What's the big-O notation for this algorithm? - algorithm

I'm currently trying to understand dynamic programming, and I found an interesting problem : "Given a chess board of nxn squares and a starting position(xs,ys), find the shortest (as in no. of moves) path a knight can take to an end position(xe,ye)". This is how my solution would sound like :
Initialize the matrix representing the chess board (except the "square" xs,ys) with infinity.
The first value in a queue is the square xs,ys.
while(the queue is not empty){
all the squares available from the first square of the queue (respecting the rules of chess) get "refreshed"
if (i modified the distance value for a "square")
add the recently modified square to the queue
}
Can someone please help me find out what's the computing-time O value for this function? I (kind of) understand big-O, but I just can't put a value for this particular function.

Because you are using a queue, the order that you process the squares is going to be in order of minimum distance. This means that you will only ever modify the distance value for a square once, and therefore the time will be O(n^2), since there are n^2 squares.

Your algorithm is worded poorly
You don't define the contents of your "queue"
you don't define "refreshed"
you're always stuck on the first square, you're not keeping track of a current square.
also, Google Djkistra's algorithm No, don't do dijkstra's algorithm. you don't have a weighted graph.
If you want to use a dynamic programming algorithm to brute force your way to an answer, I'd start at (xe,ye), and you should be able to get O(n^2) on a nxn grid
but if you consider your constraints(your piece moves like a knight, and he moves along a grid, and not an arbitrary graph) you should be able to do this problem in O(n) time

Sounds somewhat like Dijkstra's shortest path algorithm. In which case it is O(N^2), you're finding the "distance" for all possible paths from source to destination in order to determine the lowest one.

This is a breadth first search in my opinion. It is clear that you add a square at most once in the queue and the processing of a queue entry is O(1), so the total complexity is bounded by O(N^2). However, if you can prove a theorem that tells the number of moves to get from position A to B on a NxN chess board is less than N (and intuitively this sounds reasonable for N equals or greater than 8), then your algorithm will be O(N).

Related

shortest path from single source to single destination in a non-negative weighted grid (n,5)

I have a grid with n columns and 5 rows.
Each edge is weighted and non-negative. i need to start from the bottom-left corner and get to the top-right corner with the shortest path.
I found it in O(N^2) complexity but i need it in linear time O(n).
I would be grateful for some help.
How I solved a grid (n,2) in linear time:
the bottom left is 0, and then i start looking for it's neighbors with a few comparisons. after i found the minimum from the beginning to them, i go to their neighbors and do the same, this I do until i get to the end.
I delt with each vertex and each edge once and therefore it is linear.
Thank you in advance,
Yaron.
In this Graph you have 5n vertices and 5*4*n edges so V=5n and E=20n.
You can easily apply Dijkstra using priority_queue for retrieval of min vertex which will result in time complexity of O(VlogV + ElogE) which is in this case O(N*logN).
Dijkstra wiki link.It contains the sudo code.
You can also find it's C++ implementation if you search in google but make sure it uses priority_queue otherwise it will take log(N^2) time. If you don't find it send me a comment and I will send you it's implementation.
Feel free to correct me, but you cant do it in linear time, its more or less impossible*
Having a grid format doesnt make it easier to work with.
*without using paticular constraints

How to calculate minimum time of travel between two places when a matrix containing the time of travel between each node is given

For n stations a n*n matrix A is given such that A[i][j] represents time of direct journey from station i to j (i,j <= n).
The person travelling between stations always seeks least time. Given two station numbers a, b, how to proceed about calculating minimum time of travel between them?
Can this problem be solved without using graph theory, i.e. just by matrix A alone?
You do need graph theory in order to solve it - more specifically, you need Dijkstra's algorithm. Representing the graph as a matrix is neither an advantage nor a disadvantage to that algorithm.
Note, though, that Dijkstra's algorithm requires all distances to be nonnegative. If for some reason you have negative "distances" in your matrix, you must use the slower Bellman-Ford algorithm instead.
(If you're really keen on using matrix operations and don't mind that it will be terribly slow, you could use the Floyd-Warshall algorithm, which is based on quite simple matrix operations, to compute the shortest paths between all pairs of stations (massive overkill), and then pick the pair you're interested in...)
This looks strikingly similar to the traveling salesman problem which is NP hard.
Wiki link to TSP

Generating a tower defense maze (longest maze with limited walls) - near-optimal heuristic?

In a tower defense game, you have an NxM grid with a start, a finish, and a number of walls.
Enemies take the shortest path from start to finish without passing through any walls (they aren't usually constrained to the grid, but for simplicity's sake let's say they are. In either case, they can't move through diagonal "holes")
The problem (for this question at least) is to place up to K additional walls to maximize the path the enemies have to take. For example, for K=14
My intuition tells me this problem is NP-hard if (as I'm hoping to do) we generalize this to include waypoints that must be visited before moving to the finish, and possibly also without waypoints.
But, are there any decent heuristics out there for near-optimal solutions?
[Edit] I have posted a related question here.
I present a greedy approach and it's maybe close to the optimal (but I couldn't find approximation factor). Idea is simple, we should block the cells which are in critical places of the Maze. These places can help to measure the connectivity of maze. We can consider the vertex connectivity and we find minimum vertex cut which disconnects the start and final: (s,f). After that we remove some critical cells.
To turn it to the graph, take dual of maze. Find minimum (s,f) vertex cut on this graph. Then we examine each vertex in this cut. We remove a vertex its deletion increases the length of all s,f paths or if it is in the minimum length path from s to f. After eliminating a vertex, recursively repeat the above process for k time.
But there is an issue with this, this is when we remove a vertex which cuts any path from s to f. To prevent this we can weight cutting node as high as possible, means first compute minimum (s,f) cut, if cut result is just one node, make it weighted and set a high weight like n^3 to that vertex, now again compute the minimum s,f cut, single cutting vertex in previous calculation doesn't belong to new cut because of waiting.
But if there is just one path between s,f (after some iterations) we can't improve it. In this case we can use normal greedy algorithms like removing node from a one of a shortest path from s to f which doesn't belong to any cut. after that we can deal with minimum vertex cut.
The algorithm running time in each step is:
min-cut + path finding for all nodes in min-cut
O(min cut) + O(n^2)*O(number of nodes in min-cut)
And because number of nodes in min cut can not be greater than O(n^2) in very pessimistic situation the algorithm is O(kn^4), but normally it shouldn't take more than O(kn^3), because normally min-cut algorithm dominates path finding, also normally path finding doesn't takes O(n^2).
I guess the greedy choice is a good start point for simulated annealing type algorithms.
P.S: minimum vertex cut is similar to minimum edge cut, and similar approach like max-flow/min-cut can be applied on minimum vertex cut, just assume each vertex as two vertex, one Vi, one Vo, means input and outputs, also converting undirected graph to directed one is not hard.
it can be easily shown (proof let as an exercise to the reader) that it is enough to search for the solution so that every one of the K blockades is put on the current minimum-length route. Note that if there are multiple minimal-length routes then all of them have to be considered. The reason is that if you don't put any of the remaining blockades on the current minimum-length route then it does not change; hence you can put the first available blockade on it immediately during search. This speeds up even a brute-force search.
But there are more optimizations. You can also always decide that you put the next blockade so that it becomes the FIRST blockade on the current minimum-length route, i.e. you work so that if you place the blockade on the 10th square on the route, then you mark the squares 1..9 as "permanently open" until you backtrack. This saves again an exponential number of squares to search for during backtracking search.
You can then apply heuristics to cut down the search space or to reorder it, e.g. first try those blockade placements that increase the length of the current minimum-length route the most. You can then run the backtracking algorithm for a limited amount of real-time and pick the best solution found thus far.
I believe we can reduce the contained maximum manifold problem to boolean satisifiability and show NP-completeness through any dependency on this subproblem. Because of this, the algorithms spinning_plate provided are reasonable as heuristics, precomputing and machine learning is reasonable, and the trick becomes finding the best heuristic solution if we wish to blunder forward here.
Consider a board like the following:
..S........
#.#..#..###
...........
...........
..........F
This has many of the problems that cause greedy and gate-bound solutions to fail. If we look at that second row:
#.#..#..###
Our logic gates are, in 0-based 2D array ordered as [row][column]:
[1][4], [1][5], [1][6], [1][7], [1][8]
We can re-render this as an equation to satisfy the block:
if ([1][9] AND ([1][10] AND [1][11]) AND ([1][12] AND [1][13]):
traversal_cost = INFINITY; longest = False # Infinity does not qualify
Excepting infinity as an unsatisfiable case, we backtrack and rerender this as:
if ([1][14] AND ([1][15] AND [1][16]) AND [1][17]:
traversal_cost = 6; longest = True
And our hidden boolean relationship falls amongst all of these gates. You can also show that geometric proofs can't fractalize recursively, because we can always create a wall that's exactly N-1 width or height long, and this represents a critical part of the solution in all cases (therefore, divide and conquer won't help you).
Furthermore, because perturbations across different rows are significant:
..S........
#.#........
...#..#....
.......#..#
..........F
We can show that, without a complete set of computable geometric identities, the complete search space reduces itself to N-SAT.
By extension, we can also show that this is trivial to verify and non-polynomial to solve as the number of gates approaches infinity. Unsurprisingly, this is why tower defense games remain so fun for humans to play. Obviously, a more rigorous proof is desirable, but this is a skeletal start.
Do note that you can significantly reduce the n term in your n-choose-k relation. Because we can recursively show that each perturbation must lie on the critical path, and because the critical path is always computable in O(V+E) time (with a few optimizations to speed things up for each perturbation), you can significantly reduce your search space at a cost of a breadth-first search for each additional tower added to the board.
Because we may tolerably assume O(n^k) for a deterministic solution, a heuristical approach is reasonable. My advice thus falls somewhere between spinning_plate's answer and Soravux's, with an eye towards machine learning techniques applicable to the problem.
The 0th solution: Use a tolerable but suboptimal AI, in which spinning_plate provided two usable algorithms. Indeed, these approximate how many naive players approach the game, and this should be sufficient for simple play, albeit with a high degree of exploitability.
The 1st-order solution: Use a database. Given the problem formulation, you haven't quite demonstrated the need to compute the optimal solution on the fly. Therefore, if we relax the constraint of approaching a random board with no information, we can simply precompute the optimum for all K tolerable for each board. Obviously, this only works for a small number of boards: with V! potential board states for each configuration, we cannot tolerably precompute all optimums as V becomes very large.
The 2nd-order solution: Use a machine-learning step. Promote each step as you close a gap that results in a very high traversal cost, running until your algorithm converges or no more optimal solution can be found than greedy. A plethora of algorithms are applicable here, so I recommend chasing the classics and the literature for selecting the correct one that works within the constraints of your program.
The best heuristic may be a simple heat map generated by a locally state-aware, recursive depth-first traversal, sorting the results by most to least commonly traversed after the O(V^2) traversal. Proceeding through this output greedily identifies all bottlenecks, and doing so without making pathing impossible is entirely possible (checking this is O(V+E)).
Putting it all together, I'd try an intersection of these approaches, combining the heat map and critical path identities. I'd assume there's enough here to come up with a good, functional geometric proof that satisfies all of the constraints of the problem.
At the risk of stating the obvious, here's one algorithm
1) Find the shortest path
2) Test blocking everything node on that path and see which one results in the longest path
3) Repeat K times
Naively, this will take O(K*(V+ E log E)^2) but you could with some little work improve 2 by only recalculating partial paths.
As you mention, simply trying to break the path is difficult because if most breaks simply add a length of 1 (or 2), its hard to find the choke points that lead to big gains.
If you take the minimum vertex cut between the start and the end, you will find the choke points for the entire graph. One possible algorithm is this
1) Find the shortest path
2) Find the min-cut of the whole graph
3) Find the maximal contiguous node set that intersects one point on the path, block those.
4) Wash, rinse, repeat
3) is the big part and why this algorithm may perform badly, too. You could also try
the smallest node set that connects with other existing blocks.
finding all groupings of contiguous verticies in the vertex cut, testing each of them for the longest path a la the first algorithm
The last one is what might be most promising
If you find a min vertex cut on the whole graph, you're going to find the choke points for the whole graph.
Here is a thought. In your grid, group adjacent walls into islands and treat every island as a graph node. Distance between nodes is the minimal number of walls that is needed to connect them (to block the enemy).
In that case you can start maximizing the path length by blocking the most cheap arcs.
I have no idea if this would work, because you could make new islands using your points. but it could help work out where to put walls.
I suggest using a modified breadth first search with a K-length priority queue tracking the best K paths between each island.
i would, for every island of connected walls, pretend that it is a light. (a special light that can only send out horizontal and vertical rays of light)
Use ray-tracing to see which other islands the light can hit
say Island1 (i1) hits i2,i3,i4,i5 but doesn't hit i6,i7..
then you would have line(i1,i2), line(i1,i3), line(i1,i4) and line(i1,i5)
Mark the distance of all grid points to be infinity. Set the start point as 0.
Now use breadth first search from the start. Every grid point, mark the distance of that grid point to be the minimum distance of its neighbors.
But.. here is the catch..
every time you get to a grid-point that is on a line() between two islands, Instead of recording the distance as the minimum of its neighbors, you need to make it a priority queue of length K. And record the K shortest paths to that line() from any of the other line()s
This priority queque then stays the same until you get to the next line(), where it aggregates all priority ques going into that point.
You haven't showed the need for this algorithm to be realtime, but I may be wrong about this premice. You could then precalculate the block positions.
If you can do this beforehand and then simply make the AI build the maze rock by rock as if it was a kind of tree, you could use genetic algorithms to ease up your need for heuristics. You would need to load any kind of genetic algorithm framework, start with a population of non-movable blocks (your map) and randomly-placed movable blocks (blocks that the AI would place). Then, you evolve the population by making crossovers and transmutations over movable blocks and then evaluate the individuals by giving more reward to the longest path calculated. You would then simply have to write a resource efficient path-calculator without the need of having heuristics in your code. In your last generation of your evolution, you would take the highest-ranking individual, which would be your solution, thus your desired block pattern for this map.
Genetic algorithms are proven to take you, under ideal situation, to a local maxima (or minima) in reasonable time, which may be impossible to reach with analytic solutions on a sufficiently large data set (ie. big enough map in your situation).
You haven't stated the language in which you are going to develop this algorithm, so I can't propose frameworks that may perfectly suit your needs.
Note that if your map is dynamic, meaning that the map may change over tower defense iterations, you may want to avoid this technique since it may be too intensive to re-evolve an entire new population every wave.
I'm not at all an algorithms expert, but looking at the grid makes me wonder if Conway's game of life might somehow be useful for this. With a reasonable initial seed and well-chosen rules about birth and death of towers, you could try many seeds and subsequent generations thereof in a short period of time.
You already have a measure of fitness in the length of the creeps' path, so you could pick the best one accordingly. I don't know how well (if at all) it would approximate the best path, but it would be an interesting thing to use in a solution.

Finding subset of disjunctive intervals with maximal weights

I am looking for an algorithm I could use to solve this, not the code. I wondered about using linear programming with relaxation, but maybe there are more efficient ways for solving this?
The problem
I have set of intervals with weights. Intervals can overlap. I need to find maximal sum of weights of disjunctive intervals subset.
Example
Intervals with weights :
|--3--| |---1-----|
|----2--| |----5----|
Answer: 8
I have an exact O(nlog n) DP algorithm in mind. Since this is homework, here is a clue:
Sort the intervals by right edge position as Saeed suggests, then number them up from 1. Define f(i) to be the highest weight attainable by using only intervals that do not extend to the right of interval i's right edge.
EDIT: Clue 2: Calculate each f(i) in increasing order of i. Keep in mind that each interval will either be present or absent. To calculate the score for the "present" case, you'll need to hunt for the "rightmost" interval that is compatible with interval i, which will require a binary search through the solutions you've already computed.
That was a biggie, not sure I can give more clues without totally spelling it out ;)
If there is no weight it's easy you can use greedy algorithm by sorting the intervals by the end time of them, and in each step get the smallest possible end time interval.
but in your case I think It's NPC (should think about it), but you can use similar greedy algorithm by Value each interval by Weigth/Length, and each time get one of a possible intervals in sorted format, Also you can use simulated annealing, means each time you will get best answer by above value with probability P (p is near to 1) or select another interval with probability 1-P. you can do it in while loop for n times to find a good answer.
Here's an idea:
Consider the following graph: Create a node for each interval. If interval I1 and interval I2 do not overlap and I1 comes before I2, add a directed edge from node I1 to node I2. Note this graph is acyclic. Each node has a cost equal to the length of the corresponding interval.
Now, the idea is to find the longest path in this graph, which can be found in polynomial time for acyclic graphs (using dynamic programming, for example). The problem is that the costs are in the nodes, not in the edges. Here is a trick: split each node v into v' and v''. All edges entering v will now enter v' and all edges leaving v will now leave v''. Then, add an edge from v' to v'' with the node's cost, in this case, the length of the interval. All the other edges will have cost 0.
Well, if I'm not mistaken the longest path in this graph will correspond to the set of disjoint intervals with maximum sum.
You could formulate this problem as a general IP (integer programming) problem with binary variables indicating whether an interval is selected or not. The objective function will then be a weighted linear combination of the variables. You would then need appropriate constraints to enforce disjunctiveness amongst the intervals...That should suffice given the homework tag.
Also, just because a problem can be formulated as an integer program (solving which is NP-Hard) it does not mean that the problem class itself is NP-Hard. So, as Ulrich points out there may be a polynomially-solvable formulation/algorithm such as formulating/solving the problem as a linear program.
Correct solution (end to end) is explained here: http://tkramesh.wordpress.com/2011/02/03/dynamic-programming-1-weighted-interval-scheduling/

Algorithm to find two points furthest away from each other

Im looking for an algorithm to be used in a racing game Im making. The map/level/track is randomly generated so I need to find two locations, start and goal, that makes use of the most of the map.
The algorithm is to work inside a two dimensional space
From each point, one can only traverse to the next point in four directions; up, down, left, right
Points can only be either blocked or nonblocked, only nonblocked points can be traversed
Regarding the calculation of distance, it should not be the "bird path" for a lack of a better word. The path between A and B should be longer if there is a wall (or other blocking area) between them.
Im unsure on where to start, comments are very welcome and proposed solutions are preferred in pseudo code.
Edit: Right. After looking through gs's code I gave it another shot. Instead of python, I this time wrote it in C++. But still, even after reading up on Dijkstras algorithm, the floodfill and Hosam Alys solution, I fail to spot any crucial difference. My code still works, but not as fast as you seem to be getting yours to run. Full source is on pastie. The only interesting lines (I guess) is the Dijkstra variant itself on lines 78-118.
But speed is not the main issue here. I would really appreciate the help if someone would be kind enough to point out the differences in the algorithms.
In Hosam Alys algorithm, is the only difference that he scans from the borders instead of every node?
In Dijkstras you keep track and overwrite the distance walked, but not in floodfill, but thats about it?
Assuming the map is rectangular, you can loop over all border points, and start a flood fill to find the most distant point from the starting point:
bestSolution = { start: (0,0), end: (0,0), distance: 0 };
for each point p on the border
flood-fill all points in the map to find the most distant point
if newDistance > bestSolution.distance
bestSolution = { p, distantP, newDistance }
end if
end loop
I guess this would be in O(n^2). If I am not mistaken, it's (L+W) * 2 * (L*W) * 4, where L is the length and W is the width of the map, (L+W) * 2 represents the number of border points over the perimeter, (L*W) is the number of points, and 4 is the assumption that flood-fill would access a point a maximum of 4 times (from all directions). Since n is equivalent to the number of points, this is equivalent to (L + W) * 8 * n, which should be better than O(n2). (If the map is square, the order would be O(16n1.5).)
Update: as per the comments, since the map is more of a maze (than one with simple obstacles as I was thinking initially), you could make the same logic above, but checking all points in the map (as opposed to points on the border only). This should be in order of O(4n2), which is still better than both F-W and Dijkstra's.
Note: Flood filling is more suitable for this problem, since all vertices are directly connected through only 4 borders. A breadth first traversal of the map can yield results relatively quickly (in just O(n)). I am assuming that each point may be checked in the flood fill from each of its 4 neighbors, thus the coefficient in the formulas above.
Update 2: I am thankful for all the positive feedback I have received regarding this algorithm. Special thanks to #Georg for his review.
P.S. Any comments or corrections are welcome.
Follow up to the question about Floyd-Warshall or the simple algorithm of Hosam Aly:
I created a test program which can use both methods. Those are the files:
maze creator
find longest distance
In all test cases Floyd-Warshall was by a great magnitude slower, probably this is because of the very limited amount of edges that help this algorithm to achieve this.
These were the times, each time the field was quadruplet and 3 out of 10 fields were an obstacle.
Size Hosam Aly Floyd-Warshall
(10x10) 0m0.002s 0m0.007s
(20x20) 0m0.009s 0m0.307s
(40x40) 0m0.166s 0m22.052s
(80x80) 0m2.753s -
(160x160) 0m48.028s -
The time of Hosam Aly seems to be quadratic, therefore I'd recommend using that algorithm.
Also the memory consumption by Floyd-Warshall is n2, clearly more than needed.
If you have any idea why Floyd-Warshall is so slow, please leave a comment or edit this post.
PS: I haven't written C or C++ in a long time, I hope I haven't made too many mistakes.
It sounds like what you want is the end points separated by the graph diameter. A fairly good and easy to compute approximation is to pick a random point, find the farthest point from that, and then find the farthest point from there. These last two points should be close to maximally separated.
For a rectangular maze, this means that two flood fills should get you a pretty good pair of starting and ending points.
I deleted my original post recommending the Floyd-Warshall algorithm. :(
gs did a realistic benchmark and guess what, F-W is substantially slower than Hosam Aly's "flood fill" algorithm for typical map sizes! So even though F-W is a cool algorithm and much faster than Dijkstra's for dense graphs, I can't recommend it anymore for the OP's problem, which involves very sparse graphs (each vertex has only 4 edges).
For the record:
An efficient implementation of Dijkstra's algorithm takes O(Elog V) time for a graph with E edges and V vertices.
Hosam Aly's "flood fill" is a breadth first search, which is O(V). This can be thought of as a special case of Dijkstra's algorithm in which no vertex can have its distance estimate revised.
The Floyd-Warshall algorithm takes O(V^3) time, is very easy to code, and is still the fastest for dense graphs (those graphs where vertices are typically connected to many other vertices). But it's not the right choice for the OP's task, which involves very sparse graphs.
Raimund Seidel gives a simple method using matrix multiplication to compute the all-pairs distance matrix on an unweighted, undirected graph (which is exactly what you want) in the first section of his paper On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs
[pdf].
The input is the adjacency matrix and the output is the all-pairs shortest-path distance matrix. The run-time is O(M(n)*log(n)) for n points where M(n) is the run-time of your matrix multiplication algorithm.
The paper also gives the method for computing the actual paths (in the same run-time) if you need this too.
Seidel's algorithm is cool because the run-time is independent of the number of edges, but we actually don't care here because our graph is sparse. However, this may still be a good choice (despite the slightly-worse-than n^2 run-time) if you want the all pairs distance matrix, and this might also be easier to implement and debug than floodfill on a maze.
Here is the pseudocode:
Let A be the nxn (0-1) adjacency matrix of an unweighted, undirected graph, G
All-Pairs-Distances(A)
Z = A * A
Let B be the nxn matrix s.t. b_ij = 1 iff i != j and (a_ij = 1 or z_ij > 0)
if b_ij = 1 for all i != j return 2B - A //base case
T = All-Pairs-Distances(B)
X = T * A
Let D be the nxn matrix s.t. d_ij = 2t_ij if x_ij >= t_ij * degree(j), otherwise d_ij = 2t_ij - 1
return D
To get the pair of points with the greatest distance we just return argmax_ij(d_ij)
Finished a python mockup of the dijkstra solution to the problem.
Code got a bit long so I posted it somewhere else: http://refactormycode.com/codes/717-dijkstra-to-find-two-points-furthest-away-from-each-other
In the size I set, it takes about 1.5 seconds to run the algorithm for one node. Running it for every node takes a few minutes.
Dont seem to work though, it always displays the topleft and bottomright corner as the longest path; 58 tiles. Which of course is true, when you dont have obstacles. But even adding a couple of randomly placed ones, the program still finds that one the longest. Maybe its still true, hard to test without more advanced shapes.
But maybe it can at least show my ambition.
Ok, "Hosam's algorithm" is a breadth first search with a preselection on the nodes.
Dijkstra's algorithm should NOT be applied here, because your edges don't have weights.
The difference is crucial, because if the weights of the edges vary, you need to keep a lot of options (alternate routes) open and check them with every step. This makes the algorithm more complex.
With the breadth first search, you simply explore all edges once in a way that garantuees that you find the shortest path to each node. i.e. by exploring the edges in the order you find them.
So basically the difference is Dijkstra's has to 'backtrack' and look at edges it has explored before to make sure it is following the shortest route, while the breadth first search always knows it is following the shortest route.
Also, in a maze the points on the outer border are not guaranteed to be part of the longest route.
For instance, if you have a maze in the shape of a giant spiral, but with the outer end going back to the middle, you could have two points one at the heart of the spiral and the other in the end of the spiral, both in the middle!
So, a good way to do this is to use a breadth first search from every point, but remove the starting point after a search (you already know all the routes to and from it).
Complexity of breadth first is O(n), where n = |V|+|E|. We do this once for every node in V, so it becomes O(n^2).
Your description sounds to me like a maze routing problem. Check out the Lee Algorithm. Books about place-and-route problems in VLSI design may help you - Sherwani's "Algorithms for VLSI Physical Design Automation" is good, and you may find VLSI Physical Design Automation by Sait and Youssef useful (and cheaper in its Google version...)
If your objects (points) do not move frequently you can perform such a calculation in a much shorter than O(n^3) time.
All you need is to break the space into large grids and pre-calculate the inter-grid distance. Then selecting point pairs that occupy most distant grids is a matter of simple table lookup. In the average case you will need to pair-wise check only a small set of objects.
This solution works if the distance metrics are continuous. Thus if, for example there are many barriers in the map (as in mazes), this method might fail.

Resources