Order of Spring #Transactional and Spring Security #PreAuthorize - spring

So I have something like the following:
public interface MyService {
#PreAuthorize("hasPermission(T(Name).OBJ, T(Action).GET)")
MyObj getObj(String id);
}
#Service
public class MyServiceImpl implements MyService {
#Override
#Transactional
public MyObj getObj(String id){
return dao.get(id);
}
}
#Controller
public class MyController {
#Resource(name="myServiceImpl")
private MyService service;
public MyObj getObj(String id){
return service.getObj(id);
}
}
When the method getObj(id) is called, everything is wrapped in a transaction first, then authorization is checked. Is is possible to keep this configuration and first get Spring to check for authorization, then create the transaction if the user is authorized?
I've spent a good deal searching for an answer and could not find anything.

You can use order attribute when configuring #Transactional:
<tx:annotation-driven order="100"/>
Experiment with lower values to move transaction aspect after the authorization one. Looks like <security:global-method-security/> also has this setting. The security aspect needs to have a higher value (lower priority) to be executed first.
See also
Table 10.2. settings
7.2.4.7 Advice ordering

Related

Spring JPA: javax.persistence.TransactionRequiredException: no transaction is in progress [duplicate]

I am new to Spring Transaction. Something that I found really odd, probably I did understand this properly.
I wanted to have a transactional around method level and I have a caller method within the same class and it seems like it does not like that, it has to be called from the separate class. I don't understand how is that possible.
If anyone has an idea how to resolve this issue, I would greatly appreciate. I would like to use the same class to call the annotated transactional method.
Here is the code:
public class UserService {
#Transactional
public boolean addUser(String userName, String password) {
try {
// call DAO layer and adds to database.
} catch (Throwable e) {
TransactionAspectSupport.currentTransactionStatus()
.setRollbackOnly();
}
}
public boolean addUsers(List<User> users) {
for (User user : users) {
addUser(user.getUserName, user.getPassword);
}
}
}
It's a limitation of Spring AOP (dynamic objects and cglib).
If you configure Spring to use AspectJ to handle the transactions, your code will work.
The simple and probably best alternative is to refactor your code. For example one class that handles users and one that process each user. Then default transaction handling with Spring AOP will work.
Configuration tips for handling transactions with AspectJ
To enable Spring to use AspectJ for transactions, you must set the mode to AspectJ:
<tx:annotation-driven mode="aspectj"/>
If you're using Spring with an older version than 3.0, you must also add this to your Spring configuration:
<bean class="org.springframework.transaction.aspectj
.AnnotationTransactionAspect" factory-method="aspectOf">
<property name="transactionManager" ref="transactionManager" />
</bean>
In Java 8+ there's another possibility, which I prefer for the reasons given below:
#Service
public class UserService {
#Autowired
private TransactionHandler transactionHandler;
public boolean addUsers(List<User> users) {
for (User user : users) {
transactionHandler.runInTransaction(() -> addUser(user.getUsername, user.getPassword));
}
}
private boolean addUser(String username, String password) {
// TODO call userRepository
}
}
#Service
public class TransactionHandler {
#Transactional(propagation = Propagation.REQUIRED)
public <T> T runInTransaction(Supplier<T> supplier) {
return supplier.get();
}
#Transactional(propagation = Propagation.REQUIRES_NEW)
public <T> T runInNewTransaction(Supplier<T> supplier) {
return supplier.get();
}
}
This approach has the following advantages:
It may be applied to private methods. So you don't have to break encapsulation by making a method public just to satisfy Spring limitations.
Same method may be called within different transaction propagations and it is up to the caller to choose the suitable one. Compare these 2 lines:
transactionHandler.runInTransaction(() -> userService.addUser(user.getUserName, user.getPassword));
transactionHandler.runInNewTransaction(() -> userService.addUser(user.getUserName, user.getPassword));
It is explicit, thus more readable.
The problem here is, that Spring's AOP proxies don't extend but rather wrap your service instance to intercept calls. This has the effect, that any call to "this" from within your service instance is directly invoked on that instance and cannot be intercepted by the wrapping proxy (the proxy is not even aware of any such call). One solutions is already mentioned. Another nifty one would be to simply have Spring inject an instance of the service into the service itself, and call your method on the injected instance, which will be the proxy that handles your transactions. But be aware, that this may have bad side effects too, if your service bean is not a singleton:
<bean id="userService" class="your.package.UserService">
<property name="self" ref="userService" />
...
</bean>
public class UserService {
private UserService self;
public void setSelf(UserService self) {
this.self = self;
}
#Transactional
public boolean addUser(String userName, String password) {
try {
// call DAO layer and adds to database.
} catch (Throwable e) {
TransactionAspectSupport.currentTransactionStatus()
.setRollbackOnly();
}
}
public boolean addUsers(List<User> users) {
for (User user : users) {
self.addUser(user.getUserName, user.getPassword);
}
}
}
With Spring 4 it's possible to Self autowired
#Service
#Transactional
public class UserServiceImpl implements UserService{
#Autowired
private UserRepository repository;
#Autowired
private UserService userService;
#Override
public void update(int id){
repository.findOne(id).setName("ddd");
}
#Override
public void save(Users user) {
repository.save(user);
userService.update(1);
}
}
This is my solution for self invocation:
public class SBMWSBL {
private SBMWSBL self;
#Autowired
private ApplicationContext applicationContext;
#PostConstruct
public void postContruct(){
self = applicationContext.getBean(SBMWSBL.class);
}
// ...
}
You can autowired BeanFactory inside the same class and do a
getBean(YourClazz.class)
It will automatically proxify your class and take into account your #Transactional or other aop annotation.
Here is what I do for small projects with only marginal usage of method calls within the same class. In-code documentation is strongly advised, as it may look strange to colleagues. But it works with singletons, is easy to test, simple, quick to achieve and spares me the full blown AspectJ instrumentation. However, for more heavy usage I'd advice the AspectJ solution as described in Espens answer.
#Service
#Scope(proxyMode = ScopedProxyMode.TARGET_CLASS)
class PersonDao {
private final PersonDao _personDao;
#Autowired
public PersonDao(PersonDao personDao) {
_personDao = personDao;
}
#Transactional
public void addUser(String username, String password) {
// call database layer
}
public void addUsers(List<User> users) {
for (User user : users) {
_personDao.addUser(user.getUserName, user.getPassword);
}
}
}
The issue is related to how spring load classes and proxies. It will not work , untill you write your inner method / transaction in another class or go to other class and then again come to your class and then write the inner nested transcation method.
To summarize, spring proxies does not allow the scenarios which you are facing. you have to write the 2nd transaction method in other class
There is no point to use AspectJ or Other ways. Just using AOP is sufficient. So, we can add #Transactional to addUsers(List<User> users) to solve current issue.
public class UserService {
private boolean addUser(String userName, String password) {
try {
// call DAO layer and adds to database.
} catch (Throwable e) {
TransactionAspectSupport.currentTransactionStatus()
.setRollbackOnly();
}
}
#Transactional
public boolean addUsers(List<User> users) {
for (User user : users) {
addUser(user.getUserName, user.getPassword);
}
}
}

Mockito mock does not work as expected in Spring MockMvc test

In an Spring mockmvc test I want to replace a bean by a mock implementation which is configured using Mockito.when() definitions. The definitions are indeed respected at the time the mock is configured, as well as at the time the mock is injected into a depending bean (a controller advice in my case) during application context startup. However, when the mock is used during a certain test, all when definitions are gone.
Why?
Some remarks:
The mock is completely new code, so it is impossible that I am not aware of any call to Mockito.reset().
the mock at the time of usage is the same as at the time of creation.
a bypassing solution to the problem is to configure the mock in a #BeforeEach method in AbstractTest. However, I want to understand why it does not work without.
Here a simplified and anonymized example
#Component
public class MyBean {
private String property;
...
public String getProperty() {
return property;
}
}
#ControllerAdvice
public class MyControllerAdvice() {
private MyBean myBean;
#Autowired
public MyControllerAdvice(MyBean myBean) {
this.myBean = myBean;
System.out.println(this.myBean.getProperty()); // --> outputs "FOOBAR"
}
#ModelAttribute
public String getMyBeanProperty() {
return myBean.getProperty(); // --> returns null
}
}
public class AbstractTest {
#Configuration
static class Config {
#Bean
public MyBean () {
MyBean myBean = Mockito.mock(MyBean.class, "I am a mock of MyBean");
when(myBean.getProperty()).thenReturn("FOOBAR");
}
}
}
That's not a problem of Mockito. I think you simplified the example a lot and we don't see the full picture, but I can say that main cause - 2 different beans MyBean: one is initialized with Spring's #Component, second is in configuration class with #Bean.
Why do you use #Component for POJO/DO?
#Bean in the configuration class is being initialized lazy so better way to use #PostConstruct
If you want to leave both beans mark MyBean in the configuration class as #Primary

Spring alternative for Factory

May be its a duplicate, Please feel free to tag... I am a newbie to Spring.
I am implementing a UserService for getting user details from different vendors,
So My class Structure is
Interface UserService ->> UserServiceA, UserServiceB
Which user service to use depends upon a field called provider. my code will look something like
public interface ExternalUserService {
ExternalUserDTO getUserDetail(String username);
}
Implementations -
public class GoogleUserService implements ExternalUserService{
#Override
public ExternalUserDTO getUserDetail(String username) {
return user;
}
}
public class FacebookUserService implements ExternalUserService{
#Override
public ExternalUserDTO getUserDetail(String username) {
return user;
}
}
I want to use it in my code in this fashion, I dont know if this is possible, but giving a try to see if its possible
public class ExternalUserManager(String provider) {
String provider;
#Autowired
ExternalUserService service; //This is supposed to come from some factory, dont know how to get it in spring context.
public void doSomething(String username) {
System.out.println(service.getUserDetail(username));
}
}
Had it been in conventional java programming, I would have created a Factory called UserServiceFactory, which would have made the things straight.
Can someone please help me on how much it is possible with spring, and if its possible, then how can I achieve it? We use Spring boot, so no xml config.
You can use a #Bean annotated method with scope 'prototype' as a factory.
Spring will call this method anytime this bean is injected somewhere.
import org.springframework.beans.factory.config.BeanDefinition;
...
#Bean
#Scope(BeanDefinition.SCOPE_PROTOTYPE)
public ExternalUserService externalUserService(UserServiceFactory factory,UserProviderResolver resolver) {
.. create the user service depending on resolver.getProvider()
}
The UserServiceFactory is used to create the specific service depending on the provider name, as you already described.
Create a class UserProviderResolver whith a method getProvider() that returns the provider name for the current request or user.
You can #Autowire the HttpRequest in the UserProviderResolver to get access to the current request.

Spring Boot JPA #Transactional #Service does not update, but #Transactional in controller does

I have a very basic Spring Boot/JPA stack app, with a controller, service layer, and repository that does not persist updates as I understand it should.
A trivial Entity:
#Entity
public class Customer {
#Id
#GeneratedValue(strategy=GenerationType.AUTO)
private Long id;
private String name;
protected Customer() {}
public Customer(String name) { this.name = name; }
// standard getters,setters //
}
A trivial Repository:
#Repository
public interface CustomerRepository extends CrudRepository<Customer, Long> {}
A simple Service layer:
// If the service is #Transactional and the controller is not, the update does NOT occur
#Transactional
#Service
public class CustomerService {
private static final Logger LOG = getLogger(CustomerService.class);
#Autowired
private CustomerRepository customerRepository;
boolean updateCustomerName(Long id, String name) {
Customer customer = customerRepository.findOne(id);
if (customer == null) { return false; }
// Modifies the entity
customer.setName(name);
// No explicit save()
return true;
}
}
And a REST controller that uses it all:
// If the controller is #Transactional and the service is not, the update occurs
#RestController
#RequestMapping("/mvc")
public class CustomerController {
#Autowired
private CustomerService customerService;
#RequestMapping(path = "{id}", method = RequestMethod.PUT)
public ResponseEntity updateCustomerName(#PathVariable Long id, #RequestParam("name") String name) {
customerService.updateCustomerName(id,name);
return ResponseEntity.noContent().build();
}
}
These are wired together with a simple one-liner SpringBootApplication
I have SQL debug logs enabled and see the selects, update, etc.
With the code above: When the service method is invoked by the controller, the modified entity is not persisted. SQL logs show the select of the entity but no update.
There is also no update if nothing is marked #Transactional
However, simply by moving the #Transactional annotation from the service class to the controller class, the SQL update does occur.
If I add an explicit customerRepository.save(customer) to the service method, the update also occurs. But my understanding is that the ORM should automatically save modified persistent entities.
I'm sure the issue has something to do with the EntityManager lifecycle in the web request, but I'm puzzled. Do I need to do additional configuration?
Complete example at https://github.com/monztech/SO-41515160
EDIT: This was solved, see below. Per the Spring spec #Transactional does not work in package-private methods and mistakenly did not make the update service method public.
The update will occur if the method is public and the service class has the #Transactional annotation.
I do have another question, however. Why is the #Transactional annotation necessary? (the update does not occur without it) Shouldn't the entity manager still persist the object because of the open session in view mechanism that Spring uses, independent of any transaction?
Make your updateCustomerName method public.

Where should we use #Transactional and where is Service layer?

I have rest style controller in Spring. In controller I have injected dao interfaces. From controller I persist data. In the other words, I have like REST web service. people sends me data, and I persits it.
/**
* Payment rest controller which receives
* JSON of data
*/
#Controller
#RequestMapping("/data")
public class PaymentTransaction {
#Autowired
private TestDao dao;
#RequestMapping(value = "/test", method = RequestMethod.POST)
#ResponseBody()
public String test(HttpServletRequest request) {
...
}
At the moment I have #transaction annotation in Dao classes. For instance:
import org.springframework.transaction.annotation.Transactional;
#Component
#Transactional
public interface TestDao {
#Transactional(propagation = Propagation.REQUIRED)
public void first();
}
I have read that this is very bad style. Using this answer at stackoverflow , here is explain and examples why is this bad - we must not add this annotation in DAO and in controller too. We must add it in service layer.
But I don't understand what is the service layer? Or where is it? I do not have anything like this.
where should I write #Transactional annotation?
Best regards,
According to the cited post, you should design your classes somehow like this (rather pseudocode):
controller (responsible for handling clients' requests/responses)
#Controller
#RequestMapping("/data")
public class TestREST {
#Autowired
private TestService service;
public void storePayment(PaymentDTO dto) {
service.storePayment(dto); //request from a client
}
public PaymentDTO getPayment(int paymentId) {
return service.getPayment(paymentId); //response to a client
}
}
service layer (also called business layer, responsible for business logic - knows what to do with incoming messages, but does not know where they come from).
public class TestServiceImpl {
#Autowired
private TestDao dao;
#Transactional(propagation=Propagation.REQUIRED) //force transaction
public void storePayment(PaymentDTO paymentDto) {
// transform dto -> entity
dao.storePayment(paymentEntity); //read-write hence transaction is on
}
#Transactional(propagation=Propagation.NOT_SUPPORTED) //avoid transaction
public Payment getPayment(int paymentId) {
return dao.findPayment(paymentId); //read-only hence no transaction
}
}
data access layer (also called persistence layer, responsible for accessing database - knows how to use entity model / ORM, does not know anything about the upper service layer)
public class TestDAOImpl {
#PersistenceContext
private EntityManager em;
public void storePayment(PaymentEntity paymentEntity) {
em.persist(paymentEntity);
}
public PaymentEntity getPayment(int paymentId) {
return em.find(PaymentEntity.class, paymentId);
}
}
By this approach you get separation of concerns mentioned in the post. From the other hand such an approach (business layer vs data access layer) got a little dose of criticism from Adam Bien's on his blog ("JPA/EJB3 killed the DAO"). As you can see there is no a single solution for the problem, but I encourage to read some other opinions and apply the solution you find the most suitable for your needs.
When you call two Dao methods first & second from controller, 2 transactions will be done, one with starts before first method and ends after it's execution and the second one starts before second method starts and ends after it's execution. Whereas you create an additional class in between controller and dao (usually this is called service layer) and annotate it with #Transactional and call multiple Dao methods in it, a transaction is started at the start of service method and all the dao calls will be executed and transaction will be closed, which is what you require. And inject the Service into Controller.
Controller -> Service -> Dao
#Controller
#RequestMapping("/data")
public class PaymentTransaction {
#Autowired
private TestService service;
#RequestMapping(value = "/test", method = RequestMethod.POST)
#ResponseBody()
public String test(HttpServletRequest request) {
...
}
}
#Service
#Transactional
public class TestService {
#Autowired
private TestDao dao;
#Transactional
public void serviceCall(){
dao.first();
dao.second();
}
}

Resources