Related
I wrote a recursive function (basically a flood fill), it works fine on smaller datasets, but for slightly larger input it throws StackOverflowError.
How to increase the stack size for Julia under Windows 10? Ideally the solution should be applicable to JupyterLab.
It's a singe use program, no point in optimizing/rewriting it, I just need to peak at the result and forget about the code.
Update: As a test case, I provide the following MWE. This is just a simple algorithm that recursively visits each cell of n by n array:
n = 120
visited = fill(false, (n,n))
function visit_single_neighbour(i,j,Δi,Δj)
if 1 ≤ i + Δi ≤ n && 1 ≤ j + Δj ≤ n
if !visited[i+Δi, j+Δj]
visited[i+Δi, j+Δj] = true
visit_four_neighbours(i+Δi, j+Δj)
end
end
end
function visit_four_neighbours(i,j)
visit_single_neighbour(i,j,1,0)
visit_single_neighbour(i,j,0,1)
visit_single_neighbour(i,j,-1,0)
visit_single_neighbour(i,j,0,-1)
end
#time visit_four_neighbours(1,1)
For n = 120 the output is 0.003341 seconds, but for n = 121 it throws StackOverflowError.
On a Linux machine with ulimit -s unlimited the code runs no problem for n = 2000 and takes about 2.4 seconds.
I've mirrored the question to Julia Discource: https://discourse.julialang.org/t/ow-to-increase-stack-size-for-julia-in-windows/79932
As you are no doubt aware Julia is not very optimized for recursion and the recommendation will probably always be to rewrite the code in some way.
With that said there are of course ways to increase the stack limit. One undocumented way to achieve it from inside julia is to reserve stack space when creating a Task:
Core.Task(f, reserved_stack::Int=0)
Let's create a function wrapping such a task:
with_stack(f, n) = fetch(schedule(Task(f,n)))
for n = 2000 the following works on both windows and linux (as long as enough memory is available):
julia> with_stack(2_000_000_000) do
visit_four_neighbours(1,1)
end
Originally this is a problem coming up in mathematica.SE, but since multiple programming languages have involved in the discussion, I think it's better to rephrase it a bit and post it here.
In short, michalkvasnicka found that in the following MATLAB sample
s = 15000;
tic
% for-loop version
H = zeros(s,s);
for c = 1:s
for r = 1:s
H(r,c) = 1/(r+c-1);
end
end
toc
%Elapsed time is 1.359625 seconds.... For-loop
tic;
% vectorized version
c = 1:s;
r = c';
HH=1./(r+c-1);
toc
%Elapsed time is 0.047916 seconds.... Vectorized
isequal(H,HH)
the vectorized code piece is more than 25 times faster than the pure for-loop code piece. Though I don't have access to MATLAB so cannot test the sample myself, the timing 1.359625 seems to suggest it's tested on an average PC, just as mine.
But I cannot reproduce the timing with other languages like fortran or julia! (We know, both of them are famous for their performance of numeric calculation. Well, I admit I'm by no means an expert of fortran or julia. )
The followings are the samples I used for test. I'm using a laptop with i7-8565U CPU, Win 10.
fortran
fortran code is compiled with gfortran (TDM-GCC-10.3.0-2, with compile option -Ofast).
program tst
use, intrinsic :: iso_fortran_env
implicit none
integer,parameter::s=15000
integer::r,c
real(real64)::hmn(s,s)
do r=1,s
do c=1, s
hmn(r,c)=1._real64/(r + c - 1)
end do
end do
print *, hmn(s,s)
end program
compilation timing: 0.2057823 seconds
execution timing: 0.7179657 seconds
julia
Version of julia is 1.6.3.
#time (s=15000; Hmm=[1. /(r+c-1) for r=1:s,c=1:s];)
Timing: 0.7945998 seconds
Here comes the question:
Is the timing of MATLAB reliable?
If the answer to 1st question is yes, then how can we reproduce the performance (for 2 GHz CPU, the timing should be around 0.05 seconds) with julia, fortran, or any other programming languages?
Just to add on the Julia side - make sure you use BenchmarkToolsto benchmark, wrap the code you want to benchmark in functions so as not to benchmark in global scope, and interpolate any variables you pass to #btime.
Here's how I would do it:
julia> s = 15_000;
julia> function f_loop!(H)
for c ∈ 1:size(H, 1)
for r ∈ 1:size(H, 1)
H[r, c] = 1 / (r + c - 1)
end
end
end
f_loop! (generic function with 1 method)
julia> function f_vec!(H)
c = 1:size(H, 1)
r = c'
H .= 1 ./ (r .+ c .- 1)
end
f_vec! (generic function with 1 method)
julia> H = zeros(s, s);
julia> using BenchmarkTools
julia> #btime f_loop!($H);
625.891 ms (0 allocations: 0 bytes)
julia> H = zeros(s, s);
julia> #btime f_vec!($H);
625.248 ms (0 allocations: 0 bytes)
So both versions come in at the same time, which is what I'd expect for such a straightforward operation where a properly type-inferred code should compile down to roughly the same machine code.
tic/toc should be fine, but it looks like the timing is being skewed by memory pre-allocation.
I can reproduce similar timings to your MATLAB example, however
On first run (clear workspace)
Loop approach takes 2.08 sec
Vectorised approach takes 1.04 sec
Vectorisation saves 50% execution time
On second run (workspace not cleared)
Loop approach takes 2.55 sec
Vectorised approach takes 0.065 sec
Vectorisation "saves" 97.5% execution time
My guess would be that since the loop approach explicitly creates a new matrix via zeros, the memory is reallocated from scratch on every run and you don't see the speed improvement on subsequent runs.
However, when HH remains in memory and the HH=___ line outputs a matrix of the same size, I suspect MATLAB is doing some clever memory allocation to speed up the operation.
We can prove this theory with the following test:
Test Num | Workspace cleared | s | Loop (sec) | Vectorised (sec)
1 | Yes | 15000 | 2.10 | 1.41
2 | No | 15000 | 2.73 | 0.07
3 | No | 15000 | 2.50 | 0.07
4 | No | 15001 | 2.74 | 1.73
See the variation between tests 2 and 3, this is why timeit would have been helpful for an average runtime (see footnote). The difference in output sizes between tests 3 and 4 are pretty small, but the execution time returns to a similar magnitude of that in test 1 for the vectorised approach, suggesting that the re-allocation to create HH costs most of the time.
Footnote: tic/toc timings in MATLAB can be improved by using the in-built timeit function, which essentially takes an average over several runs. One interesting thing to observe from the workings of timeit though is that it explicitly "warms up" (quoting a comment) the tic/toc function by calling it a couple of times. You can see when running tic/toc a few times from a clear workspace (with no intermediate code) that the first call takes longer than subsequent calls, as there must be some overhead for getting the timer initialised.
I hope that the following modified benchmark could bring some new light to the problem:
s = 15000;
tic
% for-loop version
H = zeros(s,s);
for i =1:10
for c = 1:s
for r = 1:s
H(r,c) = H(r,c) + 1/(r+c-1+i);
end
end
end
toc
tic;
% vectorized version
HH = zeros(s,s);
c = 1:s;
r = c';
for i=1:10
HH= HH + 1./(r+c-1+i);
end
toc
isequal(H,HH)
In this case any kind of "cashing" is avoided by changing of matrix H (HH) at each for-loop (over "i") iteration.
In this case we get:
Elapsed time is 3.737275 seconds. (for-loop)
Elapsed time is 1.143387 seconds. (vectorized)
So, there is still performance improvement (~ 3x) due to the vectorization, which is probably done by implicit multi-threading implementation of vectorized Matlab commands.
Yes, tic/toc vs timeit is not strictly consistent, but the overall timing functionality is very similar.
To add to this, here is a simple python script which does the vectorized operation with numpy:
from timeit import default_timer
import numpy as np
s = 15000
start = default_timer()
# for-loop
H = np.zeros([s, s])
for c in range(1, s):
for r in range(1, s):
H[r, c] = 1 / (r + c - 1)
end = default_timer()
print(end - start)
start = default_timer()
# vectorized
c = np.arange(1, s).reshape([1, -1])
r = c.T
HH = 1 / (c + r - 1)
end = default_timer()
print(end - start)
for-loop: 32.94566780002788 seconds
vectorized: 0.494859800033737 seconds
While the for-loop version is terribly slow, the vectorized version is faster than the posted fortran/julia times. Numpy internally tries to use special SIMD hardware instructions to speed up arithmetic on vectors, which can make a significant difference. It's possible that the fortran/julia compilers weren't able to generate those instructions from the provided code, but numpy/matlab were able to. However, Matlab is still about 10x faster than the numpy code, which I don't think would be explained by better use of SIMD instructions. Instead, they may also be using multiple threads to parallelize the computation, since the matrix is fairly large.
Ultimately, I think the matlab numbers are plausible, but I'm not sure exactly how they're getting their speedup.
Let's consider a very large numpy array a (M, N).
where M can typically be 1 or 100 and N 10-100,000,000
We have the array of indices that can split it into many (K = 1,000,000) along axis=1.
We want to efficiently perform an operation like integration along axis=1 (np.sum to take the simplest form) on each sub-array and return a (M, K) array.
An elegant and efficient solution was proposed by #Divakar in question [41920367]how to split numpy array and perform certain actions on split arrays [Python] but my understanding is that it only applies to cases where all sub-arrays have the same shape, which allows for reshaping.
But in our case the sub-arrays don't have the same shape, which, so far has forced me to loop on the index... please take me out of my misery...
Example
a = np.random.random((10, 100000000))
ind = np.sort(np.random.randint(10, 9000000, 1000000))
The size of the sub-arrays are not homogenous:
sizes = np.diff(ind)
print(sizes.min(), size.max())
2, 8732
So far, the best I found is:
output = np.concatenate([np.sum(vv, axis=1)[:, None] for vv in np.split(a, ind, axis=1)], axis=1)
Possible feature request for numpy and scipy:
If looping is really unavoidable, at least having it done in C inside the numpy and scipy.integrate.simps (or romb) functions would probably speed-up the output.
Something like
output = np.sum(a, axis=1, split_ind=ind)
output = scipy.integrate.simps(a, x=x, axis=1, split_ind=ind)
output = scipy.integrate.romb(a, x=x, axis=1, split_ind=ind)
would be very welcome !
(where x itself could be splitable, or not)
Side note:
While trying this example, I noticed that with these numbers there was almost always an element of sizes equal to 0 (the sizes.min() is almost always zero).
This looks peculiar to me, as we are picking 10,000 integers between 10 and 9,000,000, the odds that the same number comes up twice (such that diff = 0) should be close to 0. It seems to be very close to 1.
Would that be due to the algorithm behind np.random.randint ?
What you want is np.add.reduceat
output = np.add.reduceat(a, ind, axis = 1)
output.shape
Out[]: (10, 1000000)
Universal Functions (ufunc) are a very powerful tool in numpy
As for the repeated indices, that's simply the Birthday Problem cropping up.
Great !
Thanks ! on my VM Cent OS 6.9 I have the following results:
In [71]: a = np.random.random((10, 10000000))
In [72]: ind = np.unique(np.random.randint(10, 9000000, 100000))
In [73]: ind2 = np.append([0], ind)
In [74]: out = np.concatenate([np.sum(vv, axis=1)[:, None] for vv in np.split(a, ind, axis=1)], axis=1)
In [75]: out2 = np.add.reduceat(a, ind2, axis=1)
In [83]: np.allclose(out, out2)
Out[83]: True
In [84]: %timeit out = np.concatenate([np.sum(vv, axis=1)[:, None] for vv in np.split(a, ind, axis=1)], axis=1)
2.7 s ± 40.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [85]: %timeit out2 = np.add.reduceat(a, ind2, axis=1)
179 ms ± 15.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
That's a good 93 % speed gain (or factor 15 faster) over the list concatenation :-)
Great !
I am trying to write a function in Fortran that multiplies a number of matrices with different weights and then adds them together to form a single matrix. I have identified that this process is the bottleneck in my program (this weighting will be made many times for a single run of the program, with different weights). Right now I'm trying to make it run faster by switching from Matlab to Fortran. I am a newbie at Fortran so I appreciate all help.
In Matlab the fastest way I have found to make such a computation looks like this:
function B = weight_matrices()
n = 46;
m = 1800;
A = rand(n,m,m);
w = rand(n,1);
tic;
B = squeeze(sum(bsxfun(#times,w,A),1));
toc;
The line where B is assigned runs in about 0.9 seconds on my machine (Matlab R2012b, MacBook Pro 13" retina, 2.5 GHz Intel Core i5, 8 GB 1600 MHz DDR3). It should be noted that for my problem, the tensor A will be the same (constant) for the whole run of the program (after initialization), but w can take any values. Also, typical values of n and m are used here, meaning that the tensor A will have a size of about 1 GB in memory.
The clearest way I can think of writing this in Fortran is something like this:
pure function weight_matrices(w,A) result(B)
implicit none
integer, parameter :: n = 46
integer, parameter :: m = 1800
double precision, dimension(num_sizes), intent(in) :: w
double precision, dimension(num_sizes,msize,msize), intent(in) :: A
double precision, dimension(msize,msize) :: B
integer :: i
B = 0
do i = 1,n
B = B + w(i)*A(i,:,:)
end do
end function weight_matrices
This function runs in about 1.4 seconds when compiled with gfortran 4.7.2, using -O3 (function call timed with "call cpu_time(t)"). If I manually unwrap the loop into
B = w(1)*A(1,:,:)+w(2)*A(2,:,:)+ ... + w(46)*A(46,:,:)
the function takes about 0.11 seconds to run instead. This is great and means that I get a speedup of about 8 times compared to the Matlab version. However, I still have some questions on readability and performance.
First, I wonder if there is an even faster way to perform this weighting and summing of matrices. I have looked through BLAS and LAPACK, but can't find any function that seems to fit. I have also tried to put the dimension in A that enumerates the matrices as the last dimension (i.e. switching from (i,j,k) to (k,i,j) for the elements), but this resulted in slower code.
Second, this fast version is not very flexible, and actually looks quite ugly, since it is so much text for such a simple computation. For the tests I am running I would like to try to use different numbers of weights, so that the length of w will vary, to see how it affects the rest of my algorithm. However, that means I quite tedious rewrite of the assignment of B every time. Is there any way to make this more flexible, while keeping the performance the same (or better)?
Third, the tensor A will, as mentioned before, be constant during the run of the program. I have set constant scalar values in my program using the "parameter" attribute in their own module, importing them with the "use" expression into the functions/subroutines that need them. What is the best way to do the equivalent thing for the tensor A? I want to tell the compiler that this tensor will be constant, after init., so that any corresponding optimizations can be done. Note that A is typically ~1 GB in size, so it is not practical to enter it directly in the source file.
Thank you in advance for any input! :)
Perhaps you could try something like
do k=1,m
do j=1,m
B(j,k)=sum( [ ( (w(i)*A(i,j,k)), i=1,n) ])
enddo
enddo
The square brace is a newer form of (/ /), the 1d matrix (vector). The term in sum is a matrix of dimension (n) and sum sums all of those elements. This is precisely what your unwrapped code does (and is not exactly equal to the do loop you have).
I tried to refine Kyle Vanos' solution.
Therefor I decided to use sum and Fortran's vector-capabilities.
I don't know, if the results are correct, because I only looked for the timings!
Version 1: (for comparison)
B = 0
do i = 1,n
B = B + w(i)*A(i,:,:)
end do
Version 2: (from Kyle Vanos)
do k=1,m
do j=1,m
B(j,k)=sum( [ ( (w(i)*A(i,j,k)), i=1,n) ])
enddo
enddo
Version 3: (mixed-up indices, work on one row/column at a time)
do j = 1, m
B(:,j)=sum( [ ( (w(i)*A(:,i,j)), i=1,n) ], dim=1)
enddo
Version 4: (complete matrices)
B=sum( [ ( (w(i)*A(:,:,i)), i=1,n) ], dim=1)
Timing
As you can see, I had to mixup the indices to get faster execution times. The third solution is really strange because the number of the matrix is the middle index, but this is necessary for memory-order-reasons.
V1: 1.30s
V2: 0.16s
V3: 0.02s
V4: 0.03s
Concluding, I would say, that you can get a massive speedup, if you have the possibility to change order of the matrix indices in arbitrary order.
I would not hide any looping as this is usually slower. You can write it explicitely, then you'll see that the inner loop access is over the last index, making it inefficient. So, you should make sure your n dimension is the last one by storing A is A(m,m,n):
B = 0
do i = 1,n
w_tmp = w(i)
do j = 1,m
do k = 1,m
B(k,j) = B(k,j) + w_tmp*A(k,j,i)
end do
end do
end do
this should be much more efficient as you are now accessing consecutive elements in memory in the inner loop.
Another solution is to use the level 1 BLAS subroutines _AXPY (y = a*x + y):
B = 0
do i = 1,n
CALL DAXPY(m*m, w(i), A(1,1,i), 1, B(1,1), 1)
end do
With Intel MKL this should be more efficient, but again you should make sure the last index is the one which changes in the outer loop (in this case the loop you're writing). You can find the necessary arguments for this call here: MKL
EDIT: you might also want to use some parallellization? (I don't know if Matlab takes advantage of that)
EDIT2: In the answer of Kyle, the inner loop is over different values of w, which is more efficient than n times reloading B as w can be kept in cache (using A(n,m,m)):
B = 0
do i = 1,m
do j = 1,m
B(j,i)=0.0d0
do k = 1,n
B(j,i) = B(j,i) + w(k)*A(k,j,i)
end do
end do
end do
This explicit looping performs about 10% better as the code of Kyle which uses whole-array operations. Bandwidth with ifort -O3 -xHost is ~6600 MB/s, with gfortran -O3 it's ~6000 MB/s, and the whole-array version with either compiler is also around 6000 MB/s.
I know this is an old post, however I will be glad to bring my contribution as I played with most of the posted solutions.
By adding a local unroll for the weights loop (from Steabert's answer ) gives me a little speed-up compared to the complete unroll version (from 10% to 80% with different size of the matrices). The partial unrolling may help the compiler to vectorize the 4 operations in one SSE call.
pure function weight_matrices_partial_unroll_4(w,A) result(B)
implicit none
integer, parameter :: n = 46
integer, parameter :: m = 1800
real(8), intent(in) :: w(n)
real(8), intent(in) :: A(n,m,m)
real(8) :: B(m,m)
real(8) :: Btemp(4)
integer :: i, j, k, l, ndiv, nmod, roll
!==================================================
roll = 4
ndiv = n / roll
nmod = mod( n, roll )
do i = 1,m
do j = 1,m
B(j,i)=0.0d0
k = 1
do l = 1,ndiv
Btemp(1) = w(k )*A(k ,j,i)
Btemp(2) = w(k+1)*A(k+1,j,i)
Btemp(3) = w(k+2)*A(k+2,j,i)
Btemp(4) = w(k+3)*A(k+3,j,i)
k = k + roll
B(j,i) = B(j,i) + sum( Btemp )
end do
do l = 1,nmod !---- process the rest of the loop
B(j,i) = B(j,i) + w(k)*A(k,j,i)
k = k + 1
enddo
end do
end do
end function
int x = n / 3; // <-- make this faster
// for instance
int a = n * 3; // <-- normal integer multiplication
int b = (n << 1) + n; // <-- potentially faster multiplication
The guy who said "leave it to the compiler" was right, but I don't have the "reputation" to mod him up or comment. I asked gcc to compile int test(int a) { return a / 3; } for an ix86 and then disassembled the output. Just for academic interest, what it's doing is roughly multiplying by 0x55555556 and then taking the top 32 bits of the 64 bit result of that. You can demonstrate this to yourself with eg:
$ ruby -e 'puts(60000 * 0x55555556 >> 32)'
20000
$ ruby -e 'puts(72 * 0x55555556 >> 32)'
24
$
The wikipedia page on Montgomery division is hard to read but fortunately the compiler guys have done it so you don't have to.
This is the fastest as the compiler will optimize it if it can depending on the output processor.
int a;
int b;
a = some value;
b = a / 3;
There is a faster way to do it if you know the ranges of the values, for example, if you are dividing a signed integer by 3 and you know the range of the value to be divided is 0 to 768, then you can multiply it by a factor and shift it to the left by a power of 2 to that factor divided by 3.
eg.
Range 0 -> 768
you could use shifting of 10 bits, which multiplying by 1024, you want to divide by 3 so your multiplier should be 1024 / 3 = 341,
so you can now use (x * 341) >> 10
(Make sure the shift is a signed shift if using signed integers), also make sure the shift is an actually shift and not a bit ROLL
This will effectively divide the value 3, and will run at about 1.6 times the speed as a natural divide by 3 on a standard x86 / x64 CPU.
Of course the only reason you can make this optimization when the compiler cant is because the compiler does not know the maximum range of X and therefore cannot make this determination, but you as the programmer can.
Sometime it may even be more beneficial to move the value into a larger value and then do the same thing, ie. if you have an int of full range you could make it an 64-bit value and then do the multiply and shift instead of dividing by 3.
I had to do this recently to speed up image processing, i needed to find the average of 3 color channels, each color channel with a byte range (0 - 255). red green and blue.
At first i just simply used:
avg = (r + g + b) / 3;
(So r + g + b has a maximum of 768 and a minimum of 0, because each channel is a byte 0 - 255)
After millions of iterations the entire operation took 36 milliseconds.
I changed the line to:
avg = (r + g + b) * 341 >> 10;
And that took it down to 22 milliseconds, its amazing what can be done with a little ingenuity.
This speed up occurred in C# even though I had optimisations turned on and was running the program natively without debugging info and not through the IDE.
See How To Divide By 3 for an extended discussion of more efficiently dividing by 3, focused on doing FPGA arithmetic operations.
Also relevant:
Optimizing integer divisions with Multiply Shift in C#
Depending on your platform and depending on your C compiler, a native solution like just using
y = x / 3
Can be fast or it can be awfully slow (even if division is done entirely in hardware, if it is done using a DIV instruction, this instruction is about 3 to 4 times slower than a multiplication on modern CPUs). Very good C compilers with optimization flags turned on may optimize this operation, but if you want to be sure, you are better off optimizing it yourself.
For optimization it is important to have integer numbers of a known size. In C int has no known size (it can vary by platform and compiler!), so you are better using C99 fixed-size integers. The code below assumes that you want to divide an unsigned 32-bit integer by three and that you C compiler knows about 64 bit integer numbers (NOTE: Even on a 32 bit CPU architecture most C compilers can handle 64 bit integers just fine):
static inline uint32_t divby3 (
uint32_t divideMe
) {
return (uint32_t)(((uint64_t)0xAAAAAAABULL * divideMe) >> 33);
}
As crazy as this might sound, but the method above indeed does divide by 3. All it needs for doing so is a single 64 bit multiplication and a shift (like I said, multiplications might be 3 to 4 times faster than divisions on your CPU). In a 64 bit application this code will be a lot faster than in a 32 bit application (in a 32 bit application multiplying two 64 bit numbers take 3 multiplications and 3 additions on 32 bit values) - however, it might be still faster than a division on a 32 bit machine.
On the other hand, if your compiler is a very good one and knows the trick how to optimize integer division by a constant (latest GCC does, I just checked), it will generate the code above anyway (GCC will create exactly this code for "/3" if you enable at least optimization level 1). For other compilers... you cannot rely or expect that it will use tricks like that, even though this method is very well documented and mentioned everywhere on the Internet.
Problem is that it only works for constant numbers, not for variable ones. You always need to know the magic number (here 0xAAAAAAAB) and the correct operations after the multiplication (shifts and/or additions in most cases) and both is different depending on the number you want to divide by and both take too much CPU time to calculate them on the fly (that would be slower than hardware division). However, it's easy for a compiler to calculate these during compile time (where one second more or less compile time plays hardly a role).
For 64 bit numbers:
uint64_t divBy3(uint64_t x)
{
return x*12297829382473034411ULL;
}
However this isn't the truncating integer division you might expect.
It works correctly if the number is already divisible by 3, but it returns a huge number if it isn't.
For example if you run it on for example 11, it returns 6148914691236517209. This looks like a garbage but it's in fact the correct answer: multiply it by 3 and you get back the 11!
If you are looking for the truncating division, then just use the / operator. I highly doubt you can get much faster than that.
Theory:
64 bit unsigned arithmetic is a modulo 2^64 arithmetic.
This means for each integer which is coprime with the 2^64 modulus (essentially all odd numbers) there exists a multiplicative inverse which you can use to multiply with instead of division. This magic number can be obtained by solving the 3*x + 2^64*y = 1 equation using the Extended Euclidean Algorithm.
What if you really don't want to multiply or divide? Here is is an approximation I just invented. It works because (x/3) = (x/4) + (x/12). But since (x/12) = (x/4) / 3 we just have to repeat the process until its good enough.
#include <stdio.h>
void main()
{
int n = 1000;
int a,b;
a = n >> 2;
b = (a >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
printf("a=%d\n", a);
}
The result is 330. It could be made more accurate using b = ((b+2)>>2); to account for rounding.
If you are allowed to multiply, just pick a suitable approximation for (1/3), with a power-of-2 divisor. For example, n * (1/3) ~= n * 43 / 128 = (n * 43) >> 7.
This technique is most useful in Indiana.
I don't know if it's faster but if you want to use a bitwise operator to perform binary division you can use the shift and subtract method described at this page:
Set quotient to 0
Align leftmost digits in dividend and divisor
Repeat:
If that portion of the dividend above the divisor is greater than or equal to the divisor:
Then subtract divisor from that portion of the dividend and
Concatentate 1 to the right hand end of the quotient
Else concatentate 0 to the right hand end of the quotient
Shift the divisor one place right
Until dividend is less than the divisor:
quotient is correct, dividend is remainder
STOP
For really large integer division (e.g. numbers bigger than 64bit) you can represent your number as an int[] and perform division quite fast by taking two digits at a time and divide them by 3. The remainder will be part of the next two digits and so forth.
eg. 11004 / 3 you say
11/3 = 3, remaineder = 2 (from 11-3*3)
20/3 = 6, remainder = 2 (from 20-6*3)
20/3 = 6, remainder = 2 (from 20-6*3)
24/3 = 8, remainder = 0
hence the result 3668
internal static List<int> Div3(int[] a)
{
int remainder = 0;
var res = new List<int>();
for (int i = 0; i < a.Length; i++)
{
var val = remainder + a[i];
var div = val/3;
remainder = 10*(val%3);
if (div > 9)
{
res.Add(div/10);
res.Add(div%10);
}
else
res.Add(div);
}
if (res[0] == 0) res.RemoveAt(0);
return res;
}
If you really want to see this article on integer division, but it only has academic merit ... it would be an interesting application that actually needed to perform that benefited from that kind of trick.
Easy computation ... at most n iterations where n is your number of bits:
uint8_t divideby3(uint8_t x)
{
uint8_t answer =0;
do
{
x>>=1;
answer+=x;
x=-x;
}while(x);
return answer;
}
A lookup table approach would also be faster in some architectures.
uint8_t DivBy3LU(uint8_t u8Operand)
{
uint8_t ai8Div3 = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ....];
return ai8Div3[u8Operand];
}