embedded system kill process: Is it safe? Why not? - kill

I am designing a networked embedded application, that can span multiple machines. The applications is divided between these machines.
Now, when it comes to exerting explicit control on this system, there are two options:
(1). A nicely managed strategy in which the application nicely releases resources, and goes out. No memory leaks, and it all looks good.
(2). I am facing criticism from people on the managed approach: Why is it not just as good to kill the process, in each machine separately? My only defence is that it is not nice, and may leave the system in an unstable state. This argument does not cut with them.
Can anyone please help? I know that kill is not the best way, but why? Also, are there some references? I will need to include them in my work.
Sorry, this problem may be discusses ad nauseam, but I cant get any "references" to support my point.
Thanks for any help.

Here's a few things I did find regarding cleanup of resources with killing the process
One example
Another Example
Socket Example

Related

Watching Other Applications With Ruby

I was wondering if it was even possible with RUBY to watch other applications and if a certain application is below a memory threshold it kills it and starts it again.
Operating System would be Windows 7+
Things I need to be able to do:
Monitor Memory
Determine between different processes
Kill Processes
Start new process (bat script or powershell)
Start monitoring again
The watched application running would run high memory when it is working and that is good. If it goes below 1gb I want this application to kill it. Of course when it restarts it would give a grace period for it to load the RAM.
I was going to use the Shoes gui framework to make something nice to wrap around it. It would be theoretically nice to have some sort of auto detection if the application is running.
If this is possible, but requires Gem you think may help I would like to hear about them.
I found Usagewatch Gem seems to be headed the right way, but from a glance at the documentation it is general and I need to be specific about which process I am watching.
If this question is not appropriate here please let me know via a comment and I will remove it and/or move it to a proper place for this type of question to be asked.
I appreciate your time and effort into helping me with this endeavor.
Thank You
I would suggest using the win32 gem. Than start by looking through the Win32 Api documentation. This will give you the most flexible solution and will give you the whole system programming power for Windows. My advice is to make some wrapper functions about the things connected with Windows you need and use them that way, so if you find a more appriete solution you can switch to it easily.

Guidance : I want to work at Process Information level

I couldn't find a suitable title for this. I'm going to express my query with examples.
Consider following softwares:
Process explorer from sysinternals (an advanced task manager)
Resource Manager : resmon.exe (lists each and every fine detail about resource usage about each process).
For me these softwares seems like miracles. I wonder how these are even made. C'mon how a user process can know such fine details about other processes? Who tells this software, what processes are running and what all resources are utilized? Which dlls are used? etc..
Does windows operating system give these software that information? I mean though (obviously the most lower level api) WIN32API. Are there some functions,which on calling return these values
abstractly say:
GetAllRunningProcesses()
GetMemoryUsedByProcess(Process* proc)
etc..
Other similar applications are
network Packet Capture software. How does it get information about all those packets? It clearly sits just infront of the NIC card. How is it possible?
Anti-virus: It scans memory for viruses. Intercepts other processes. Acts like a sandbox for the user application space. How? How??
If its WIN32API. I swear, I'm going to master it.
I don't want to create a multi-threaded application. I want to get information about other multithreaded applications.
I don't want to create a program which communicates using sockets. I want to learn how to learn how to capture all communication packets.
I actually want to work at the lower level. But I don't know, what should I learn. Please guide me in proper direction.
This is really a pretty open-ended question. For things like a list of running processes, look up "PSAPI" or "Toolhelp32". For memory information about a particular process, you can use VirtualQuery.
Capturing network packets is normally done by installing a device driver. If you look, you should be able to find a fair amount about how to write device drivers, though don't expect to create wonders overnight, and do expect to crash your machine a few times in the process (device drivers run in kernel mode, so it's easy for a mistake to crash the machine hard).
I can't say as much with any certainty about anti-virus, because I've never tried to write one. My immediate guess would be that their primary technique is API hooking. There's probably more to it than that, but offhand I've never spent enough time looking at them to know what.
Mark Russinovich's classic, Windows Internals, is the go-to book if you want to get deep in this kind of stuff. I notice that the just-released 5th edition includes Vista. Here's a sample chapter to peek at.
If you like Process Explorer, this is the guy who wrote that, and there are lots of examples using it in the book.
Plus, at 1232 hardcover pages, you can use it to press your clothes.

"Works on my machine" - How to fix non-reproducible bugs?

Very occasionally, despite all testing efforts, I get hit with a bug report from a customer that I simply can't reproduce in the office.
(Apologies to Jeff for the 'borrowing' of the badge)
I have a few "tools" that I can use to try and locate and fix these, but it always feels a bit like I'm knife-and-forking it:-
Asking for more and more context from the customer: (systeminfo)
Log files from our application
Ad-hoc tests with the customer to attempt to change the behaviour
Providing customer with a new build with additional diagnostics
Thinking about the problem in the bath...
Site visit (assuming customer is somewhere warm and sunny)
Are there set procedures, or other techniques than anyone uses to resolve problems like this?
One of the attributes of good debuggers, I think is that they always have a lot of weapons in their toolkit. They never seem to get "stuck" for too long and there is always something else for them to try. Some of the things I've been known to do:
ask for memory dumps
install a remote debugger on a client machine
add tracing code to builds
add logging code for debugging purposes
add performance counters
add configuration parameters to various bits of suspicious code so I can turn on and off features
rewrite and refactor suspicious code
try to replicate the issue locally on a different OS or machine
use debugging tools such as application verifier
use 3rd party load generation tools
write simulation tools in-house for load generation when the above failed
use tools like Glowcode to analyse memory leaks and performance issues
reinstall the client machine from scratch
get registry dumps and apply them locally
use registry and file watcher tools
Eventually, I find the bug just gives up out of some kind of awe at my persistence. Or the client realises that it's probably a machine or client side install or configuration issue.
Extensive logging usually helps.
The easiest way is always to see the customer in action (assuming that its readily reproducible by the customer). Oftentimes, problems arise due to issues with the customer's computer environment, conflicts with other programs, etc - these are details which you will not be able to catch on your dev rig. So a site visit might be useful; but if that's not convenient, tools like RealVNC might help as well in letting you see the customer 'do their thing'.
(watching the customer in action also allows you to catch them out in any WTF moments that they might have)
Now, if the problem is intermittent, then things get somewhat more complicated. The best way to get around this problem would be to log useful information in places where you guess problems could occur and perhaps use a tool like Splunk to index the log files during analysis. A diagnostic build (i.e. with extra logging) might be useful in this case.
I'm just in the middle of implementing an automated error reporting system that sends back to me information (currently via email although you could use a webservice) from any exception encountered by the app.
That way I get (nearly) all the information that I would do if I was sitting in front of VS2008 and it really helps me to work out what the problem is.
The customers are also usually (sorta) impressed that I know about their problem as soon as they encounter it!
Also, if you use the Application.ThreadException error handler you can send back info on unexpected exceptions too!
We use all the methods you mention progressively starting with the easiest and proceeding to the harder.
However you forget that sometimes hardware is at fault. For example, memory could be malfunctioning and some computation-intensive code will behave strangely throwing exceptions with weird diagnostics. Of cource, it works on your machine, since you don't have faulty hardware.
Experience is needed to identify such errors and insist that customer tries to install the program on another machine or does hardware check. One thing that helps greatly is good error handling - when your code throws an exception it should provide details, not just indicate that something is bad. With good error indication it's easier to identify such suspicious issues related to faulty hardware.
I think one of the most important things is the ability to ask sensible questions around what the customer has reported... More often than not they're not mentioning something that they don't see as relevant, but is actually key.
Telepathy would also be useful...
We've had good success using EurekaLog with it posting directly to FogBugz. This gets us a bug report containing a call stack, along with related system info (other processes running, memory, network details etc) and a screen shot. Occasionally customers enter further info too, which is helpful. It's certainly, in most cases, made it much easier and quicker to fix bugs.
One technique I've found useful is building an application with an integrated "diagnostic" mode (enabled by a command line switch when you launch the app). That certainly avoids the need to create custom builds with additional logging.
Otherwise, it sounds like what you're doing is as good an approach as any.
Copilot (assuming customer is somewhere cold and rainy :)
The usual procedure for this is to expect something like this will happen and add a ton of logging information. Of course you don't enable it from the beginning, but only when this happens.
Usually customers don't like to have to install a new version or some diagnostic tools. It is not their job to do your debugging. And visiting a client for cases like these is rarely an option. You must involve the client as little as possible. Changing a switch and sending you a log file is OK - anything more than this is too much.
I like the alternative of thinking the problem at the bath. I will start from trying to find out the differences between my machine and the client's configuration.
As a software engineer doing webstuff (booking/shop/member systems etc) the most important thing for us is to get as much information from the customer as possible.
Going from
it's broke!
to
it's broke! & here are screenshots of
every option I picked whilst
generating this particular report
reduces the amount of time it takes us to reproduce and fix an issue no end.
It may be obvious, but it takes a fair amount of chasing to get this kind of information from our customers sometimes! But it's worth it just for those moments you find they're not actually doing what they say they are.
I had these problems also. My solution was to add lots of logging and give the customer a debug build with all the possible debug information. Then make sure dr Watson (it was on Windows NT) created a memory dump with enough information.
After loading the memory dump in the debugger I could find out where and why it crashed.
EDIT: Oh, this obviously only works if the application terminates violently...
I think following the trail of the actions user took can lead us to the reasons of failure or selective failures. But most of the times users are at loss to precisely describe the interactions with the applications, the automatic screenshot taking (if it is desktop app. for .net app you can check Jeff's UnhandledExceptionHandler). Logging all the important action which change state of the objects can also help us in understanding it.
I don't have this problem very often, but if I did, I would use a screen sharing or recorded application to watch the user in action without having to go there (unless, as you said, it's warm and sunny and the company pays the trip).
I have recently been investigating such an issue myself. Over the course of my carrier I have learnt that, while computer systems may be complex, they are predictable so have faith that you can find the problem. My approach to these kinds of issues two fold:
1) Gather as much detailed information as possible from the customer about their failure and analyse it meticulously for patterns. Gather multiple sets of data for multiple failure occurrences to build up a clearer picture.
2) Try and reproduce the failure in house. Continue to make your system more and more similar to the customers system until you can reproduce it, the system is identical or it becomes impractical to make it more similar.
While doing this consider:
1)What differences exist between this system and other working systems.
2)What has recently changed in your product or the customers configuration that has caused the problem to start occurring.
Regards
Depending on the issue you could get WinDbg dumps, they normally give a pretty good idea of what is going on. We have diagnosed quite a few problems that weren't crashed from minidumps.
For .Net apps we also was Trace.Writeline then we can get the user to fire up DbgView and send us the output.
Its very complicated issue . I was thinking writing some procedure for this . I just made some procedure for this non-reproducible bug . it might be helpful
When the Bug accorded .. There are several factors it might to occur.
I am Sure all bugs are reproducible . I always keep eye for these kind of issues..
Get the System Information
what other process the customer did before that.
Time period it occurs . its rare or frequent
its next action happened after the issue ( its always same or different )
Find the factors for this bug ( as developer )
Find the exact position where this issue happened .
Find ALL THE SYSTEM Factors on that time
check all memory leaks or user error issue or wrong condition in code
List out all facotrs to may cause this issue.
How the each factors are affected this and wat are the data is holding those factors
Check memeory issues happened
check the customer have the current update code like yours
check all log from atleast 1 month and find any upnormal operation happened . keep on note
Just a short anecdote (hence 'community wiki'): Last week I thought it was a clever idea in a Django app to import the module pprint for pretty printing Python data only if DEBUG was True:
if settings.DEBUG:
from pprint import pprint
Then I used here and there the pprint command as debugging statement:
pprint(somevar) # show somevar on the console
After finishing the work, I tested the app with setting DEBUG=False. You can guess what happened: The site broke with HTTP500 errors all over the place, and I did not know why, because there is no traceback if DEBUG is False. I was puzzled that the errors disappeared magically, if I switched back to debug mode.
It took me 1-2 hours of putting print statements all over the code to find that the code crashes at exactly the above pprint() line. Then it took me another half an hour to convince myself to stop banging my head on the table.
Now comes the moral of the story:
Not every thing that looks like a clever idea in the first view is such savvy in the end.
An important point to look at for debugging these errors are all configuration options and platform switches your code by itself makes. This can be quite a lot more than just some user preferences. Document good, if you make an assumption about the user's platform (e.g., if you test for Win/Mac/Linux only, will your code crash on BSD or Solaris?)
Cheers,
However tough a non-reproducible problem is - we can still have a structured and strategic approach to solve them - and I can say through experience that it requires out of box thinking in 50% of the cases. Generally speaking, one can categorize the problems into different types which helps to identify what tool to be used. For example if you have a non-reproducible application crash issue or a memory issue you can use profilers and nail down the issue caused in the particular functionality.
Also, one of the most important approach is inforamation rich logging. I also use a lot of enums to describe the state of the process depending on the scenario in question. for exampe, I used like Initiated, Triggered, Running, Waiting Repaired etc to describe the schedules states and saved them to DB at different stages.
Not mentioned yet, but "directed code review" is one good solution, especially if you didn't do a proper review (at least 1 hour per 100 lines of code) before release.
I have also seen impressive demos of AppSight Suite, which is basically an advanced environment monitoring and logging tool. It allows the customer to record what happens on his machine in an extensive but fairly compact log file which you can then replay.
As many have mentioned, extensive logging, and asking the client for the log files when something goes wrong. In addition, as I worked more with web apps, I'll also provide detailed, but succinct deployment documentation (e.g., deployment steps, environmental resources that need to be set up etc).
Here are common problems I've seen that lead to the types of problem you are describing:
Environment not set up properly (e.g., missing environment variables, data sources etc).
Application not fully deployed (e.g., database schema not deployed).
Difference in operating system configuration (default character encoding being the most common culprit for me).
Most of the time, these issues can be identified through the log content.
You can use tools like Microsoft SharedView or TeamViewer to connect to remote PC and inspect problem directly on site. Of course, you'll need cooperation with customer.

BOINC: Is there an easy example how to code a programm for it and how to implement it into their client/server system?

I did a numeric method as my diploma thesis and coded it in java. It needs a lot of computational time when adequately executed. So I looked for an alternative and found BOINC. Unfortunately I didn't have time for doing my method in BOINC, because I'm an Aerospace student and not a programmer and I decided to keep my priority on my java program. Now it's finished an I still would like to port this to BOINC environment.
Unfortunately I'm learning in re-doing examples and I couldn't find any, neither on the official site http://boinc.berkeley.edu nor in the internet.
So do you know a good and easy example or do you have any experience in BOINC and would like to start a new platform for such a boinc project?
I'm realistic about my method, that it wouldn't run 24/7, because there aren't as many work units as for seti or folding projects. So I would like to have a platform for more than just my project so that another platform project can be worked on, when one part of the project does not have any work units at that moment.
But to start this, I would keep it simple and just want to know how to code it and use it in the client and server system. It doesn't matter what the example projects will work on, as long as it is simple enough, that I can understand it and extending it for my method.
Thank you in advance, Andreas! :)
PS: I know that BOINC supports JAVA as a programming language, and my method is coded in JAVA.
As far as I know, JavaApps is just an idea; I don't know if anyone actually tried it in a real BOINC project. And it's Windows-only. And it seems to be a bit of a pain to redistribute the entire JRE as part of the BOINC application (both technically and legally).
Also, I generally dislike using that kind of “wrapper” where the science app (using the BOINC API) starts another process that then does the real computation. It's usually unreliable. There are lots of things that could go wrong with the wrapper, especially related to controlling the child process (eg. if something kills the wrapper, the child process has to quit too).
However, I just found something pretty interesting that may let me do a better Java wrapper for BOINC... Stay tuned! (but don't hold your breath either; it's the holidays!)
Meanwhile, I suggest you start by reading BOINC wiki and setting up a server with a “hello world” application; and if you have any trouble, ask a specific question about your trouble either here or in the boinc_projects mailing list.
(Of course, payin’ me to install the server for you is also an option ;) but I can't guarantee anything; not even my mere availability at this time of the year)

How do you fix a bug you can't replicate?

The question says it all. If you have a bug that multiple users report, but there is no record of the bug occurring in the log, nor can the bug be repeated, no matter how hard you try, how do you fix it? Or even can you?
I am sure this has happened to many of you out there. What did you do in this situation, and what was the final outcome?
Edit:
I am more interested in what was done about an unfindable bug, not an unresolvable bug. Unresolvable bugs are such that you at least know that there is a problem and have a starting point, in most cases, for searching for it. In the case of an unfindable one, what do you do? Can you even do anything at all?
Language
Different programming languages will have their own flavour of bugs.
C
Adding debug statements can make the problem impossible to duplicate because the debug statement itself shifts pointers far enough to avoid a SEGFAULT---also known as Heisenbugs. Pointer issues are arduous to track and replicate, but debuggers can help (such as GDB and DDD).
Java
An application that has multiple threads might only show its bugs with a very specific timing or sequence of events. Improper concurrency implementations can cause deadlocks in situations that are difficult to replicate.
JavaScript
Some web browsers are notorious for memory leaks. JavaScript code that runs fine in one browser might cause incorrect behaviour in another browser. Using third-party libraries that have been rigorously tested by thousands of users can be advantageous to avoid certain obscure bugs.
Environment
Depending on the complexity of the environment in which the application (that has the bug) is running, the only recourse might be to simplify the environment. Does the application run:
on a server?
on a desktop?
in a web browser?
In what environment does the application produce the problem?
development?
test?
production?
Exit extraneous applications, kill background tasks, stop all scheduled events (cron jobs), eliminate plug-ins, and uninstall browser add-ons.
Networking
As networking is essential to so many applications:
Ensure stable network connections, including wireless signals.
Does the software reconnect after network failures robustly?
Do all connections get closed properly so as to release file descriptors?
Are people using the machine who shouldn't be?
Are rogue devices interacting with the machine's network?
Are there factories or radio towers nearby that can cause interference?
Do packet sizes and frequency fall within nominal ranges?
Are packets being monitored for loss?
Are all network devices adequate for heavy bandwidth usage?
Consistency
Eliminate as many unknowns as possible:
Isolate architectural components.
Remove non-essential, or possibly problematic (conflicting), elements.
Deactivate different application modules.
Remove all differences between production, test, and development. Use the same hardware. Follow the exact same steps, perfectly, to setup the computers. Consistency is key.
Logging
Use liberal amounts of logging to correlate the time events happened. Examine logs for any obvious errors, timing issues, etc.
Hardware
If the software seems okay, consider hardware faults:
Are the physical network connections solid?
Are there any loose cables?
Are chips seated properly?
Do all cables have clean connections?
Is the working environment clean and free of dust?
Have any hidden devices or cables been damaged by rodents or insects?
Are there bad blocks on drives?
Are the CPU fans working?
Can the motherboard power all components? (CPU, network card, video card, drives, etc.)
Could electromagnetic interference be the culprit?
And mostly for embedded:
Insufficient supply bypassing?
Board contamination?
Bad solder joints / bad reflow?
CPU not reset when supply voltages are out of tolerance?
Bad resets because supply rails are back-powered from I/O ports and don't fully discharge?
Latch-up?
Floating input pins?
Insufficient (sometimes negative) noise margins on logic levels?
Insufficient (sometimes negative) timing margins?
Tin whiskers?
ESD damage?
ESD upsets?
Chip errata?
Interface misuse (e.g. I2C off-board or in the presence of high-power signals)?
Race conditions?
Counterfeit components?
Network vs. Local
What happens when you run the application locally (i.e., not across the network)? Are other servers experiencing the same issues? Is the database remote? Can you use a local database?
Firmware
In between hardware and software is firmware.
Is the computer BIOS up-to-date?
Is the BIOS battery working?
Are the BIOS clock and system clock synchronized?
Time and Statistics
Timing issues are difficult to track:
When does the problem happen?
How frequently?
What other systems are running at that time?
Is the application time-sensitive (e.g., will leap days or leap seconds cause issues)?
Gather hard numerical data on the problem. A problem that might, at first, appear random, might actually have a pattern.
Change Management
Sometimes problems appear after a system upgrade.
When did the problem first start?
What changed in the environment (hardware and software)?
What happens after rolling back to a previous version?
What differences exist between the problematic version and good version?
Library Management
Different operating systems have different ways of distributing conflicting libraries:
Windows has DLL Hell.
Unix can have numerous broken symbolic links.
Java library files can be equally nightmarish to resolve.
Perform a fresh install of the operating system, and include only the supporting software required for your application.
Java
Make sure every library is used only once. Sometimes application containers have a different version of a library than the application itself. This might not be possible to replicate in the development environment.
Use a library management tool such as Maven or Ivy.
Debugging
Code a detection method that triggers a notification (e.g., log, e-mail, pop-up, pager beep) when the bug happens. Use automated testing to submit data into the application. Use random data. Use data that covers known and possible edge cases. Eventually the bug should reappear.
Sleep
It is worth reiterating what others have mentioned: sleep on it. Spend time away from the problem, finish other tasks (like documentation). Be physically distant from computers and get some exercise.
Code Review
Walk through the code, line-by-line, and describe what every line does to yourself, a co-worker, or a rubber duck. This may lead to insights on how to reproduce the bug.
Cosmic Radiation
Cosmic Rays can flip bits. This is not as big as a problem in the past due to modern error checking of memory. Software for hardware that leaves Earth's protection is subject to issues that simply cannot be replicated due to the randomness of cosmic radiation.
Tools
Sometimes, albeit infrequently, the compiler will introduce a bug, especially for niche tools (e.g. a C micro-controller compiler suffering from a symbol table overflow). Is it possible to use a different compiler? Could any other tool in the tool-chain be introducing issues?
If it's a GUI app, it's invaluable to watch the customer generate the error (or try to). They'll no doubt being doing something you'd never have guessed they were doing (not wrongly, just differently).
Otherwise, concentrate your logging in that area. Log most everything (you can pull it out later) and get your app to dump its environment as well. e.g. machine type, VM type, encoding used.
Does your app report a version number, a build number, etc.? You need this to determine precisely which version you're debugging (or not!).
If you can instrument your app (e.g. by using JMX if you're in the Java world) then instrument the area in question. Store stats e.g. requests+parameters, time made, etc. Make use of buffers to store the last 'n' requests/responses/object versions/whatever, and dump them out when the user reports an issue.
If you can't replicate it, you may fix it, but can't know that you've fixed it.
I've made my best explanation about how the bug was triggered (even if I didn't know how that situation could come about), fixed that, and made sure that if the bug surfaced again, our notification mechanisms would let a future developer know the things that I wish I had known. In practice, this meant adding log events when the paths which could trigger the bug were crossed, and metrics for related resources were recorded. And, of course, making sure that the tests exercised the code well in general.
Deciding what notifications to add is a feasability and triage question. So is deciding on how much developer time to spend on the bug in the first place. It can't be answered without knowing how important the bug is.
I've had good outcomes (didn't show up again, and the code was better for it), and bad (spent too much time not fixing the problem, whether the bug ended up fixed or not). That's what estimates and issue priorities are for.
Sometimes I just have to sit and study the code until I find the bug. Try to prove that the bug is impossible, and in the process you may figure out where you might be mistaken. If you actually succeed in convincing yourself it's impossible, assume you messed up somewhere.
It may help to add a bunch of error checking and assertions to confirm or deny your beliefs/assumptions. Something may fail that you'd never expect to.
It can be difficult, and sometimes near impossible. But my experience is, that you will sooner or later be able to reproduce and fix the bug, if you spend enough time on it (if that spent time is worth it, is another matter).
General suggestions that might help in this situation.
Add more logging, if possible, so that you have more data the next time the bug appears.
Ask the users, if they can replicate the bug. If yes, you can have them replicate it while watching over their shoulder, and hopefully find out, what triggers the bug.
Make random changes until something works :-)
Assuming you have already added all the logging that you think would help and it didn't... two things spring to mind:
Work backwards from the reported symptom. Think to yourself.. "it I wanted to produce the symptom that was reported, what bit of code would I need to be executing, and how would I get to it, and how would I get to that?" D leads to C leads to B leads to A. Accept that if a bug is not reproducible, then normal methods won't help. I've had to stare at code for many hours with these kind of thought processes going on to find some bugs. Usually it turns out to be something really stupid.
Remember Bob's first law of debugging: if you can't find something, it's because you're looking in the wrong place :-)
Think. Hard. Lock yourself away, admit no interuptions.
I once had a bug where the evidence was a hex dump of a corrupt database. The chains of pointers were systematically screwed up. All the user's programs, and our database software, worked faultlessly in testing. I stared at it for a week (it was an important customer), and after eliminating dozens of possible ideas, I realised that the data was spread across two physical files and the corruption occurred where the chains crossed file boundaries. I realized that if a backup/restore operation failed at a critical point, the two files could end up "out of sync", restored to different time points. If you then ran one of the customer's programs on the already-corrupt data, it would produce exactly the knotted chains of pointers I was seeing. I then demonstrated a sequence of events that reproduced the corruption exactly.
modify the code where you think the problem is happening, so extra debug info is recorded somewhere. when it happens next time, you will have what your need to solve the problem.
There are two types of bugs you can't replicate. The kind you discovered, and the kind someone else discovered.
If you discovered the bug, you should be able to replicate it. If you can't replicate it, then you simply haven't considered all of the contributing factors leading towards the bug. This is why whenever you have a bug, you should document it. Save the log, get a screenshot, etc. If you don't, then how can you even prove the bug really exists? Maybe it's just a false memory?
If someone else discovered a bug, and you can't replicate it, obviously ask them to replicate it. If they can't replicate it, then you try to replicate it. If you can't replicate it quickly, ignore it.
I know that sounds bad, but I think it is justified. The amount of time it will take you to replicate a bug that someone else discovered is very large. If the bug is real, it will happen again naturally. Someone, maybe even you, will stumble across it again. If it is difficult to replicate, then it is also rare, and probably won't cause too much damage if it happens a few more times.
You can be a lot more productive if you spend your time actually working, fixing other bugs and writing new code, than you will be trying to replicate a mystery bug that you can't even guarantee actually exists. Just wait for it to appear again naturally, then you will be able to spend all your time fixing it, rather than wasting your time trying to reveal it.
Discuss the problem, read code, often quite a lot of it. Often we do it in pairs, because you can usually eliminate the possibilities analytically quite quickly.
Start by looking at what tools you have available to you. For example crashes on a Windows platform go to WinQual, so if this is your case you now have crash dump information. Do you can static analysis tools that spot potential bugs, runtime analysis tools, profiling tools?
Then look at the input and output. Anything similar about the inputs in situations when users report the error, or anything out of place in the output? Compile a list of reports and look for patterns.
Finally, as David stated, stare at the code.
Ask user to give you a remote access for his computer and see everything yourself. Ask user to make a small video of how he reproduces this bug and send it to you.
Sure both are not always possible but if they are it may clarify some things. The common way of finding bugs are still the same: separating parts that may cause bug, trying to understand what`s happening, narrowing codespace that could cause the bug.
There are tools like gotomeeting.com, which you can use to share screen with your user and observe the behaviour. There could be many potential problems like number of softwares installed on their machines, some tools utility conflicting with your program. I believe gotomeeting, is not the only solution, but there could be timeout issues, slow internet issue.
Most of times I would say softwares do not report you correct error messages, for example, in case of java and c# track every exceptions.. dont catch all but keep a point where you can catch and log. UI Bugs are difficult to solve unless you use remote desktop tools. And most of time it could be bug in even third party software.
If you work on a real significant sized application, you probably have a queue of 1,000 bugs, most of which are definitely reproducible.
Therefore, I'm afraid I'd probably close the bug as WORKSFORME (Bugzilla) and then get on fixing some more tangible bugs. Or doing whatever the project manager decides to do.
Certainly making random changes is a bad idea, even if they're localised, because you risk introducing new bugs.

Resources