Getting the least common denominator of two decimals - algorithm

I am currently working on a text based web game, where in I simulate the battle sequences automatically like MyBrute and Pockie Ninja
So this is the situation.
We have 2 Players with different attack speed
attack speed(determines the number of seconds needed for a player to start attacking)
(Easy Example) Lets assume Player 1 has 6s and Player 2 has 3s
This means Player 2 will attack twice before Player 1 does
(its because if two player tied on a attack turn, the one with the better attack speed goes first)
(but if they have the same attack speed, the player who have not attack lately will go)
Now my problem is in the loop.
I'd like to determine who's turn it is with the minimum number of loops
for our Easy Example we could just create an infinite loop with a counter that increments 3 values to determine whos turn it's going to be and just check if every iteration if we have a winner and exit the loop. (this is my algo you can suggest better one)
The big problem for me is when i have decimal values now for attack speed
Realistic Example (assume that i only use 1 digit for decimal)
Player1 attack speed = 5.7
Player2 attack speed = 6.6
at worst we could have is 0.1 as a an LCD and use as subtrahend per loop but i want to determine the the best subtrahend(LCD) value.
Hope it makes sense.
Thank you. I appreciate you sharing your great minds.
UPDATE
//THIS IS NOT THE ACTUAL CODES BUT THIS IS THE LOGIC
decimal Player1Turn = Player1.attackspeed;
decimal Player2Turn = Player2.attackspeed;
decimal LCD = GetLCD(Player1.attackspeed,Player2.attackspeed) ***//THIS IS WHAT I WANT TO DETERMINE***
while (Player1.HP >0 && Player2.HP >0)
{
Player1Turn -= LCD;
Player2Turn -= LCD;
if (Player1Turn<=0)
{
//DO STUFF
Player1Turn = Player1.attackspeed;
}
if (Player2Turn<=0)
{
//DO STUFF
Player2Turn = Player2.attackspeed;
}
}
WE CAN USE A FUNCTION LIKE
public decimal GetLCD(decimal num1, decimal num2)
{
//returns the lcd
}

The following code processes the battle sequence without using the lowest common denominator. It will also run about 1 million times faster than all possible attempts with using the lowest common denominator for player attack speeds equal e.g. 1000 and 1000.001 respectively.
decimal time = 0;
while (player1.HP > 0 && player2.HP > 0) {
decimal player1remainingtime = player1.attackspeed - (time % player1.attackspeed);
decimal player2remainingtime = player2.attackspeed - (time % player2.attackspeed);
time += Math.Min(player1remainingtime, player2remainingtime);
if(player1remainingtime < player2remainingtime) {
//it is player 1 turn; do stuff;
} else if(player1remainingtime > player2remainingtime) {
//it is player 2 turn; do stuff;
} else {
//both player turns now
if(player1.attackspeed < player2.attackspeed) {
//player 1 is faster, its player 1 turn; do stuff
//now do stuff for player 2
} else {
//player 2 is faster, its player 2 turn; do stuff
//now do stuff for player 1
}
}
}

If you are using an object oriented language then you can do this:
Players will be objects of type Player and there will be a Timer object.
The Timer will use the Observer design pattern.
Players will register themselves to the Timer with their response time.
When their time is due then they are notified that they can take action.

Related

Running a function multiple times and tracking results of the fight simulation

Ive made a function to run a fight simulation. Its got a random element so would like to run it 100 times to check results.
Ive learnt that ruby cant have functions inside functions.
$p1_skill = 10
$p1_health = 10
$p2_skill = 10
$p2_health = 10
def hp_check
if $p2_health >= 1 && $p1_health == 0
return "p2_wins"
elsif $p1_health >= 1 && $p2_health == 0
return "p1_wins"
else
battle
end
end
def battle
p1_fight = $p1_skill + rand(2..12)
p2_fight = $p2_skill + rand(2..12)
if p1_fight > p2_fight
$p2_health -= 2
hp_check
elsif p2_fight > p1_fight
$p1_health -= 2
hp_check
else
battle
end
end
battle
Right now this accurately produces a winner. It rolls two dice and adds them to a players skill. If its higher than the other players the other player loses 2 health.
The skills and hp of players will change throughout the game, this is for a project assignment.
Id like this to produce odds for win chances for balancing issues.
I have several suggestions regarding your implementation. Note that since this is a homework I'm providing the answer in pieces rather than just giving you an entire program. In no particular order...
Don't use global variables. I suspect this is the major hurdle you're running into with trying to achieve multiple runs of your model. The model state should be contained within the model methods, and initial state can be passed to it as arguments. Example:
def battle(p1_skill, p1_health, p2_skill, p2_health)
Unless your instructor has mandated that you use recursion, a simple loop structure will serve you much better. There's no need to check who won until one player or the other drops down to zero (or lower). There's also no need for an else to recursively call battle, the loop will iterate to the next round of the fight if both are still in the running, even if neither player took a hit.
while p1_health > 0 && p2_health > 0
# roll the dice and update health
end
# check who won and return that answer
hp_check really isn't needed, when you lose the recursive calls it becomes a one-liner if you perform the check after breaking out of the loop. Also, it would be more useful to return just the winner, so whoever gets that return value can decide whether they want to print it, use it to update a tally, both, or something else entirely. After you break out of the loop outlined above:
# determine which player won, since somebody's health dropped to 0 or less
p1_health > 0 ? 1 : 2
When you're incrementing or decrementing a quantity, don't do equality testing. p1_health <= 0 is much safer than p1_health == 0, because some day you or somebody else is going to start from an odd number while decrementing by 2's, or decrement by some other (random?) amount.
Generating a number uniformly between 2 and 12 is not the same as summing two 6-sided dice. There are 36 possible outcomes for the two dice. Only one of the 36 yields a 2, only one yields a 12, and at the other extreme, there are six ways to get a sum of 7. I created a little die-roll method which takes the number of dice as an argument:
def roll_dice(n)
n.times.inject(0) { |total| total + rand(1..6) }
end
so, for example, determining player 1's fight score becomes p1_fight = p1_skill + roll_dice(2).
After making these sorts of changes, tallying up the statistics is pretty straightforward:
n = 10000
number_of_p1_wins = 0
n.times { number_of_p1_wins += 1 if battle(10, 10, 10, 10) == 1 }
proportion = number_of_p1_wins.to_f / n
puts "p1 won #{"%5.2f" % (100.0 * proportion)}% of the time"
If you replace the constant 10's in the call to battle by getting user input or iterating over ranges, you can explore a rich set of other scenarios.

Minimum number of train station stops

I received this interview question and got stuck on it:
There are an infinite number of train stops starting from station number 0.
There are an infinite number of trains. The nth train stops at all of the k * 2^(n - 1) stops where k is between 0 and infinity.
When n = 1, the first train stops at stops 0, 1, 2, 3, 4, 5, 6, etc.
When n = 2, the second train stops at stops 0, 2, 4, 6, 8, etc.
When n = 3, the third train stops at stops 0, 4, 8, 12, etc.
Given a start station number and end station number, return the minimum number of stops between them. You can use any of the trains to get from one stop to another stop.
For example, the minimum number of stops between start = 1 and end = 4 is 3 because we can get from 1 to 2 to 4.
I'm thinking about a dynamic programming solution that would store in dp[start][end] the minimum number of steps between start and end. We'd build up the array using start...mid1, mid1...mid2, mid2...mid3, ..., midn...end. But I wasn't able to get it to work. How do you solve this?
Clarifications:
Trains can only move forward from a lower number stop to a higher number stop.
A train can start at any station where it makes a stop at.
Trains can be boarded in any order. The n = 1 train can be boarded before or after boarding the n = 3 train.
Trains can be boarded multiple times. For example, it is permitted to board the n = 1 train, next board the n = 2 train, and finally board the n = 1 train again.
I don't think you need dynamic programming at all for this problem. It can basically be expressed by binary calculations.
If you convert the number of a station to binary it tells you right away how to get there from station 0, e.g.,
station 6 = 110
tells you that you need to take the n=3 train and the n=2 train each for one station. So the popcount of the binary representation tells you how many steps you need.
The next step is to figure out how to get from one station to another.
I´ll show this again by example. Say you want to get from station 7 to station 23.
station 7 = 00111
station 23 = 10111
The first thing you want to do is to get to an intermediate stop. This stop is specified by
(highest bits that are equal in start and end station) + (first different bit) + (filled up with zeros)
In our example the intermediate stop is 16 (10000). The steps you need to make can be calculated by the difference of that number and the start station (7 = 00111). In our example this yields
10000 - 00111 = 1001
Now you know, that you need 2 stops (n=1 train and n=4) to get from 7 to 16.
The remaining task is to get from 16 to 23, again this can be solved by the corresponding difference
10111 - 10000 = 00111
So, you need another 3 stops to go from 16 to 23 (n= 3, n= 2, n= 1). This gives you 5 stops in total, just using two binary differences and the popcount. The resulting path can be extracted from the bit representations 7 -> 8 -> 16 -> 20 -> 22 -> 23
Edit:
For further clarification of the intermediate stop let's assume we want to go from
station 5 = 101 to
station 7 = 111
the intermediate stop in this case will be 110, because
highest bits that are equal in start and end station = 1
first different bit = 1
filled up with zeros = 0
we need one step to go there (110 - 101 = 001) and one more to go from there to the end station (111 - 110 = 001).
About the intermediate stop
The concept of the intermediate stop is a bit clunky but I could not find a more elegant way in order to get the bit operations to work. The intermediate stop is the stop in between start and end where the highest level bit switches (that's why it is constructed the way it is). In this respect it is the stop at which the fastest train (between start and end) operates (actually all trains that you are able to catch stop there).
By subtracting the intermediate stop (bit representation) from the end station (bit representation) you reduce the problem to the simple case starting from station 0 (cf. first example of my answer).
By subtracting the start station from the intermediate stop you also reduce the problem to the simple case, but assume that you go from the intermediate stop to the start station which is equivalent to the other way round.
First, ask if you can go backward. It sounds like you can't, but as presented here (which may not reflect the question as you received it), the problem never gives an explicit direction for any of these trains. (I see you've now edited your question to say you can't go backward.)
Assuming you can't go backward, the strategy is simple: always take the highest-numbered available train that doesn't overshoot your destination.
Suppose you're at stop s, and the highest-numbered train that stops at your current location and doesn't overshoot is train k. Traveling once on train k will take you to stop s + 2^(k-1). There is no faster way to get to that stop, and no way to skip that stop - no lower-numbered trains skip any of train k's stops, and no higher-numbered trains stop between train k's stops, so you can't get on a higher-numbered train before you get there. Thus, train k is your best immediate move.
With this strategy in mind, most of the remaining optimization is a matter of efficient bit twiddling tricks to compute the number of stops without explicitly figuring out every stop on the route.
I will attempt to prove my algorithm is optimal.
The algorithm is "take the fastest train that doesn't overshoot your destination".
How many stops this is is a bit tricky.
Encode both stops as binary numbers. I claim that an identical prefix can be neglected; the problem of going from a to b is the same as the problem of going from a+2^n to b+2^n if 2^n > b, as the stops between 2^n and 2^(n+1) are just the stops between 0 and 2^n shifted over.
From this, we can reduce a trip from a to b to guarantee that the high bit of b is set, and the same "high" bit of a is not set.
To solve going from 5 (101) to 7 (111), we merely have to solve going from 1 (01) to 3 (11), then shift our stop numbers up 4 (100).
To go from x to 2^n + y, where y < 2^n (and hence x is), we first want to go to 2^n, because there are no trains that skip over 2^n that do not also skip over 2^n+y < 2^{n+1}.
So any set of stops between x and y must stop at 2^n.
Thus the optimal number of stops from x to 2^n + y is the number of stops from x to 2^n, followed by the number of stops from 2^n to 2^n+y, inclusive (or from 0 to y, which is the same).
The algorithm I propose to get from 0 to y is to start with the high order bit set, and take the train that gets you there, then go on down the list.
Claim: In order to generate a number with k 1s, you must take at least k trains. As proof, if you take a train and it doesn't cause a carry in your stop number, it sets 1 bit. If you take a train and it does cause a carry, the resulting number has at most 1 more set bit than it started with.
To get from x to 2^n is a bit trickier, but can be made simple by tracking the trains you take backwards.
Mapping s_i to s_{2^n-i} and reversing the train steps, any solution for getting from x to 2^n describes a solution for getting from 0 to 2^n-x. And any solution that is optimal for the forward one is optimal for the backward one, and vice versa.
Using the result for getting from 0 to y, we then get that the optimal route from a to b where b highest bit set is 2^n and a does not have that bit set is #b-2^n + #2^n-a, where # means "the number of bits set in the binary representation". And in general, if a and b have a common prefix, simply drop that common prefix.
A local rule that generates the above number of steps is "take the fastest train in your current location that doesn't overshoot your destination".
For the part going from 2^n to 2^n+y we did that explicitly in our proof above. For the part going from x to 2^n this is trickier to see.
First, if the low order bit of x is set, obviously we have to take the first and only train we can take.
Second, imagine x has some collection of unset low-order bits, say m of them. If we played the train game going from x/2^m to 2^(n-m), then scaled the stop numbers by multiplying by 2^m we'd get a solution to going from x to 2^n.
And #(2^n-x)/2^m = #2^n - x. So this "scaled" solution is optimal.
From this, we are always taking the train corresponding to our low-order set bit in this optimal solution. This is the longest range train available, and it doesn't overshoot 2^n.
QED
This problem doesn't require dynamic programming.
Here is a simple implementation of a solution using GCC:
uint32_t min_stops(uint32_t start, uint32_t end)
{
uint32_t stops = 0;
if(start != 0) {
while(start <= end - (1U << __builtin_ctz(start))) {
start += 1U << __builtin_ctz(start);
++stops;
}
}
stops += __builtin_popcount(end ^ start);
return stops;
}
The train schema is a map of powers-of-two. If you visualize the train lines as a bit representation, you can see that the lowest bit set represents the train line with the longest distance between stops that you can take. You can also take the lines with shorter distances.
To minimize the distance, you want to take the line with the longest distance possible, until that would make the end station unreachable. That's what adding by the lowest-set bit in the code does. Once you do this, some number of the upper bits will agree with the upper bits of the end station, while the lower bits will be zero.
At that point, it's simply a a matter of taking a train for the highest bit in the end station that is not set in the current station. This is optimized as __builtin_popcount in the code.
An example going from 5 to 39:
000101 5 // Start
000110 5+1=6
001000 6+2=8
010000 8+8=16
100000 16+16=32 // 32+32 > 39, so start reversing the process
100100 32+4=36 // Optimized with __builtin_popcount in code
100110 36+2=38 // Optimized with __builtin_popcount in code
100111 38+1=39 // Optimized with __builtin_popcount in code
As some have pointed out, since stops are all multiples of powers of 2, trains that stop more frequently also stop at the same stops of the more-express trains. Any stop is on the first train's route, which stops at every station. Any stop is at most 1 unit away from the second train's route, stopping every second station. Any stop is at most 3 units from the third train that stops every fourth station, and so on.
So start at the end and trace your route back in time - hop on the nearest multiple-of-power-of-2 train and keep switching to the highest multiple-of-power-of-2 train you can as soon as possible (check the position of the least significant set bit - why? multiples of powers of 2 can be divided by two, that is bit-shifted right, without leaving a remainder, log 2 times, or as many leading zeros in the bit-representation), as long as its interval wouldn't miss the starting point after one stop. When the latter is the case, perform the reverse switch, hopping on the next lower multiple-of-power-of-2 train and stay on it until its interval wouldn't miss the starting point after one stop, and so on.
We can figure this out doing nothing but a little counting and array manipulation. Like all the previous answers, we need to start by converting both numbers to binary and padding them to the same length. So 12 and 38 become 01100 and 10110.
Looking at station 12, looking at the least significant set bit (in this case the only bit, 2^2) all trains with intervals larger than 2^2 won't stop at station 4, and all with intervals less than or equal to 2^2 will stop at station 4, but will require multiple stops to get to the same destination as the interval 4 train. We in every situation, up until we reach the largest set bit in the end value, we need to take the train with the interval of the least significant bit of the current station.
If we are at station 0010110100, our sequence will be:
0010110100 2^2
0010111000 2^3
0011000000 2^6
0100000000 2^7
1000000000
Here we can eliminate all bits smaller than the lest significant set bit and get the same count.
00101101 2^0
00101110 2^1
00110000 2^4
01000000 2^6
10000000
Trimming the ends at each stage, we get this:
00101101 2^0
0010111 2^0
0011 2^0
01 2^0
1
This could equally be described as the process of flipping all the 0 bits. Which brings us to the first half of the algorithm: Count the unset bits in the zero padded start number greater than the least significant set bit, or 1 if the start station is 0.
This will get us to the only intermediate station reachable by the train with the largest interval smaller than the end station, so all trains after this must be smaller than the previous train.
Now we need to get from station to 100101, it is easier and obvious, take the train with an interval equal to the largest significant bit set in the destination and not set in the current station number.
1000000000 2^7
1010000000 2^5
1010100000 2^4
1010110000 2^2
1010110100
Similar to the first method, we can trim the most significant bit which will always be set, then count the remaining 1's in the answer. So the second part of the algorithm is Count all the set significant bits smaller than the most significant bit
Then Add the result from parts 1 and 2
Adjusting the algorithm slightly to get all the train intervals, here is an example written in javascript so it can be run here.
function calculateStops(start, end) {
var result = {
start: start,
end: end,
count: 0,
trains: [],
reverse: false
};
// If equal there are 0 stops
if (start === end) return result;
// If start is greater than end, reverse the values and
// add note to reverse the results
if (start > end) {
start = result.end;
end = result.start;
result.reverse = true;
}
// Convert start and end values to array of binary bits
// with the exponent matched to the index of the array
start = (start >>> 0).toString(2).split('').reverse();
end = (end >>> 0).toString(2).split('').reverse();
// We can trim off any matching significant digits
// The stop pattern for 10 to 13 is the same as
// the stop pattern for 2 to 5 offset by 8
while (start[end.length-1] === end[end.length-1]) {
start.pop();
end.pop();
}
// Trim off the most sigificant bit of the end,
// we don't need it
end.pop();
// Front fill zeros on the starting value
// to make the counting easier
while (start.length < end.length) {
start.push('0');
}
// We can break the algorithm in half
// getting from the start value to the form
// 10...0 with only 1 bit set and then getting
// from that point to the end.
var index;
var trains = [];
var expected = '1';
// Now we loop through the digits on the end
// any 1 we find can be added to a temporary array
for (index in end) {
if (end[index] === expected){
result.count++;
trains.push(Math.pow(2, index));
};
}
// if the start value is 0, we can get to the
// intermediate step in one trip, so we can
// just set this to 1, checking both start and
// end because they can be reversed
if (result.start == 0 || result.end == 0) {
index++
result.count++;
result.trains.push(Math.pow(2, index));
// We need to find the first '1' digit, then all
// subsequent 0 digits, as these are the ones we
// need to flip
} else {
for (index in start) {
if (start[index] === expected){
result.count++;
result.trains.push(Math.pow(2, index));
expected = '0';
}
}
}
// add the second set to the first set, reversing
// it to get them in the right order.
result.trains = result.trains.concat(trains.reverse());
// Reverse the stop list if the trip is reversed
if (result.reverse) result.trains = result.trains.reverse();
return result;
}
$(document).ready(function () {
$("#submit").click(function () {
var trains = calculateStops(
parseInt($("#start").val()),
parseInt($("#end").val())
);
$("#out").html(trains.count);
var current = trains.start;
var stopDetails = 'Starting at station ' + current + '<br/>';
for (index in trains.trains) {
current = trains.reverse ? current - trains.trains[index] : current + trains.trains[index];
stopDetails = stopDetails + 'Take train with interval ' + trains.trains[index] + ' to station ' + current + '<br/>';
}
$("#stops").html(stopDetails);
});
});
label {
display: inline-block;
width: 50px;
}
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<label>Start</label> <input id="start" type="number" /> <br>
<label>End</label> <input id="end" type="number" /> <br>
<button id="submit">Submit</button>
<p>Shortest route contains <span id="out">0</span> stops</p>
<p id="stops"></p>
Simple Java solution
public static int minimumNumberOfStops(int start, final int end) {
// I would initialize it with 0 but the example given in the question states :
// the minimum number of stops between start = 1 and end = 4 is 3 because we can get from 1 to 2 to 4
int stops = 1;
while (start < end) {
start += findClosestPowerOfTwoLessOrEqualThan(end - start);
stops++;
}
return stops;
}
private static int findClosestPowerOfTwoLessOrEqualThan(final int i) {
if (i > 1) {
return 2 << (30 - Integer.numberOfLeadingZeros(i));
}
return 1;
}
NOTICE: Reason for current comments under my answer is that first I wrote this algorithm completely wrong and user2357112 awared me from my mistakes. So I completely removed that algorithm and wrote a new one according to what user2357112 answered to this question. I also added some comments into this algorithm to clarify what happens in each line.
This algorithm starts at procedure main(Origin, Dest) and it simulate our movements toward destination with updateOrigin(Origin, Dest)
procedure main(Origin, Dest){
//at the end we have number of minimum steps in this variable
counter = 0;
while(Origin != Dest){
//we simulate our movement toward destination with this
Origin = updateOrigin(Origin, Dest);
counter = counter + 1;
}
}
procedure updateOrigin(Origin, Dest){
if (Origin == 1) return 2;
//we must find which train pass from our origin, what comes out from this IF clause is NOT exact choice and we still have to do some calculation in future
if (Origin == 0){
//all trains pass from stop 0, thus we can choose our train according to destination
n = Log2(Dest);
}else{
//its a good starting point to check if it pass from our origin
n = Log2(Origin);
}
//now lets choose exact train which pass from origin and doesn't overshoot destination
counter = 0;
do {
temp = counter * 2 ^ (n - 1);
//we have found suitable train
if (temp == Origin){
//where we have moved to
return Origin + 2 ^ ( n - 1 );
//we still don't know if this train pass from our origin
} elseif (temp < Origin){
counter = counter + 1;
//lets check another train
} else {
n = n - 1;
counter = 0;
}
}while(temp < origin)
}

Algorithm for a turn-by-turn game?

I'm building a command line battle simulator. I have two teams: redteam and blueteam.
They have 4 features:
health
attack
defense
rep
First three are self-explanatory, I think. rep is reputation or fear factor. User will enter the features for both the teams. The team with the highest rep will start the attack first. damage = attack - defense. This is again subtracted from the health. Then the other team attacks, and the process continues until one of the team's health <=0 or if the attack <= defense because in this case there'll be no damage done.
In this form, the game's pretty simple only the health changes and not anything else.
The question I have is I'm currently using arrays and a while loop inside which all the logic is placed in a bunch of nested if-else blocks. The code is really messy. Is there an algorithm (and datastructres) for this kind of problem?
A
I don't get why you have a bunch of nested if-else blocks. Let me know if I misunderstood the problem, otherwise have a look at this (^ means the XOR operation):
// Let the players be x[0] and x[1].
// Get the starting player.
int p = x[0].rep >= x[1].rep ? 0 : 1;
// Loop until the current player loses all its health.
while(x[p].health > 0 && x[p].attack > x[p^1].defense)
{
// Player p makes an attack, and the
// other player (p xor 1) takes damage.
x[p^1].health -= x[p].attack - x[p^1].defense;
// Switch to the other player.
p ^= 1;
}
Print(Player p^1 wins);
Note that you could also use 1 - p instead of p ^ 1 to have the same functionality.

How to compute blot exposure in backgammon efficiently

I am trying to implement an algorithm for backgammon similar to td-gammon as described here.
As described in the paper, the initial version of td-gammon used only the raw board encoding in the feature space which created a good playing agent, but to get a world-class agent you need to add some pre-computed features associated with good play. One of the most important features turns out to be the blot exposure.
Blot exposure is defined here as:
For a given blot, the number of rolls out of 36 which would allow the opponent to hit the blot. The total blot exposure is the number of rolls out of 36 which would allow the opponent to hit any blot. Blot exposure depends on: (a) the locations of all enemy men in front of the blot; (b) the number and location of blocking points between the blot and the enemy men and (c) the number of enemy men on the bar, and the rolls which allow them to re-enter the board, since men on the bar must re-enter before blots can be hit.
I have tried various approaches to compute this feature efficiently but my computation is still too slow and I am not sure how to speed it up.
Keep in mind that the td-gammon approach evaluates every possible board position for a given dice roll, so each turn for every players dice roll you would need to calculate this feature for every possible board position.
Some rough numbers: assuming there are approximately 30 board position per turn and an average game lasts 50 turns we get that to run 1,000,000 game simulations takes: (x * 30 * 50 * 1,000,000) / (1000 * 60 * 60 * 24) days where x is the number of milliseconds to compute the feature. Putting x = 0.7 we get approximately 12 days to simulate 1,000,000 games.
I don't really know if that's reasonable timing but I feel there must be a significantly faster approach.
So here's what I've tried:
Approach 1 (By dice roll)
For every one of the 21 possible dice rolls, recursively check to see a hit occurs. Here's the main workhorse for this procedure:
private bool HitBlot(int[] dieValues, Checker.Color checkerColor, ref int depth)
{
Moves legalMovesOfDie = new Moves();
if (depth < dieValues.Length)
{
legalMovesOfDie = LegalMovesOfDie(dieValues[depth], checkerColor);
}
if (depth == dieValues.Length || legalMovesOfDie.Count == 0)
{
return false;
}
bool hitBlot = false;
foreach (Move m in legalMovesOfDie.List)
{
if (m.HitChecker == true)
{
return true;
}
board.ApplyMove(m);
depth++;
hitBlot = HitBlot(dieValues, checkerColor, ref depth);
board.UnapplyMove(m);
depth--;
if (hitBlot == true)
{
break;
}
}
return hitBlot;
}
What this function does is take as input an array of dice values (i.e. if the player rolls 1,1 the array would be [1,1,1,1]. The function then recursively checks to see if there is a hit and if so exits with true. The function LegalMovesOfDie computes the legal moves for that particular die value.
Approach 2 (By blot)
With this approach I first find all the blots and then for each blot I loop though every possible dice value and see if a hit occurs. The function is optimized so that once a dice value registers a hit I don't use it again for the next blot. It is also optimized to only consider moves that are in front of the blot. My code:
public int BlotExposure2(Checker.Color checkerColor)
{
if (DegreeOfContact() == 0 || CountBlots(checkerColor) == 0)
{
return 0;
}
List<Dice> unusedDice = Dice.GetAllDice();
List<int> blotPositions = BlotPositions(checkerColor);
int count = 0;
for(int i =0;i<blotPositions.Count;i++)
{
int blotPosition = blotPositions[i];
for (int j =unusedDice.Count-1; j>= 0;j--)
{
Dice dice = unusedDice[j];
Transitions transitions = new Transitions(this, dice);
bool hitBlot = transitions.HitBlot2(checkerColor, blotPosition);
if(hitBlot==true)
{
unusedDice.Remove(dice);
if (dice.ValuesEqual())
{
count = count + 1;
}
else
{
count = count + 2;
}
}
}
}
return count;
}
The method transitions.HitBlot2 takes a blotPosition parameter which ensures that only moves considered are those that are in front of the blot.
Both of these implementations were very slow and when I used a profiler I discovered that the recursion was the cause, so I then tried refactoring these as follows:
To use for loops instead of recursion (ugly code but it's much faster)
To use parallel.foreach so that instead of checking 1 dice value at a time I check these in parallel.
Here are the average timing results of my runs for 50000 computations of the feature (note the timings for each approach was done of the same data):
Approach 1 using recursion: 2.28 ms per computation
Approach 2 using recursion: 1.1 ms per computation
Approach 1 using for loops: 1.02 ms per computation
Approach 2 using for loops: 0.57 ms per computation
Approach 1 using parallel.foreach: 0.75 ms per computation
6 Approach 2 using parallel.foreach: 0.75 ms per computation
I've found the timings to be quite volatile (Maybe dependent on the random initialization of the neural network weights) but around 0.7 ms seems achievable which if you recall leads to 12 days of training for 1,000,000 games.
My questions are: Does anyone know if this is reasonable? Is there a faster algorithm I am not aware of that can reduce training?
One last piece of info: I'm running on a fairly new machine. Intel Cote (TM) i7-5500U CPU #2.40 GHz.
Any more info required please let me know and I will provide.
Thanks,
Ofir
Yes, calculating these features makes really hairy code. Look at the GNU Backgammon code. find the eval.c and look at the lines for 1008 to 1267. Yes, it's 260 lines of code. That code calculates what the number of rolls that hits at least one checker, and also the number of rolls that hits at least 2 checkers. As you see, the code is hairy.
If you find a better way to calculate this, please post your results. To improve I think you have to look at the board representation. Can you represent the board in a different way that makes this calculation faster?

VBScript Poker Game -- What hand do I have?

Odd little project I am working on. Before you answer, yes, I know that vbscript is probably the worst language to use for this.
I need help determining what each player has. Each card has a unique number (which I 'translate' into it's poker value with a ♥♦♣♠ next to it). For example:
A♥ = 0
2♥ = 1
3♥ = 2
...
and so on. I need help determining what hand I have. I have thought of a few ways. The first is using the delta between each card value. For example, a straight would be:
n
n +/- (1+ (13 * (0 or 1 or 2 or 3)))
n +/- (2 + (13 * (0 or 1 or 2 or 3 )))
...
and so on. For example cards 3, 3+1+0, 3+2+13, 3+3+(13*3), 3+4+(13*2)
would give me:
4♥ 5♥ 6♦ 7♠ 8♣
My questions is, should I attempt to use regex for this? What is the best way to tell the computer what hand he has without hardcoding every hand?
EDIT: FULL CODE HERE: https://codereview.stackexchange.com/questions/21338/how-to-tell-the-npc-what-hand-it-has
Poker hands all depend on the relative ranks and/or suits of cards.
I suggest writing some utility functions, starting with determining a rank and suit.
So a card in your representation is an int from 0..51. Here are some useful functions (pseudo-code):
// returns rank 0..12, where 0 = Ace, 12 = King
getRank(card) {
return card % 13;
}
// returns suit 0..3, where 0 = Heart, 1 = Diamond, 2 = Club, 3 = Spade
getSuit(card) {
return card / 13; // or floor(card / 13) if lang not using floored division
}
Now that you can obtain the rank and suit of a set of hands you can write some utilities to work with those.
// sort and return the list of cards ordered by rank
orderByRank(cards) {
// ranked = []
// for each card in cards:
// get the rank
// insert into ranked list in correct place
}
// given a ranked set of cards return highest number of identical ranks
getMaxSameRank(ranked) {
duplicates = {} // map / hashtable
for each rank in ranked {
duplicates[rank] += 1
}
return max(duplicates.vals())
}
// count the number of cards of same suit
getSameSuitCount(cards) {
suitCounts = {} // a map or hashtable if possible
// for each card in cards:
// suitCounts{getSuit(card)} += 1
// return max suit count (highest value of suitCounts)
}
You will need some more utility functions, but with these you can now look for a flush or straight:
isFlush(cards) {
if (getSameSuitCount(cards) == 5) {
return true
}
return false
}
isStraight(cards) {
ranked = orderByRank(cards)
return ranked[4] - ranked[0] == 3 && getMaxSameRank(ranked) == 1
}
isStraightFlush(cards) {
return isFlush(cards) && isStraight(cards)
}
And so on.
In general, you will need to check each hand against the possible poker hands, starting with the best, working down to high card. In practice you will need more than that to differentiate ties (two players have a fullhouse, the winner is the player with the higher ranked three of a kind making their fullhouse). So you need to store a bit more information for ranking two hands against one another, such as kickers.
// simplistic version
getHandRanking(cards) {
if (isStraightFlush()) return STRAIGHT_FLUSH
if (isQuads()) return QUADS
...
if (isHighCard) return HIGH_CARD
}
getWinner(handA, handB) {
return max(getHandRanking(handA), getHandRanking(handB))
}
That would be my general approach. There is a wealth of information on poker hand ranking algorithms out there. You might enjoy the Unit 1: Winning Poker Hands from Peter Norvig's Udacity course Design of Computer Programs

Resources