the structure of patterns used for the definition. In this case, pattern evaluation during the assignment indicates that the same evaluation will happen with actual arguments during the function calls. Your usage falls into this category. My comment for a design flaw was for such cases - you can prevent the pattern from evaluating, but you will have to prevent the arguments from evaluating as well, to make this work. And pattern-matching against not completely evaluated expression is fragile. Also, the function should never assume some extra conditions (beyond what it can type-check) for the arguments.
Leonid wrote in chapter iv of his book : "... Module, Block and With. These constructs are explained in detail in Mathematica Book and Mathematica Help, so I will say just a few words about them here. ..."
From what I have read ( been able to find ) I am still in the dark. For packaged functions I ( simply ) use Module, because it works and I know the construct. It may not be the best choice though. It is not entirely clear to me ( from the documentation ) when, where or why to use With ( or Block ).
Question. Is there a rule of thumb / guideline on when to use Module, With or Block ( for functions in packages )? Are there limitations compared to Module? The docs say that With is faster. I want to be able to defend my =choice= for Module ( or another construct ).
A more practical difference between Block and Module can be seen here:
Module[{x}, x]
Block[{x}, x]
(*
-> x$1979
x
*)
So if you wish to return eg x, you can use Block. For instance,
Plot[D[Sin[x], x], {x, 0, 10}]
does not work; to make it work, one could use
Plot[Block[{x}, D[Sin[x], x]], {x, 0, 10}]
(of course this is not ideal, it is simply an example).
Another use is something like Block[{$RecursionLimit = 1000},...], which temporarily changes $RecursionLimit (Module would not have worked as it renames $RecursionLimit).
One can also use Block to block evaluation of something, eg
Block[{Sin}, Sin[.5]] // Trace
(*
-> {Block[{Sin},Sin[0.5]],Sin[0.5],0.479426}
*)
ie, it returns Sin[0.5] which is only evaluated after the Block has finished executing. This is because Sin inside the Block is just a symbol, rather than the sine function. You could even do something like
Block[{Sin = Cos[#/4] &}, Sin[Pi]]
(*
-> 1/Sqrt[2]
*)
(use Trace to see how it works). So you can use Block to locally redefine built-in functions, too:
Block[{Plus = Times}, 3 + 2]
(*
-> 6
*)
As you mentioned there are many things to consider and a detailed discussion is possible. But here are some rules of thumb that I apply the majority of the time:
Module[{x}, ...] is the safest and may be needed if either
There are existing definitions for x that you want to avoid breaking during the evaluation of the Module, or
There is existing code that relies on x being undefined (for example code like Integrate[..., x]).
Module is also the only choice for creating and returning a new symbol. In particular, Module is sometimes needed in advanced Dynamic programming for this reason.
If you are confident there aren't important existing definitions for x or any code relying on it being undefined, then Block[{x}, ...] is often faster. (Note that, in a project entirely coded by you, being confident of these conditions is a reasonable "encapsulation" standard that you may wish to enforce anyway, and so Block is often a sound choice in these situations.)
With[{x = ...}, expr] is the only scoping construct that injects the value of x inside Hold[...]. This is useful and important. With can be either faster or slower than Block depending on expr and the particular evaluation path that is taken. With is less flexible, however, since you can't change the definition of x inside expr.
Andrew has already provided a very comprehensive answer. I would just summarize by noting that Module is for defining local variables that can be redefined within the scope of a function definition, while With is for defining local constants, which can't be. You also can't define a local constant based on the definition of another local constant you have set up in the same With statement, or have multiple symbols on the LHS of a definition. That is, the following does not work.
With[{{a,b}= OptionValue /# {opt1,opt2} }, ...]
I tend to set up complicated function definitions with Module enclosing a With. I set up all the local constants I can first inside the With, e.g. the Length of the data passed to the function, if I need that, then other local variables as needed. The reason is that With is a little faster of you genuinely do have constants not variables.
I'd like to mention the official documentation on the difference between Block and Module is available at http://reference.wolfram.com/mathematica/tutorial/BlocksComparedWithModules.html.
My code relies on version of Element which works like MemberQ, but when I load Combinatorica, Element gets redefined to work like Part. What is the easiest way to fix this conflict? Specifically, what is the syntax to remove Combinatorica's definition from DownValues? Here's what I get for DownValues[Element]
{HoldPattern[
Combinatorica`Private`a_List \[Element] \
{Combinatorica`Private`index___}] :>
Combinatorica`Private`a[[Combinatorica`Private`index]],
HoldPattern[Private`x_ \[Element] Private`list_List] :>
MemberQ[Private`list, Private`x]}
If your goal is to prevent Combinatorica from installing the definition in the first place, you can achieve this result by loading the package for the first time thus:
Block[{Element}, Needs["Combinatorica`"]]
However, this will almost certainly make any Combinatorica features that depend upon the definition fail (which may or may not be of concern in your particular application).
You can do several things. Let us introduce a convenience function
ClearAll[redef];
SetAttributes[redef, HoldRest];
redef[f_, code_] := (Unprotect[f]; code; Protect[f])
If you are sure about the order of definitions, you can do something like
redef[Element, DownValues[Element] = Rest[DownValues[Element]]]
If you want to delete definitions based on the context, you can do something like this:
redef[Element, DownValues[Element] =
DeleteCases[DownValues[Element],
rule_ /; Cases[rule, x_Symbol /; (StringSplit[Context[x], "`"][[1]] ===
"Combinatorica"), Infinity, Heads -> True] =!= {}]]
You can also use a softer way - reorder definitions rather than delete:
redef[Element, DownValues[Element] = RotateRight[DownValues[Element]]]
There are many other ways of dealing with this problem. Another one (which I already recommended) is to use UpValues, if this is suitable. The last one I want to mention here is to make a kind of custom dynamic scoping construct based on Block, and wrap it around your code. I personally find it the safest variant, in case if you want strictly your definition to apply (because it does not care about the order in which various definitions could have been created - it removes all of them and adds just yours). It is also safer in that outside those places where you want your definitions to apply (by "places" I mean parts of the evaluation stack), other definitions will still apply, so this seems to be the least intrusive way. Here is how it may look:
elementDef[] := Element[x_, list_List] := MemberQ[list, x];
ClearAll[elemExec];
SetAttributes[elemExec, HoldAll];
elemExec[code_] := Block[{Element}, elementDef[]; code];
Example of use:
In[10]:= elemExec[Element[1,{1,2,3}]]
Out[10]= True
Edit:
If you need to automate the use of Block, here is an example package to show one way how this can be done:
BeginPackage["Test`"]
var;
f1;
f2;
Begin["`Private`"];
(* Implementations of your functions *)
var = 1;
f1[x_, y_List] := If[Element[x, y], x^2];
f2[x_, y_List] := If[Element[x, y], x^3];
elementDef[] := Element[x_, list_List] := MemberQ[list, x];
(* The following part of the package is defined at the start and you don't
touch it any more, when adding new functions to the package *)
mainContext = StringReplace[Context[], x__ ~~ "Private`" :> x];
SetAttributes[elemExec, HoldAll];
elemExec[code_] := Block[{Element}, elementDef[]; code];
postprocessDefs[context_String] :=
Map[
ToExpression[#, StandardForm,
Function[sym,DownValues[sym] =
DownValues[sym] /.
Verbatim[RuleDelayed][lhs_,rhs_] :> (lhs :> elemExec[rhs])]] &,
Select[Names[context <> "*"], ToExpression[#, StandardForm, DownValues] =!= {} &]];
postprocessDefs[mainContext];
End[]
EndPackage[]
You can load the package and look at the DownValues for f1 and f2, for example:
In[17]:= DownValues[f1]
Out[17]= {HoldPattern[f1[Test`Private`x_,Test`Private`y_List]]:>
Test`Private`elemExec[If[Test`Private`x\[Element]Test`Private`y,Test`Private`x^2]]}
The same scheme will also work for functions not in the same package. In fact, you could separate
the bottom part (code-processing package) to be a package on its own, import it into any other
package where you want to inject Block into your functions' definitions, and then just call something like postprocessDefs[mainContext], as above. You could make the function which makes definitions inside Block (elementDef here) to be an extra parameter to a generalized version of elemExec, which would make this approach more modular and reusable.
If you want to be more selective about the functions where you want to inject Block, this can also be done in various ways. In fact, the whole Block-injection scheme can be made cleaner then, but it will require slightly more care when implementing each function, while the above approach is completely automatic. I can post the code which will illustrate this, if needed.
One more thing: for the less intrusive nature of this method you pay a price - dynamic scope (Block) is usually harder to control than lexically-scoped constructs. So, you must know exactly the parts of evaluation stack where you want that to apply. For example, I would hesitate to inject Block into a definition of a higher order function, which takes some functions as parameters, since those functions may come from code that assumes other definitions (like for example Combinatorica` functions relying on overloaded Element). This is not a big problem, just requires care.
The bottom line of this seems to be: try to avoid overloading built-ins if at all possible. In this case you faced this definitions clash yourself, but it would be even worse if the one who faces this problem is a user of your package (may be yourself a few months later), who wants to combine your package with another one (which happens to overload same system functions as yours). Of course, it also depends on who will be the users of your package - only yourself or potentially others as well. But in terms of design, and in the long term, you may be better off assuming the latter scenario from the start.
To remove Combinatorica's definition, use Unset or the equivalent form =.. The pattern to unset you can grab from the Information output you show in the question:
Unprotect[Element];
Element[a_List, {index___}] =.
Protect[Element];
The worry would be, of course, that Combinatorica depends internally on this ill-conceived redefinition, but you have reason to believe this to not be the case as the Information output from the redefined Element says:
The use of the function
Element in Combinatorica is now
obsolete, though the function call
Element[a, p] still gives the pth
element of nested list a, where p is a
list of indices.
HTH
I propose an entirely different approach than removing Element from DownValues. Simply use the full name of the Element function.
So, if the original is
System`Element[]
the default is now
Combinatorica`Element[]
because of loading the Combinatorica Package.
Just explicitly use
System`Element[]
wherever you need it. Of course check that System is the correct Context using the Context function:
Context[Element]
This approach ensures several things:
The Combinatorica Package will still work in your notebook, even if the Combinatorica Package is updated in the future
You wont have to redefine the Element function, as some have suggested
You can use the Combinatorica`Element function when needed
The only downside is having to explicitly write it every time.
Do you prefer literal values or expressions in your Asserts in your unit tests? This little example demonstrates what I mean - please pay attention to the comments:
[Test]
public function fromXML_works() : void {
var slideshow : Slideshow = SlideshowConverter.fromXML(xmlSample);
// do you prefer literal value "1":
assertEquals(slideshow.id, "1");
// ... or an expression like this:
assertEquals(slideshow.id, xmlSample.#id);
}
private var xmlSample : XML =
<slideshow id="1">
<someOtherTags />
</slideshow>;
The nice thing about the expression is that when the XML sample changes, the unit test will not break. On the other hand, I've basically provided an implementation of one aspect of my SlideshowConverter directly in my unit test which I don't like (the test should test intent, not implementation). I can also imagine that tests using expressions will be more prone to programming errors (I could have, for example, made a mistake in my E4X expression in my test method).
What approach do you prefer? What advantage is usually more important on real world projects?
Particularly since you've tagged this TDD: stick with literals. Writing a test before code exists to pass it, you say to yourself, "Self: if I had this function and gave it those parameters, then this is what I would get back." Where this is a very specific value. Don't hide it away; don't abstract it - just put the value into the test. It enhances the documentation value of the test as well.
Personally, I like to use constants within my tests - it ensures that the test fixtures are simple and straightforward. Plus, as you mention, it avoids programming errors in the test itself, which may hide programming errors in the real code.